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Abstract—Monitoring biodiversity at scale is challenging. De-
tecting and identifying species in fine grained taxonomies requires
highly accurate machine learning (ML) methods. Training such
models requires large high quality data sets. And deploying
these models to low power devices requires novel compression
techniques and model architectures. While species classification
methods have profited from novel data sets and advances in ML
methods, in particular neural networks, deploying these state-of-
the-art models to low power devices remains difficult. Here we
present a comprehensive empirical comparison of various tinyML
neural network architectures and compression techniques for
species classification. We focus on the example of bird song
detection, and more concretely on a data set curated for studying
the corn bunting bird species. We publish the data set along with
all the code and experiments of this study. In our experiments
we comparatively evaluate predictive performance, memory and
time complexity of spectrogram-based methods and of more
recent approaches operating directly on the raw audio signal. Our
results demonstrate that TinyChirp – our approach – can robustly
detect individual bird species with precisions over 0.98 and reduce
energy consumption compared to state-of-the-art, such that an
autonomous recording unit lifetime on a single battery charge is
extended from 2 weeks to 8 weeks, almost an entire season.

Index Terms—TinyML, Microcontroller, Acoustic Sensors, Ma-
chine Learning

I. INTRODUCTION

The typical data pipeline with bio-acoustic research requires
the deployment of sensors, in which each node is battery-
powered and left in the field to record environmental sound,
continuously, for a long period (e.g. for a whole season).
Thereafter, the recorded data is manually collected by re-
searchers on-site, from each node, and further analyzed in
laboratory. In the case of avian species for instance, only the
targeted bird species is relevant within the recorded data, and
the rest of the data is to be discarded ultimately. This is both a
cumbersome process and a waste of resources, not only at this
downstream stage in the lab, but also upstream in the field, on
each node, while recording large amounts of irrelevant data.
In this pipeline, continuous recording of audio thus creates a
bottleneck in terms of memory and energy budgets available
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on individual sensors – typically limited to a small battery,
and an SD card, respectively, driven by rudimentary software
running on a low-power microcontroller. Such hardware is
very energy-efficient, but very limited in memory resources,
with RAM memory budgets in the order of 500 kiloBytes [1],
which yields specific constraints on software embedded on
such devices [2].

Meanwhile, as Artificial Intelligence (AI) achieves excellent
performance in pattern recognition of audio and biosignals,
more and more bioacoustic researchers leverage Machine
Learning (ML) related methods to improve accuracy and
efficiency. However, until recently, such ML models, e.g.
BirdNET [3] were confined to lab use only, as their resource
requirements (GigaBytes of RAM) are way beyond the capac-
ity of microcontroller-based hardware available on sensors in
the field. However, recent advances in TinyML, a lively field of
research targeting machine learning for microcontrollers, offer
a glimpse of hope that pattern recognition of bioacoustic sig-
nals might become possible, over longer periods, as required
by the aforementioned use cases.

Paper Contributions. In this paper, we explore the pos-
sibility of using TinyML in practice, on common low-power
microcontroller hardware, for a concrete use case: monitoring
corn bunting birds’ songs, in a rural area in the UK, over
several months in a row, using a fleet of energy-efficient
acoustic sensors. We aim to answer the following questions:
(Q1) Can we pre-screen the audio on the low-power sensor
node, so as to only store the targeted bird songs on each
sensor? (Q2) How does that extend the device’s lifetime, in
terms of memory and energy budgets? More in detail, our
contributions are as follows:

• We propose a pipeline to record, recognize and store
specific bird songs on low-power microcontroller-based
devices, which can be further scale-up to universal
species;

• We developed a neural network with high accuracy on
bird song recognition. Furthermore, we optimize the
network with partial convolution technology to minimize
the memory consumption on deployment;
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• We propose a two-stage binary classification approach to
reduce computational and storage cost and enhance the
overall accuracy;

• We provide experimental results on both the classification
performance of models and resource consumption on
low-power devices;

• We publish a new data set of curated audio recordings
snippets of corn bunting bird songs;

• We provide open source code1 to reproduce the results
on common Microcontroller Units (MCUs).

II. BACKGROUND & RELATED WORK

A. Bird Song Recognition

Bird song detection has seen significant recent advances
using various machine learning techniques. The common
prevalent approach uses deep learning methods on prepro-
cessed audio, which transforms the signal into a spectrogram
using Short-Time Fourier Transform (STFT) [4]. This process
effectively redefines the audio recognition task as an image
recognition task operating on a (log) Mel spectrogram [5],
[6]. Convolutional Neural Networks (CNNs) [4], [5], [7] and
Residual Neural Networks (ResNets) [6], [8] are widely uti-
lized for such image recognition tasks in bird song detection.
BirdNET [3], a well-known neural network for bird song
recognition, is derived from the family of residual networks
and can recognize 6,000 of the world’s most common species
at the time of writing.

Another approach involves transforming the audio signal
into Mel-Frequency Cepstral Coefficients (MFCCs), which are
then used as input for bird song classification [7], [9], [10].
Alternatively, feature extraction using wavelet decomposition
can be employed for this purpose [11]. Additionally, certain
studies combine different architectures [5], [9]. While these
methods are effective for bird song recognition, their computa-
tional requirements are typically too demanding for execution
on microcontrollers.

In this work we focus on bird songs, rather than calls.
The main reasons for this are the higher complexity of bird
songs, their role in sexual selection, and the generally richer
behavioral information they provide.

B. Bioacoustic Audio Datasets

High-quality and diverse datasets are crucial for training
models to accurately recognize birds and differentiate between
species by their unique songs. The Xeno-canto database2 is
one of the largest and most comprehensive collections of bird
sounds, containing over 500,000 recordings from more than
10,000 species. Another extensive collection of bird audio
recordings is available in the Macaulay Library3, renowned for
its high-quality bird audio recordings and detailed metadata.
The combination of the Macaulay Library and Xeno-canto
audio recordings was used to train BirdNet [3]. In [5], the

1see https://github.com/TinyPART/TinyChirp
2see https://www.xeno-canto.org
3see https://www.macaulaylibrary.org/

public dataset CLO-43DS contains recordings of 43 different
North American wood-warblers. Another notable collection is
the Birdsdata dataset with 20 bird species from the Beijing
Academy of Artificial Intelligence (BAAI) repository [6],
[8], [9]. The BEANS benchmark [12], designed to evaluate
ML algorithms for bioacoustics tasks across various species,
includes 12 public datasets on birds, mammals, anurans, and
insects. To complement datasets focused on bird species, the
Google AudioSet [3] and Urbansound8K [8] datasets are often
used to include non-bird species sounds.

C. Tiny Machine Learning (TinyML)

For models to operate on low-power devices, they must be
compact and computationally efficient. Studies have demon-
strated the use of lightweight CNNs for various Internet
of Sounds applications [13]–[18]. Other model architectures,
such as tiny vision transformers have also been employed for
audio classification tasks in various studies [19]–[23]. More-
over, various quantization techniques are applied to models,
aiming to reduce their size to fit within the constraints of low-
power devices [24]–[26].

Creating spectrograms from audio signals can be power-
intensive; hence, some studies use instead raw time-series
data as input for neural networks [27]–[29]. Notably, raw
audio signals have been used for urban sound analysis [25],
[30]. The advantages of using time-series data include reduced
computational load and suitability for TinyML on low-power
devices.

In a nutshell: the integration of TinyML and acoustic sensors
has become a hot topic in the field of Internet of Sounds [31].
As demonstrated in prior bioacoustic applications such as
[4], [32], [33], TinyML promises to offer new, appealing
combinations of high accuracy and resource-efficiency.

D. Embedded Software Platforms for TinyML

The widely used model transpiler TVM (Tensor Virtual Ma-
chine [34]) has recently been extended with uTVM, providing
automated transpilation and compilation for models output by
major ML frameworks (TFLM, Pytorch, etc.). As such uTVM
exposes low-level routines and optimizes these for execution
on different processing units, including for targets such as a
large variety of microcontrollers. Prior works such as [35], [36]
or MLPerfTiny [37] focused on the production, performance
and analysis of standard benchmark suites of representative
TinyML tasks on different microcontrollers. Conversely, prior
work such as U-TOE [38] or RIOT-ML [39] provide embedded
operating system integration of TinyML, facilitating TinyML
benchmarking and continuous deployment over low-power
wireless network links such as IEEE 802.15.4 or BLE.

III. BIOACOUSTIC MONITORING SCENARIO

As depicted in Figure 1, a network of battery-powered,
autonomous recording units (ARUs, i.e. microcontroller-based
acoustic sensors) is deployed across a monitored area. An
example of ARU is given in [40].

https://github.com/TinyPART/TinyChirp
https://www.xeno-canto.org
https://www.macaulaylibrary.org/


These sensors remain in the field for an entire season, typi-
cally around six months. Locations are often remote and hard
to access and devices may be distributed over a relatively wide
area, making visiting them time-consuming. Birds typically do
not sing consistently during the whole day, while each bird has
several different song types that need to be regularly sampled.
Moreover, each individual bird moves around its individual
territory, singing from a range of song posts, not all of which
will be adequately recorded from any one location.

On the network aspect, the sensors are distributed approxi-
mately evenly, ensuring that each sensor can be wireless con-
nected by more than two neighboring sensors. This arrange-
ment facilitates approximate triangulation through distance
estimation based on signal strength. The placement process
can be streamlined using LEDs and a basic ultra-low-power
wireless protocol, such as IEEE 802.15.4 or LoRa. For space
reason, we do not detail network aspects in the paper, but
rather focus on the on-device machine learning aspects.

Although our work is designed around one very spe-
cific real-world research scenario (monitoring common Corn
Bunting bird songs) the architectures should be readily appli-
cable to other audio data classification tasks.

A. Corn Bunting Monitoring Use-Case

SongBeam [40] microcontroller-based recorders have been
used to monitor corn bunting (Emberiza calandra) birds in
Oxfordshire, UK. A set of 30-40 devices have been deployed
since 2022, currently comprising 3 complete breeding seasons
(February - July).

SongBeam devices are based on an ARM Cortex-M micro-
controller, run on 4 D-cell batteries and record 4-channel WAV
files onto 128 GB microSD cards. To maintain such a fleet of
sensors, devices are currently checked approximately every 2
weeks, especially because memory space is soon exhausted on
the microSD cards.

The above deployment has been used to produce a sig-
nificant part of the dataset we present in Section V-A. Our
experience using SongBeam and a preliminary analysis of
the raw dataset we produced shows that less than 10% of
recording time contains useful recordings. Given the extended
deployment period (6 months), remaining low-power while
improving storage efficiency is thus paramount.

This description of the limitations of using SongBeam
recorders to monitor corn buntings is likely to apply to
many biomonitoring scenarios: solar power may allow for
extending deployment lifetime in remote locations, but storage
of recordings is a limiting factor.

IV. EVALUATION METRICS

On the one hand, as the basic part of bird song recording, the
model should identify the target bird song as much as possible,
potentially requiring a complex structure with a large size. On
the other hand, the limited resource budget allows only simple
models to be deployed on Internet of Things (IoT) devices.

Thus we considered two orthogonal types of metrics to
evaluate the prediction performance on bird song classification
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Fig. 1. Top: Low-power autonomous recording units (ARU) distributed
spatially to monitor birds. Bottom: audio sample classification on an ARU.

and resource usage on low-power IoT devices of TinyML
models. Preliminary results are presented in Section X.

A. On-device Resource Usage

We performed extensive profiling of all models on low-
power devices to capture their effective memory and time
complexity in a real-world application scenario. The metrics
are helpful to investigate the energy efficiency of the models,
complementing the commonly used metrics for predictive
performance.

Memory (RAM) Consumption – This metric measures the
amount of dynamic memory space (primary RAM) consumed
by the model during inference. It reflects the memory footprint
of the model activation and is important for low-power devices
that have limited memory resources.

Storage (Flash memory) Consumption – This metric
quantifies the amount of storage space, typically in terms of
Flash memory region, required to store the compute instruction
and associated parameters.

Computational Latency – This metric measures the time
consumption of performing inference for each input sample at
the model level. It reflects the inference speed of the model
on the low-power device and plays a crucial role in real-time
or latency-sensitive applications.

Energy Consumption – This metric is crucial for battery-
operated and resource-constrained devices, where efficient
energy usage can significantly impact device longevity and
performance. Energy consumption encompasses both active
power (when the device is triggered to perform tasks) and
idle power (when the device is in sleep mode).

B. On-device Prediction Performance

Accuracy – It is defined as the ratio of correctly predicted
instances to the total instances in the dataset. While accuracy
is intuitive, it can be misleading, especially in highly imbal-
anced datasets. To address this limitation, accuracy should be
combined with other metrics that offer a more detailed view
of model performance.

Precision and Recall – They are two fundamental met-
rics of classification models used to evaluate the ability to
distinguish true positives (TP) from false positives (FP) and
false negatives (FN), particularly in the context of imbalanced
datasets.



F-Score – There is often a trade-off between precision and
recall; increasing one can lead to a decrease in the other.
As two common instances, F1-score weighs them evenly,
while F2-score treats recall as two times more important than
precision, applying in scenarios where false positives are more
tolerant than false negatives.

Receiver Operating Characteristic (ROC) Curve – While
the above metrics are sensitive to class imbalance – which
occurs in many species classification and detection tasks –
there are other metrics that are more robust towards class
imbalance. The receiver-operator characteristic (ROC) curve
depicts the True Positive Rate (TPR) and False Positive Rate
(FPR) across different decision thresholds.

V. METHODOLOGY

We used a combination of project-specific and publicly
accessible data to train and validate our classification mod-
els. In the data pre-processing phase, the raw audio signals
were further segmented, labeled, down-sampled and divided
into different groups to generate classification datasets. The
corresponding Mel-spectrograms of the pre-processed audio
segments were also created for spectral-based methods (mod-
els). During the pre-processing stage, we conducted a pilot
analysis to establish guidelines and determine specific hyper-
parameters for downsampling and spectrogram generation.

A. Data Acquisition

The publicly accessible data originated from Macaulay,
Xeno-Canto, Google AudioSet, while the project-specific data
were previously collected in a long-term research of bird song
patterns. In order to ensure generalization across a wide variety
of conditions for the target species, the corn bunting, we
gathered as many recordings as possible from a heterogeneous
suite of publicly available repositories, in addition to the
custom data set collected. We aimed at increasing precision of
all models by including a wide variety of non-target sounds.
Our data set is made publicly available4.

• Oxfordshire Corn Buntings. This project-specific library
contains recordings of corn buntings along a transect of
approximately 20 km in Southern England. Corn buntings
sing in a mosaic-like pattern of geographical variation
called dialects; our sample contains approximately 6
different dialects. The recordings were performed with
directional parabolic microphones as described in [40].

• Macaulay Library. This library contains the necessary
audio recordings for our target species as well as the
other identified species. There are a total of 278 entries of
audio recordings for the target species. For other species
as non-target, we limit the selection to a maximum of
30 recordings per species and choose those with the
highest average community rating, acquiring a total of
1468 recordings.

• Xeno-Canto. This library also contains recordings of tar-
get species and other species. We retrieved the recordings

4see https://github.com/TinyPART/TinyChirp/tree/main/datasets

only marked with song and rated with the best quality
level, resulting in 303 recordings of target species and
9622 recordings of other species as non-target.

• Google AudioSet. This dataset provides environmental
sounds which contain non-bird sounds. We create a list
of excluded categories to avoid overlap with other bird
sounds. This data set includes weather-related sounds,
such as rain, wind, thunderstorms, insects, other animal
and human-related sounds, such as church bells, trucks,
etc.

After gathering all audio recordings from the above li-
braries, we used BirdNET with the confidence threshold at
0.92 to identify and chop corn-bunting segments from all
datasets, and labeled them as target bird songs; all segments
were truncated or zero-padded to the length of 3 seconds. This
high confidence threshold is intended to minimize incorrect
labels, although it does not entirely eliminate the label noise,
which could potentially skew the performance metrics of our
models, particularly in cases where the models are trained
on mislabeled data. Meanwhile, we chose other 3-s segments
randomly and ensured no overlap with corn-bunting segments,
with labeled as non-target bird songs. To avoid data leakage,
we implement an additional function that segments occurring
sequentially in the source audio file were not distributed
across the training, validation and test sets. Table I shows the
distribution of target and non-target segments over all datasets.

B. Data Pre-processing

This phase contains the following steps:
1) We divided the segments into training, validation and

test sets with the ratio of 80 : 10 : 10.
2) All segments were downsampled to 16 kHz using zero-

order holder. These downsampled segments constituted
the audio (waveform) dataset.

3) We transformed the downsampled audio segments into
Mel-Spectrograms, and grouped them with the same
splitting ratio to form the spectral dataset.

Pilot Analysis – We averaged the STFT spectrograms
of target and non-target segments in the training dataset
to investigate their frequency characteristics, as depicted in
Figure 2. Obviously, a bright band lays on the spectrogram
of target segments roughly between 4000 and 8000 Hz, hints
that a sample rate with 16 kHz should be sufficient to preserve
all frequency components of corn-bunting song according
to Nyquist–Shannon theorem. A highpass filter can also be
applied to eliminate low-frequency noise without damaging
target songs. Thus, we downsampled the segments from 48
kHz to 16 kHz to reduce the resource consumption and
improve the efficiency of classification phase. In the baseline
model we also designed a highpass filter to enhance Signal-
to-noise ratio (SNR).

Mel-Spectrogram – Mel-spectrogram is commonly used
in audio classification tasks due to its ability to closely
approximate human auditory perception. To create log Mel-
spectrograms, we first generated magnitude spectrograms of

https://github.com/TinyPART/TinyChirp/tree/main/datasets
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Fig. 2. Average STFT of target and non-target audio segments.

TABLE I
DATA DISTRIBUTION OVER DIFFERENT DATASETS.

Dataset # Target # Non-Target

Oxfordshire Corn Buntings 1566 0
Macaulay Library 1059 2057
Xeno-Canto 2111 2621
Google AudioSet 0 4651

Summary 4736 9329

STFT for all downsampled audio segments. The STFT was
performed with a Hann window with a width of 1024 samples
and a step size of 256 samples. This process generated 184
window frames and 513 frequency bins. Thereafter, the mag-
nitude spectrograms were mapped onto the Mel scales with
80 Mel bins. In creating the Mel-spectrograms, we employed
a sampling rate of 16 kHz and focused on the frequency
range of 80-8000 Hz. This also allows ML models to capture
subtle patterns outside the primary band (4000 Hz to 8000
Hz), adapt to variations, and improve overall classification
accuracy by leveraging information that a simple filter might
overlook. Lastly, we converted the Mel-spectrograms into a
logarithmic magnitude scale to obtain log Mel-spectrograms,
with the shape of 184× 80.

VI. BASELINE & DECISION STRATEGY

We propose an approach to optimizing the screening process
by combining a high-speed signal processing step (hereafter
named ”baseline”) with the precision of an TinyML model, en-
suring reliable results while maintaining resource-consumption
efficiency.

A. Baseline

We developed a lightweight pre-selector signal processing
step, not relying on machine learning. First, the audio segments
are normalized by min-max schema. Thereafter, a 9th-order
highpass Butterworth filter with the cut-off frequency of
7000 Hz5 is imposed on the normalized segments, in order to

5The parameters of the filter were determined by hyper-parameter search
for optimized F2-score on training dataset.

suppress noise and non-relative sound in low-frequency and
to preserve only target components. Finally, we calculate the
signal power P of the filtered segments,

P =
1

N

N∑
n=1

x(n)2, (1)

where x(n) and N denote the data points and the length
of a segment, respectively. We define two thresholds: tlow
and thigh. If P is smaller than tlow, the MCU remains in
the idle/low-power state, and the audio sample is discarded
directly. Else, P is compared to thigh. Depending on this
result, and on the decision strategy (see below), the audio
sample is either stored or further analyzed via inference using
the machine learning model. Both tlow and thigh were tuned on
training dataset for optimized recall and F2-score, respectively.
The evaluation results are presented in Table IV.

B. TinyChirp Decision Strategy

We employ a double-phase approach for enhanced accuracy
and efficiency of bird song recognition, combining the baseline
with a TinyML model for further verification. The process is
as follows:

1) Step 1: Baseline Filtering – Pre-screening is conducted
using the baseline pre-processing step described in Sec-
tion VI-A, designed to provide a quick and efficient
preliminary analysis. If P is smaller than tlow, the
microcontroller remains in the idle/low-power state, the
audio sample is discarded and the process aborts. Else
proceed to Step 2.

2) Step 2: Inference-based Classification – If the power-
saving flag is set and if P is smaller than thigh a
TinyML-based classification with higher accuracy is
conducted via model inference. If the audio sample is
not classified as the target, the audio sample is discarded
and the process aborts. Else proceed to Step 3.

3) Step 3: Storage – Without further processing, the audio
sample is logged, i.e. stored on the SD card.

Note that the decision strategy can therefore be configured
with two ”knobs”. On one hand the power-saving flag de-
termines skipping (or not) some of the computation and can
thus decrease energy consumption. On the other hand, different
TinyML models can be inserted in Step 2.

Next, we thus study two families of TinyML models for
Step 2: the first category of model takes a Mel-Spectrogram
as input, while the second category of model takes time-series
as input. Table II presents a summary of the explored TinyML
model structures.

VII. CLASSIFICATION BASED ON SPECTROGRAMS

In contrast to the computer vision community, where the
transition from frequency decomposition based feature extrac-
tion to neural feature extraction on raw image data introduced
in 2012 led to a significant increase in predictive performance
[41], neural feature extraction on raw audio time series did not
contribute to a comparable breakthrough yet. Instead most ML



techniques for audio pattern recognition (somewhat surpris-
ingly) were relying on image processing pipelines. Basically,
image classification is performed, using a neural network,
analyzing the spectrogram rendering of the audio trace.

Unlike the spatial dimensions in image classification, the
axes of the input represent time and frequency in audio clas-
sification. Moreover, the pattern structure differs significantly:
natural objects in images often have well-defined, closed
contours, while spectrograms of sounds tend to be wide-band
and sparsely distributed across the frequency-time domain.
These distinctions require tailored approaches to effectively
model and interpret the data in audio classification tasks.

For this reason, we initially consider the below two models,
based on state-of-the-art neural network architectures.

CNN-Mel – This model contains two 2D convolutional
layers for Mel-spectral inputs as feature extraction and two
fully connected layers as classifier. The output of the classifier
are normalized by Softmax function as well.

SqueezeNet-Mel – This model is based on SqueezeNet
[42], an advanced backbone focused on optimizing the ef-
ficiency of computer vision applications by strategically re-
ducing parameters, with comparable performance to AlexNet
[41]. It leverages a so-called Fire module to achieve higher
efficiency compared to standard convolutions with only a slight
decrease in accuracy. We aligned its input shape with the Mel-
spectrogram and tailored the output for binary classification.

Limitations of Spectrograms on Microcontrollers Prac-
tical experience on low-power microcontroller-based devices
has shown however that producing and manipulating mel-
spectrograms from audio signal streams on such devices is
problematic. It inserts an additional step in the processing
pipeline, which increases latency and memory requirements.
Prior work (such as [43], section 6.2) concludes that the CPU
bottleneck is not just the model inference time, but also the
spectrogram calculation, which, compared to inference alone,
almost doubles latency. Other previous work such as [44]
measures on a quite powerful STM32F7 microcontroller that
computing and writing in memory the mel-spectrogram of
30 columns and 40 frequency bands takes approximately 1
second. Note that these spectrogram dimensions are much
smaller than our requirements (184 columns × 80 frequency
bands) hence even more latency can be expected in our case.
For these reasons, we next explore pipelines which skip the
spectral pre-processing stage as described below.

VIII. CLASSIFICATION BASED ON TIME-SERIES

Contrary to the models described in the previous section
and inspired by the success of neural feature extraction in the
computer vision domain [41], the pipelines we aim at next
take directly the raw audio signal time-series as input. More
precisely, we designed the three models described below. We
inserted the dropouts before average pooling to gain a more
stable output [45].

CNN-Time – This simple model performs feature extrac-
tion with two sequential (1D) temporal convolutional layers

TABLE II
TINYML MODELS: STRUCTURE AND CHARACTERISTICS.

Model Layer Input Shape Output Shape

CNN-Mel
(25.6K parameters) 3 × 3 Conv2D + ReLU 184 × 80 × 1 182 × 78 × 4

MaxPooling 182 × 78 × 4 91 × 39 × 4
3 × 3 Conv2D + ReLU 91 × 39 × 4 89 × 37 × 4
MaxPooling 89 × 37 × 4 44 × 18 × 4
Reshape 44 × 18 × 4 3168 × 1
FC + ReLU 3168 × 1 8 × 1
FC + Softmax 8 × 1 2 × 1

SqueezeNet-Mel
(727K parameters)

Same as SqueezeNet [42];
Input and output layer are
tailored to fit the data.

184 × 80 × 1 2 × 1

CNN-Time
(748 parameters) 3 × 1 Conv1D + ReLU 1 × 48000 4 × 48000

MaxPooling 4 × 48000 4 × 24000
3 × 1 Conv1D 4 × 24000 8 × 24000
Dropout 0.25 8 × 12000 8 × 12000
Average Pooling 8 × 12000 8 × 1
FC + ReLU 8 × 1 64 × 1
FC + Softmax 64 × 1 2 × 1

Transformer-Time
(1.6K parameters) Conv1D + ReLU 1 × 48000 16 × 48000

MaxPooling 16 × 48000 16 × 24000
Dropout 0.25 16 × 48000 16 × 24000
Average Pooling 16 × 24000 16 × 1
SingleHeadTransformer 16 × 1 16 × 1
FC + Softmax 16 × 1 2 × 1

SqueezeNet-Time
(31.1K parameters)

SqueezeNet as backbone;
Conv2D → Conv1D;
reduce filter number
by 70%.

1 × 48000 2 × 1

TABLE III
LIGHTWEIGHT VARIANT OF THE FIRE MODULE OF 1D SQUEEZENET. THE
NUMBER OF FILTERS IN ORIGINAL SQUEEZENET IS REPRESENTED BY x.

Name Layer Number of filters

Squeeze 1× 1 Conv1D 3× ⌊0.3× x⌋
Expand 1× 1 Conv1D 4× ⌊0.3× x⌋
Expand 3× 1 Conv1D 4× ⌊0.3× x⌋

followed by average pooling. A max pooling is inserted in-
between to reduce the dimension of feature maps and enhance
the non-linearity of the network. Two fully connected layers
act as classifier at the end of the network, with the probability
outputs normalized by Softmax function.

Transformer-Time – Inspired by [46], we designed an
efficient, attention-based model with only one temporal con-
volutional layer and one single-head transformer. The con-
volutional and pooling layers serve as feature extraction to
transfer raw audio signal into embeddings for the transformer.
The activations of the fully connected layer are normalized by
Softmax function as well.

SqueezeNet-Time – This model is based on SqueezeNet
[42]. We tailored this basis to align the input shape with
the audio segment, and narrowed the output channels for
binary classification. To adapt the backbone to time-series
input, all 2D convolutional layers are replaced by temporal
convolutional layers. Furthermore, to have a more compact
structure, we decreased the filter number of all convolutional
layers by roughly 70%, as presented in Table III.



IX. ADDITIONAL MODEL OPTIMIZATIONS FOR TINYML

In this study, we used two optimization techniques to
compress the models and further reduce their memory con-
sumption: model quantization on the one hand and on the
other hand partial convolution, as described below.

A. Model Quantization

Quantization reduces the model size and inference time by
converting the weights and activations from higher precision
(e.g., 32-bit floating-point) to lower precision (e.g., 8-bit
integer) [47]. In this study we adopted Post-Training Quan-
tization (PTQ) with weights and activations quantized in 8-bit
integer. To avoid substantial loss of prediction performance,
the training dataset was used to find the optimal scale factor
and zero-point of the activations [48].

B. Partial Convolution

We observed that the outputs of the Conv1D layer require
significant memory, which impedes deployment on resource-
constrained tiny devices. As presented in Table II, the peak
memory consumption occurs at the first Conv1D layer both
in CNN-Time and Transformer-Time with 768 kB and 3
MB, respectively. This indicates that deployment on resource-
constrained tiny devices is impractical.

To address this issue and inspired by [49], we exploited the
fact that average pooling can be computed iteratively point-by-
point on the output channels of the final Conv1D layer over
a small sliding window of inputs. Each point in the output
channels depends only on a small subset (kernel window) of
the outputs from the previous layer. That is, for a block of
L Conv1D layers following by an average pooling layer, its
output y can be iteratively computed on the input sequence
x(n), n = 1 . . . N as following:

yj(k) = yj(k − 1) +
1

NL
AL

j (k), (2)

k = 1 . . . NL, j = 1 . . . CL.

Al
c(n) =

Cl−1∑
i=1

W l
c(i) · [Al−1

i (n− Kl

2
) · · · (3)

Al−1
i (n) · · ·Al−1

i (n+
Kl

2
)]T

A0(n) = x(n), (4)
l = 1 . . . L, c = 1 . . . Cl, n = 1 . . . Nl, N0 = N

where yj(NL) is the result of the average pooling of the j-
th channel; Al

c(n) denotes the n-th point in channel c of the
l-th Conv1D layer calculated with kernel weights W . Each
Conv1D layer contains Cl channels with filter size of Kl and
output size of Nl. Without loss of generality, the formula of
partial convolution contains only the linear components and
considers only one-dimension case for the sake of simplicity;
it can be generalized in high-dimension and integrated with
non-linear building blocks (e.g., stride, non-linear activations,
pooing layers, etc.).

Classic Convolution

Input

......

......

Conv1D

Conv1D

Avg. Pooling
......

Partial Convolution

Input

Conv1D

Conv1D
      +
Avg. Pooling

......
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Sliding Window

Variables in Memory

Fig. 3. Partial convolution reduces memory consumption by applying small
sliding window on inputs.

Figure 3 provides a comparison between classic convolution
and partial convolution. Unlike classic convolution where
entire channels (C×N ) are computed and stored before being
processed by the next layer, partial convolution requires only
a small part of the channels (C×K,K << N ) for each layer.
In our case with K = 3 and N = 48000, it can be expected
roughly 16000× smaller memory consumption, making the
implementation more suitable for tiny devices. We applied this
strategy to the Conv1D layers combined with average pooling
in the CNN-Time and Transformer-Time architectures.

X. TINYCHIRP PERFORMANCE EVALUATION

In the following, we conducted a comprehensive evaluation
of the discriminative performance of TinyChirp with different
TinyML models, as well as of resource consumption and
computation time on typical low-power boards based on
microcontrollers.

A. Classification Performance Comparison

Our evaluation process began with the generation of ROC
curves and the corresponding Area Under the Curves (AUCs)
on the training dataset, providing a clear picture of the models’
abilities to distinguish between classes. As shown in Figure 4,
the spectrogram-based models – CNN-Mel and SqueezeNet-
Mel – achieved the best classification performance with AUCs
of 1.0 and 0.99, respectively, followed by time-series models
– CNN-Time and Transformer-Time – both with 0.98 AUC.
Unexpectedly, with a more complex structure, SqueezeNet-
Time performs worst (lower AUC than the baseline).

We next measured accuracy, precision, recall, F1- and F2-
score, shown in Figure 5. Spectrogram-based models achieve
the highest metrics for the whole range of threshold values. For
time-series models, Transformer-Time worked overall better
than CNN-Time; Again, SqueezeNet-Time performs worst
(consistent with the above ROC analysis).

Next, we focused on finding the threshold settings for
optimal F2-score prioritizing recall, i.e. reducing the likelihood
of mistakenly discarding records of the targeted bird). The
results are shown in Table IV for training data, thereafter
verified on test (previously unseen) data as shown in Table V.
Note that this threshold influences energy consumption: more



0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

CNN-Time, AUC: 0.98
Transformer-Time, AUC: 0.98
SqueezeNet-Time, AUC: 0.81
CNN-Mel, AUC: 1.00
SqueezeNet-Mel, AUC: 0.99
Baseline, AUC: 0.84

Fig. 4. ROC curves of TinyML models and the corresponding AUCs,
evaluating on training dataset.

TABLE IV
MODEL THRESHOLD AND PREDICTION METRICS FOR OPTIMIZED

F2-SCORES, EVALUATING ON TRAINING DATASET.

Model Threshold (t) Acc. Precision Recall F2

Baseline tlow 1.00 × 10−7 0.44 0.38 0.99 0.75
Power-saving thigh 1.29 × 10−5 0.77 0.62 0.80 0.76

SqueezeNet-Mel 0.01 0.99 0.98 1.00 0.99
CNN-Mel 0.27 1.00 0.99 1.00 1.00
CNN-Time 0.23 0.92 0.82 0.98 0.94
Transformer-Time 0.27 0.95 0.89 0.98 0.96
SqueezeNet-Time 0.01 0.78 0.60 1.00 0.88

target bird classification leads to more energy consumption (as
data needs to we stored on to SD card in this case).

These results are promising and allowing to focus only
on the relevant audio segments (10% of the total recording
time), as the classification performance is compelling. Thus,
TinyChirp can save 90% of SD card space compared to the ini-
tial monitoring scenario (Section III-A), potentially extending
the deployment time to 18 weeks. However, complementary
experiments must now be carried out on targeted hardware,
so as to evaluate other key metrics: computation time, energy
consumption and memory footprint on typical microcontroller-
based devices. The next sections focus on that part.

B. Performance Evaluation on Microcontrollers

Experimental Setup – For our measurements, we used a
common low-power off-the-shelf board: the nRF52840 Devel-
opment kit (nrf52840dk). This board is based on an ARM
Cortex-M4 processor (core frequency at 64 MHz), with a
typical memory budget: 1 MB of Flash memory and 256 kB
of RAM. As embedded software base we used RIOT-ML [39].
Throughout the experiments, we monitored the (RAM/Flash)
resource footprint using built-in diagnostic tools provided by
RIOT-ML and RIOT [50], as well as external measurement
equipment as described below.

Energy consumption was measured using an ampermeter to
gauge the board’s energy efficiency. This involved recording
the current draw of the MCU and the external storage system
(SD card) in different stages. We used a voltage regulator

TABLE V
EVALUATION ON TEST DATASET USING MODEL THRESHOLD t FOR

OPTIMIZED F2-SCORES.

Model Accuracy Precision Recall F2

Baseline tlow 0.44 0.37 0.99 0.74
Power-saving thigh 0.78 0.62 0.82 0.77

SqueezeNet-Mel 0.99 0.96 1.00 0.99
CNN-Mel 0.99 0.98 0.99 0.99
CNN-Time 0.94 0.86 0.98 0.95
Transformer-Time 0.93 0.90 0.91 0.91
SqueezeNet-Time 0.79 0.61 1.00 0.88

to supply 3.3 V Direct Current (DC) output and a logger to
capture detailed current profiles over time.

Scope of the Measurements – Besides the model in-
ference stage, we also considered the resource footprint of
pre-processing during bird song recognition. Pre-processing
refers to down-sampling and calculation of Mel-spectrogram
as described in Section V-B. Also, the energy consumption in
MCU’s lowest power mode (idle stage) was measured as the
reference of absence of sound with sufficient intensity.

Measurement Results on Microcontrollers – The first
striking observation is that SqueezeNet-Time and SqueezeNet-
Mel were not deployable due to out-of-memory (OOM) (ex-
ceded memory budget) and were thus excluded in this exper-
iment. All other models fit in the constraints of memory and
storage budget, even when discounting the memory footprint
of the OS and the network stack for wireless communication.

The resource footprint of different stages and models mea-
sured on an nrf52840dk board are shown in Table VI. We
observe that the model inference stage takes the bulk of the
overall energy consumption, as it requires the most process
time and MCU in full power mode. As expected, the idle
stage requires the least power, as all peripherals and the MCU
are in the lowest power (standby) mode (until woken up by
sound with sufficient amplitude).

Spectrogram vs Time-series – Considering only the pre-
diction performance in Section X-A, it would seem natural to
choose CNN-Mel as the best candidate, since it also provides
the best inference latency. However, taking pre-processing
time into account (which for CNN-Mel includes producing
a spectrogram) shows a different picture. It takes roughly
2.4 seconds in total for a 3-second audio snippet, which is
dangerously near the real-time constraint and costs high power
consumption. With the best prediction performance and the
lowest total compute latency among time-series models, the
Transformer-Time now appears like the best choice to deploy
on tiny devices.

Next, we consider jointly the overall resource consumption
and the classification performance to discuss variants for the
decision strategy described in Section VI-B:

Baseline Only – With the Baseline tlow (Step 1 and
Step 3 only) setting, the required computational resources are
minimal, while achieving a recall of 0.99; however, due to the
low precision, many false positives are stored, leading to the
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Fig. 5. Accuracy, recall, precision, F -scores of TinyML models on different threshold values t, evaluating on training dataset.

TABLE VI
RESOURCE CONSUMPTION OF TINYML MODELS ON NRF52840DK BOARD.

Model / Stage Memory (kB) Storage (kB) Latency (ms) Power (mW) Energy (mJ)
Inference Preprocess Inference Total

Baseline 67.216 20.34 213.755 2.0 9.900 2.116 2.136

CNN-Mel 104.328 37.868 406.146 1980.259 17.820 7.238 42.525
SqueezeNet-Mel OOM - - - - -

CNN-Time 75.564 24.104 1490.687 2.0 17.160 25.580 25.614
Transformer-Time 83.468 24.712 1079.293 2.0 17.820 19.233 19.268
SqueezeNet-Time OOM

Idle - - - - 6.270 -
OS with Network Stack 7.556 35.808 - - - -

lowest storage efficiency.

TinyChirp Skipping Baseline – With this variant, the
TinyML model is applied immediately, without pre-screening
by the baseline (Step 2 and Step 3 Only), leading to high pre-
dictive performance and high storage efficiency, but requiring
higher energy consumption. Even when using the Transformer-
Time with the lowest energy footprint, this requires more than
9 times the energy required for the baseline. This variant is
ideal for devices currently running out of storage space while
still with substantial battery left.

TinyChirp – This variant refers to the full series of Step 1-3
described in Section VI-B, whereby the samples not discarded
by the baseline are double-checked by the TinyML model.
This approach offers a good compromise of compute, storage
and energy footprint, by discarding early, without impacting
too much the overall prediction performance achievable by the
TinyML model on its own.

TinyChirp with Power-saving – This variant (Step 1-3
with the power-saving flag enabled) provides a more energy-
efficient twist to TinyChirp. However, the overall precision is
determined by the threshold setting thigh, which causes an
extra 40% of false positives to be stored onto the SD card,
leading to lower storage efficiency. This variant seems more
suitable for currently running out of battery, but with still
sufficient storage resources.

XI. CONCLUSION

In this paper we present an empirical study of a bioacoustic
monitoring use case showing that machine learning is usable
directly on autonomous recording units based on low-power
microcontrollers. We focused on a concrete use-case: mon-
itoring Corn Bunting birds in rural UK. We publish a data
set of the recordings, based on which we demonstrated that
TinyML can perform on-device high accuracy classification for
bird song classification. Compared to the traditional approach
used so far, our approach TinyChirp can extend from 2 weeks
to 18 weeks – almost a full season – the time intervals until
which researchers must harvest overfull data storage embedded
on the recording units deployed in the field. Our experiments
also observe hands-on how performing inference directly on
the audio time-series is the better approach on microcontroller-
based hardware, compared to inference on mel-sepctrograms
typically used in audio pattern recognition. Looking beyond
monitoring Corn Bunting birds’ songs, TinyChirp is applicable
to a wider range of similar bioacoustic use cases using a
large variety of low-power microcontroller-based hardware,
based on our general-purpose TinyML approach and our
open-source code implementation integrated into the RIOT
operating system.
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