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Abstract—The reliability of Si photonics and optoelectronics 
devices is emerging as a major new topic. By using TCAD 
simulations, this work investigates the microscopic origins of the 
Ge High Speed Photodetector (HSPD) performance losses 
during stress obtained in [1]. It confirms the key roles of the 
carrier lifetime degradation on both dark current increase and 
photonics current decrease, which could be triggered by surface 
recombination (SR), especially at the Buried Oxide (BOX). 
Other sources of degradation are studied, as fixed charges in the 
SiO2 passivation layer and interface state (Dit). 

I. INTRODUCTION 

Optoelectronic devices are one of the building blocks of 
optical telecommunications and Si photonics. Up to now, the 
only reliability protocols for telecom applications are the 
Telcordia ones [2], which implies very long pass/fail test 
(2000h). As no physical understanding of the degradation of 
Si photonics devices has been reached yet, these tests are still 
the reference one. [1] and [3] have however recently 
experimentally demonstrated that HSPD are prone to 
significant dark current and responsivity degradation with 
voltage stresses and temperature. Using a simple model, these 
degradations have been attributed in [1] to degradation of the 
carrier lifetime, inducing strong carrier recombination. The 
aim of this work is to investigate the HSPD reliability using 
Sentaurus TCAD. The impact of carrier lifetime (τ) will be at 
first studied, followed by the roles of different transport 
mechanisms, which could occur in these p-i-n diodes. The 
influence of SR on the Idark will be detailed. Finally, other 
sources of degradation like fixed charges and Dit will be 
included. 

II. IMPACT OF CARRIER LIFETIME 

The studied device is built on a SOI wafer, whose Si film 
is etched to form optical waveguide, along which the HSPD is 
placed [4]. The Transmission electron microscopy (TEM) 
image of the HSPD is given in fig. 1. In fig 2 are given the two 
architectures studied in this work. A first simple pseudo 1D 
structure is studied to match the 1D model of [1]. The second 
2D structure is designed to mimic the geometry of fig. 1. The 
optical generation rate is constant in the whole device and 
equal to 6.75∙1025 cm-3s-1. The results obtained in [1] will be 
checked at first on the pseudo 1D structure including only 
SRH recombination. By varying the carrier lifetime τ, dark I-
V (fig. 3) and illuminated (fig. 5) characteristics are obtained. 
It can be seen that the dark current increases with decrease in 
τ, due to the increase of carrier recombination, or equivalently, 
the decrease of carrier diffusion length (fig. 4). The raw 
illuminated I-V curves are less straight forward to interpret 

(fig. 5). The decrease of τ induces at first a decrease of the 
light current, which then increases again for very small τ (fig. 
6). However, the responsivity is function of the photonics 
current defined by Iphot = Ilight – Idark. When plotting Iphot vs τ 
(fig 6) the trend is monotonic and fully confirms the results 
obtained in [1]. 

III. TRANSPORT MECANISMS AND RECOMBINAISONS 

The impact of different transport mechanisms is shown in 
fig. 7, where SRH dominated Idark is compared to the SRH / 
Band-To-Band (BTB) and BTB / Trap Assisted Tunneling 
(TAT). In Sentaurus, TAT is treated as a field enhancement of 
SRH [5], which explains the common trends at low voltage. 
High voltages are always dominated by BTB. On fig. 8 is 
compared the pseudo 1D and 2D structure, showing a strong 
increase of Idark with geometric variation. All other simulations 
have been carried out with the 2D structure. On fig. 9 is added 
the impact of the SR at the interface of a surrounding 
passivation layer (fig. 11(a)). It can be seen that the increase of 
the surface recombination velocity (SRV) leads to increase of 
Idark, as in the case of the decrease of τ. When excluding all 
other recombination, variation of SRV from 0 to 107 cm/s can 
give variation of current over 6 orders of magnitude (fig. 10). 
SR can therefore explain the degradation of Idark obtained in 
[1]. On fig. 12 is compared different placement of SR, either 
all around the device (fig. 11(a)), or only on top (fig. 11(b)). 
This shows that the top part plays a marginal role, and that the 
BOX section leads to significant degradation, highlighting the 
necessity to correctly passivate this interface.  

IV. OTHER SOURCES OF DEGRADATION 

Other sources of potential degradation have been included 
in the simulation to estimate their impact: negative (fig. 13) 
and positive (fig. 14) fixed charge in a surrounding oxide, its 
impact on different transport mechanisms (fig. 15), the role of 
its placement (fig. 16 and 17) and interface states (fig. 18). 
None of them has been found to significantly degrade the dark 
current. 

V. CONCLUSIONS 

These simulation results hence confirm that the dark 
current and photonic current degradation observed in [1] are 
indeed explained by lifetime collapse during stress, potentially 
triggered by the increase of surface recombination. They 
imply that great care should be taken with the passivation of 
the encapsulation layers, especially at the bottom of the 
device. Additional experimental work will be required in the 
future to study the dynamic increase of surface recombination. 
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Fig. 1: TEM of the HSPD.  
Nd = 6.1018 cm-3, Na = 3.1019 cm-3 

Fig. 2: Simulated geometries of the 
pseudo 1D and 2D structure. 

Fig. 3: Idark vs V for different lifetime of 
the Ge. 

Fig. 4: Idark vs τ reproducing the degradation 
observed in [1] 
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Fig. 5: Ilight vs V for different τ for a 
constant optical generation rate in the 

HSPD 

Fig. 6: Ilight and Iphot vs τ showing that a 
strong part of Ilight is due to Idark for very 

small τ 

Fig. 7: Impact of different transport 
mechanisms on the I-V of the pseudo 1D 

geometry 

Fig. 8: Impact of the geometry on the Idark 
of the HSPD  
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Fig. 9: Idark vs V including all mechanisms 
for different values of SRV (2D geometry) 

Fig. 10: Increase of Idark with SRV when 
excluding all mechanisms, or including 

them 

Fig. 11: Scheme of the SRV placement (a) 
all around or (b) only at the top 

Fig. 12: Idark vs V for different placement of 
the SRV (fig. 11) and two values of SRV. 
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Fig. 13: Idark vs V for different 
concentration of negative Qfix 

Fig. 14: Idark vs V for different 
concentration of positive Qfix 

Fig. 15: Impact of Qfix on the Idark vs V 
including different transport mechanisms 

Fig. 16: Scheme of the Qfix placement 
around the device 
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