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Force/Velocity Manipulability Analysis for 3D Continuum Robots
Mohsen Khadem, Lyndon da Cruz, Christos Bergeles

Abstract—The enhanced dexterity and manipulability offered
by continuum manipulators makes them the robot of choice
for more complex procedures. However, many capabilities of
continuum robots such as safe and effective manipulation will
remain largely inaccessible without tailored analytical tools to
evaluate their manipulability. This paper presents a quantifiable
measure for analysing force/velocity manipulability of continuum
robots. We expand classical measures of manipulability for rigid
robots to introduce three types of manipulability indices as they
apply to continuum robots, namely, velocity, compliance, and
unified force-velocity manipulability. We provide a specific case
study using the proposed method to analyse the force/velocity
manipulability for a concentric-tube robot. We investigate the ap-
plication of the manipulability measures to compare performance
of continuum robots in terms off compliance and force/velocity
manipulability. The proposed manipulability measures enables
future research on design and optimal path planning for contin-
uum robots.

I. INTRODUCTION

Continuum robots are continously flexible manipulators that
can traverse confined spaces, manipulate objects in complex
environments, and conform to curvilinear paths in space.
Continuum robots have also made a significant impact in
robotic surgery [1]–[4]. The enhanced dexterity and manip-
ulability offered by continuum manipulators is an important
factor enabling increasingly less invasive and more complex
procedures. However, to the best of the authors’ knowledge,
established measure for quantifying manipulability of contin-
uum robots does not exist. In this paper, we generalize classic
manipulability analysis of rigid-link robots to introduce several
measures that quantify a continuum robot’s manipulability.
The proposed measures can be used for analysis and compar-
ison of designs of continuum robots. In addition, they allow
the implementation of manipulability in optimal force/velocity
motion planning for complex tasks.

A. Background

Manipulability describes the degree to which a manipulator
can freely apply forces and torques or move in arbitrary
directions, and quantifies the ability to perform an action
quickly and skilfully [5], [6]. Manipulability analysis consists
of describing directions in the task or joint space of a robot
with the best ratio between some measure of effort in joint
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space (e.g., joint torque) and a measure of performance in
task space (e.g, position accuracy). Yoshikawa introduced
the manipulability index [6] as a quality index for a single
manipulator, which describes the characteristics of feasible
motions in the task space corresponding to unit joint velocity
vectors. He proposed a measure of manipulability based on
analysis of the velocity manipulability ellipsoid (ME). Velocity
ME is a volume/surface in the Cartesian velocity space, which
is mapped from the unit sphere in the joint velocity space by a
Jacobian transformation [6]. ME provides one of the standard
tools for studying a manipulator’s characteristics, and a large
volume of work discussing rigid-link robot MEs exists.

Analogous to the velocity ellipsoid, researchers have defined
a force ME for describing the force transmission characteris-
tics of a manipulator at a given configuration. Considering the
conservation of energy and viewing a robotic manipulator as a
mechanical transformer, one can deduce that the principal axes
of the velocity and force ellipsoids coincide, and the lengths
of the axes are in inverse proportions [6], [7]. This means
the optimal direction for effecting velocity (maximum velocity
transmission ratio) is also the optimal direction for controlling
force (minimum force transmission ratio). Similarly, the opti-
mal direction for effecting force is also the optimal direction
for controlling velocity.

Continuum robots have a fundamentally different structure
than conventional rigid manipulators. Unlike rigid-link robots,
where the pose of any point on the robot can be fully defined
by link lengths and joint angles, the pose of a continuum
robot is a function of the manipulator’s shape and elasticity.
Regardless of this significant difference between the rigid and
continuum of manipulators, the models and mathematics de-
rived for rigid robots can be generalized to include continuum
robots. Gravagne et al. [8] proposed an approach to unify
theories for force/velocity manipulability of rigid-link robots
and continuum robots. They modelled a continuum robot as
a serial robot with finite number of rigid links connected via
revolute joints and expanded definitions of velocity/force MEs
to introduce new types of MEs for continuum robots, namely,
velocity and compliance ellipsoids. However, their approach
was 2D and limited by modelling choices.

Recently several approaches have been proposed for es-
timating the velocity ME of continuum robots similar to
rigid-link robots [9]. The resulting MEs can be employed
to design optimal feasible paths for continuum robots [10].
Wu et al. introduced a kinematics-based dexterity index by
comparing possible configurations when reaching a specific
spatial position with area of a unit sphere placed around that
position [11]. Konrad et al. used velocity manipulability index
to design implicit active constraints for continuum robots [12].
The constraints were used to rapidly inform the operator with
visual and haptic cues about the global and configuration-
specific manoeuvrability of the robot. So far, The proposed
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manipulability/dexterity measures only consider kinematics of
the robot or solely rely on velocity ME. However, due to the
inherent compliance and elasticity of continuum robots, the
common force-velocity duality does not govern their motion,
and the optimal direction for effecting force is not necessarily
the optimal direction for controlling velocity. Thus, motion-
planning based on velocity ME, can lead the robot to position
and orientations, where it is incapable of applying any force.

The rest of the paper is organized as follows. In Section II,
first, an overview of continuum robot kinematics is given.
Next, the velocity and compliance manipulability ellipsoids
for a continuum robot are presented. Finally, the compliance
and velocity measures of robot manipulability are employed to
develop a unified force-velocity manipulability for continuum
robots that can estimate the optimal direction for effecting
velocity and controlling force. Application of the proposed
indices in investigating the manipulability of a concentric tube
robots are studied in Section III. Concluding remarks appear
in Section IV.

B. Contributions
The aim of this research is to develop manipulability in-

dices for quantifying the dexterity of continuum robots. The
proposed manipulability indices can be used in design and
motion planning of continuum robots to enhance control over
the force/velocity of robot end-effector, minimize the robot’s
footprint, optimize the control effort, and avoid singularities
and joint limits of the robot. Also, manipulability indices can
be employed as a measure of kinematic similarity in design of
rigid-link master robots for master/slave teleoperated robotic
systems that benefit from a continuum slave manipulator. We
provide a specific case study, applying our framework to
concentric tube robots [13], [14].

II. MANIPULABILITY OF CONTINUUM ROBOTS

In this section, several force/velocity measures for quantify-
ing the manipulability of continuum robots are presented. We
note that throughout this paper we use the following notation:
x, x and x denote a scalar, a vector and a matrix, respectively.
The prime and dot denote derivatives with respect to spatial
coordinate s and time t.

A. Model of Continuum Robots
The kinematics of continuum robots can be decomposed

into two mappings, a mapping between the robot’s configu-
ration space and task space, and a mapping between actuator
space and configuration space [15]. We can write the model
of a continuum robot with actuator values, q under 6 degrees
of freedom (DoF) generalized forces f as follows

u ′ = h(s,u ,g, q , f ), (1a)

g′ = gε̂(u), (1b)

where u denotes the curvature and configuration of the robot
backbone as a function of generalized forces f and actuators
values q , g(s) ∈ SE(3) is a homogeneous transformation
defining the robot’s backbone location and orientation in
task space at arc length s. The superscript ˆ denotes a skew

symmetric matrix under the mapping ˆ : IR3 → so(3), ε is a
body frame twist describing evolution of g as a function of
u . g(s) is defined as

g(s) =

[
R(s) r(s)
0T 1

]
, (2)

where r is the arc-length parametrized shape of the robot and
R ∈ SO(3) is a rotation matrix at every arc-length location s
on the robot.

B. Velocity Manipulability
In this section, we propose an approach for quantifying the

manipulability of continuum robots using the model given in
(1). First we define the Jacobian matrix for a continuum robot
that maps the joint velocities (q̇ ) to the robot end-effector
velocity (ẋ ). Based on (1), one can find the robot end-effector
position-orientation x by solving

ẋ = (ġ(`)g−1(`))∨, (3)
where ` is the length of the robot.

Now, we can calculate the Jacobian for continuum robots
through mechanics approximation as

J =
∆x

∆q
=


xT (q + ∆q1

2 e1)− xT (q − ∆q1
2 e1)

∆q1
...

xT (q + ∆qn
2 en)− xT (q − ∆qn

2 en)

∆qn


T

(4)

where e i is the ith unit vector of the canonical basis of the
n-dimensional joint space. J in (4) is the robot Jacobian,
a mapping from q ∈ IRn to x ∈ IR6. There are various
methods for estimating the Jacobian [16]. We select the above
formulation as it gives rise to parallelisable computations
without sacrifices in the kinematics model’s accuracy [10].

Extending the traditional definition of manipulability mea-
sure to continuum robots, we can define the velocity manipu-
lability ellipsoid as

VME = {ẋ :‖ q̇ ‖= 1}. (5)
VME is a mapping from a unit sphere in joint space to an
ellipsoid in task space and describes the versatility of moving
in the task space. The VME is a surface/volume that helps to
visualize the feasible directions of velocity at the end-effector
of a robot. The unit sphere in IRn can be mapped into IR6

through J as shown bellow:
‖q̇‖2 = q̇T q̇ = ẋT (J†)T (J†)ẋ = ẋT (JJT )−1.ẋ (6)

The superscript ”†” indicates the pseudo-inverse of a matrix,
J† = JT (JJT )−1.

Based on (6) the VME can be spanned using the singular
values of the Jacobian matrix given by J = UΣV T , where
U = [u1 · · ·u6] is a unitary matrix, Σ is an 6× n rectangular
diagonal matrix in which the diagonal entries (σi, i = 1 · · · 6)
are known as the singular values of J with σ1 ≥ σ2 ≥ · · · ≥
σ6, and V = [vT1 · · · vTn ] is an n×n unitary matrix. The VME
spanned by singular values of J has principal axis vectors v i
with magnitudes

√
σi, where v i and σ1 ≥ σ2 ≥ · · · ≥ σm are

the eigenvectors and singular values of J.
Now, the manipulability index µ can be defined proportional

to the volume of the ME spanned by the singular values of J

µ =

√
det(JJT ) = σ1σ2 · · ·σ6, (7)
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where µ is the manipulability index at a certain configuration
in the robot’s workspace.

In addition to the manipulability index, the isotropy of the
robotic arm is also important [5]. It is a measure of how
well the continuum robot can move in all directions, i.e.,
directional uniformity.The isotropy index has been introduced
as the inverse of the condition number of the Jacobian

1

κ
=

1

‖J‖‖J−1‖
=
σm
σ1
. (8)

The manipulability µ and isotropy 1/κ indices can be used as
a measure of kinematic dexterity of the continuum robot in
free space.

C. Compliance Manipulability

The pose of a continuum robot is a function of the ma-
nipulator’s elasticity. The inherent passive compliance of a
continuum manipulator is very useful and can often eliminate
the need for complex and expensive force/torque sensors and
feedback systems. Passive compliance is also a practical and
straightforward means to increase the safety margin of human
robot interaction without relying on image/force feedback,
which is useful for applications in surgical robotics [1]. In
order to quantify the compliance of continuum manipulators,
we introduce the compliance manipulability ellipsoid (CME)
as

CME = {ẋ :‖ ḟ ‖= 1}. (9)

The CME provides the critical first step in evaluating and
effectively using a compliant system. Now using (1) and (3)
we can calculate the compliance matrix for continuum robots
through mechanics approximation as

C =
∆x

∆f
=


xT (f + ∆f1

2 e1)− xT (f − ∆f1
2 e1)

∆f1
...

xT (f + ∆f6
2 e6)− xT (f − ∆f6

2 e6)

∆f6


T

, (10)

where e i is the ith unit vector of the canonical basis of the
6-dimensional generalized force space. C in (4) is the robot
compliance matrix, a mapping from f ∈ IR6 to x ∈ IR6.

From (10), we can deduce ‖ḟ ‖2 = ẋT (CCT )−1ẋ . Thus,
the CME can be spanned using the singular values of the
Compliance matrix and has principal axis vectors w i with
magnitudes

√
ηi, where w i and η1 ≥ η2 ≥ · · · ≥ ηm are

the singular values and eigenvalues of C. The compliance
manipulability index ν can be defined proportional to the
volume of the CME

ν = η1η2 · · · ηm. (11)

Similar to velocity manipulability analysis, we can also
define compliance isotropy index as in (8). In the next section,
we use the velocity and compliance manipulability to define
a unified force-velocity manipulability index for continuum
robots.

D. Unified Force-Velocity Manipulability
For rigid-link robots the end-effector forces that a robot

can produce given actuator torques of unit norm are estimated
using the force manipulability ellipsoid

FME = {f :‖ τ ‖= 1}, (12)

where τ is the robot joint torques.
In rigid-link robots, end-effector forces are related to joint

torques using the transpose of Jacobian. Thus, the force ME
has principal axis vectors v i with magnitudes 1/

√
σi and

is perpendicular to the velocity ME. This indicates that the
directions in which the robot can exert the greatest forces are
also the directions in which it is least sensitive to changes
in the actuator displacements. However, unlike with rigid-link
robots, the torques felt at the actuators of a continuum robot
do not necessarily reflect the end-effector generalized forces
and include the elastic energy of the robot backbone. Even
in the absence of gravity and when the robot is not moving,
joint torques are required to hold the manipulator in a given
pose. Thus, the VME cannot be directly related to FME, and is
only applicable when the robot is in free space or the external
forces are negligible.

We propose an approach to unify the force and velocity
manipulability ellipsoids for continuum robots. We introduce
a new measure of manipulability that considers the inherent
compliance of the continuum robot, and can be used to
estimate optimal direction for applying velocity and force
when the robot end-effector is under external forces, i.e,
interacting with an object. First, assuming the robot is in a
static equilibrium, the principle of virtual work dictates

τT δq = f T δx +

∫ `

0

uTKδuds, (13)

where K is the robot’s stiffness matrix. The first term in (13)
corresponds to the work done by robot actuators, the second
term is the work done by robot at its end-effector, and finally
the third term is due to the elastic energy stored in the robot
backbone as it deforms. From (10), it is evident that a force
contour corresponding to a constant change in distributed joint
torque τ will not be elliptical in general, and the classical
velocity-force duality cannot be employed to estimate robot
force manipulability.

To overcome this problem, we start with a simple two-step
thought experiment. First, assuming that the robot is relatively
rigid, i.e., δu ' 0, the continuum robot behaves similar
to a rigid-link robot. It acts as a mechanical transformer of
velocities and forces from the joint space to the task space.
Second, assuming that the robot joints are fixed under external
forces, i.e., δq ' 0, the robot behaves similar to a compliant
passive manipulator and the external work of applied forces
are stored as the strain energy of the robot backbone. This
prompts the observation that the continuum manipulator under
external forces at its end-effector behaves similar to a dual-
arm robotic system comprised of a rigid-link manipulator and
a passive compliant manipulator.

Here, we employ approach that is common in manipula-
bility analysis of multiple cooperating robots [17], [18] to
develop a quantifiable measure of manipulability of continuum
robots, which accounts for passive compliant of the robot.
Motivated by the above discussion, we follow the approach
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first presented in [19] to simulate the motion of the robot
end-effector as a dual-arm robotic system comprised of a
rigid-link manipulator and a passive compliant manipulator,
manipulating a mass-less point object with tight grasps. The
rigid manipulator transforms the joint velocities/torques to
end-effector velocity/force using the VME defined in (5). The
passive compliant manipulator restricts the motion of the rigid
robot via dissipating the rigid robot energy. Considering the
two end-effectors are connected, the motion of the passive
manipulator can be investigated using the CME defined in (5).

First we introduce the unified manipulability ellipsoid as

FME = {ẋ :‖ q̇ ‖= 1 & Λ = const.}, (14)

where Λ is the desired stiffness at the robot end-effector. In the
first step, it is assumed that the rigid robot acts as a mechanical
transformer, thus, the motion of the robot end-effector is given
using the Jacobian as ẋ = q̇ . In the next step, considering that
the robot joints remain constant, i.e., q̇ = 0, the interaction
force between the robot and the environment, h , pushes the
compliant manipulator in the opposite direction by magnitude
of x = Ch . Finally, considering that the desired stiffness
of the manipulator end-effector is Λ, the interaction force
between the robot and the environment at the equilibrium can
be obtained as

f = ΛCh (15)

Note that using our discretized approximation we have con-
sidered the effect of the energy stored in the robot backbone.
Now, using the principle of virtual work we have

τT δq = f T δx . (16)

Replacing δx and f using (4) and (15) we obtain

τ = JTCΛh (17)
At this point, wthe pre-image of the unit sphere in the

extended joint torque space under the mapping (17) is given
by hT [JTCΛΛTCTJ]h .

Now based on the force-velocity duality, the unit sphere in
the joint velocity space q̇ maps into

ẋT [JTCΛΛTCTJ]−1ẋ , (18)

which is defined as the UME ellipsoid and can by a set of
principal axes λiz i where λi and z i are the singular values and
eigen vectors of matrix ΛTCTJ. In Section III, we evaluate the
accuracy of the proposed manipulability in predicting optimal
direction robot end-effector in contact with an environment.

E. Manipulability Constraints
For continuum robots, beside the singular values and ma-

nipulability index, joint limits have a major impact on the
robot end-effector dexterity in the workspace. In order to
consider the effects these constraints, we employ constrained
Jacobian Jc and Compliance Cc. The constrained Jacobian
and compliance are formed by penalizing the columns of the
matrices individually using

Jci = P ci Ji, Cc
i = P ci Ci (19)

where Ji is the ith column of the robot Jacobian. P ci is the
joint-wise penalization function given by

P ci =
1− exp(−4kc(qi−qi,min)(qi,max−qi)

(qi,max−qi,min)2 )

1− exp(−kc)
(20)

where the coefficient “4” and the denominator “1−exp(−kc)”
in equation (19) are needed to normalize the penalization term
such that P ci spans the interval [0, 1]. At the joint-limits, P ci
becomes zero. In the neutral position, P ci becomes one. The
scaling coefficient kc specifies the functional shape in be-
tween these points. Using this penalty function, the individual
columns of J and C are penalized when the ith joint value
qi approaches the limits qi,min or qi,max. This penalization
approach has been used to contraint robot jacobian in [9],
[20]. Now, by substituting the constrained Jacobian Jc and
compliance matrix Cc in (4) and (10), we can calculate the
VME, CME, and UME considering the robot mechanical
constraints.

III. CASE STUDY:MANIPULABILITY ANALYSIS OF
CONCENTRIC TUBE ROBOTS

In this section, we apply the methods derived above to anal-
yse the manipulability of a concentric-tube robot. Concentric
tube robots are composed of series of precurved elastic tubes
that can be axially translated and rotated with respect to each
other to control the shape of the robot (see Fig. 1) [13], [14].
Here, we give a brief summary of that model before applying
the methods of Section II.

A. Concentric Tube Robot Model
In this section, a 3D model of a concentric tube robot is

presented. The model for the statics of concentric tube robots
have been derived in [14], [21]. Each tube of the robot is
modelled as a deformable curve endowed with triad of vectors
forming a frame attached to every point. By convention, the
frame is chosen so that the z-axis of R remains tangent
to the curve. The configuration of each tube of the robot
can be uniquely defined using a unique line of centroids,
r(s) : [0, `] → R3, and a unique family of orthogonal trans-
formations, R(s) : [0, `]→ SO(3). The differential kinematic
equations describing the evolution of the transformation are
given as g′ = gε̂, where ε = [e3 uT ]T , and e3 = [0, 0, 1]T .
u(s) is the curvature of tube and is given by

u(s) = (ṘR−1)∨, (21)

Considering the tubes are made of linear elastic isotropic
materials and following the approach discussed in [13], [14],
we can derive the constitutive equation for calculating the
instantaneous curvature of tubes. First, we break the robot
into several segments between transitions points, at which the
continuity of shape and internal moment must be enforced
(see Fig. 1). Each segment can contain 1 to i tubes. Next,
we consider that the final deformed curve of all tubes at a
given time t must be equal to the curve of the most inner
tube ir(s, t) = 1r(s, t). To parametrize the tubes twist,
we assume the rotation matrix of the tubes are different
from the most inner tube by one rotation about axial unit
vector, i.e., iR(s, t) = 1R(s, t)Riθ(s, t). Finally, based on
these assumptions the curvature of tubes can be calculated
using Euler’s laws of Balance of momentum and moment of
momentum as follows

ir
′
(s, t) = iR(s, t)e3, (22a)

iR′(s, t) = iR(s, t)iû(s, t), (22b)
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Fig. 1. A schematic of a concentric tube robot. Tubes are grasped at their
respective proximal ends, and the actuation variables iα and iβ denote the
proximal base rotation and translation, respectively. Each tube is comprised
of a straight and a curved section. iθ denotes angular displacement of tube i.

1u′n = −(

N∑
i=1

iK−1)

N∑
i=1

Riθ

[
iK
(
iθ′

dRiθ

diθ
1u − iU ′

)
+ iûiK

(
iu − iU

)]
− (

N∑
i=1

iK
−1

)
[
e3 × 1R

T
∫
s

f (ε, t)dε
]∣∣∣∣∣
n

, n = 1, 2 ,

(22c)
iu′3 = iU ′3 +

iEiI
iGiJ

(ui1
iU2 − iu2

iU1), (22d)

iu′n = Riθ
1u + iθ′e3

∣∣∣∣∣
n

, n = 1, 2, (22e)

where, superscript i (i = 1, ..., N) denote the parameters and
variables of the ith tube and subscripts n (n = 1, 2, 3) denote
the nth element of a vector. U i is the curvature of each tube
in its reference configuration. Also, θ′i = ui3−u1

3 denotes the
angle of twist about z-axis with respect to the most inner tube,
and iK = diag(iEiI, iEiI, iGiJ). E is the Young’s modulus,
I is the second moment of inertia, G is the shear modulus,
and J is the polar moment of inertia of tube. f is the external
force applied to the robot.

The initial conditions can be specified in terms of these
unknown quantities and the actuator values as follows

r(0) = [0 0 0]T , (23a)

R(0) =

cos(1α+ 1β1u3) −sin(1α+ 1β1u3) 0
sin(1α+ 1β1u3) cos(1α+ 1β1u3) 0

0 0 1

 ,
(23b)

θi(0) = (iα+ iβ1u3)− (1α+ 1β1u3), (23c)

where the actuator value vector q consists of the rotations and
translations of each tube, iα and iβ, shown in Fig. 1. (22) and
(23) can be solved to estimate robot backbone curvature and
robot end-effector position and orientation, g(`).

B. Simulation Study
We now provide simulation results using the discussed

model for a concentric-tube robot with two tubes. The me-
chanical properties of the tubes are given in Table I.

In the first simulation we examined the accuracy of velocity
manipulability ellipsoid in predicting the direction of motion
of the robot end-effector. Representative results are shown
in Fig. 2. The robot motion with respect to unit change in

TABLE I
PHYSICAL PARAMETERS FOR TUBES USED IN SIMULATIONS.

Tube 1 Tube 2

Inner Diameter [mm] 1 1.75

Outer Diameter [mm] 1.5 2.5

Straight Length [mm] 15 10

Curved Length [mm] 35 15

Curvature [m−1] 15 7.5

Young’s Modulus, E [GPa] 30 30

Shear Modulus, G [GPa] 11 11

0

0.02

0.02

Y [m]

X [m]

0.020.01

0.04
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m
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m
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X [m]

0

0.005

0.01

0.015

0.02

Y
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m
]

Fig. 2. An illustration of the VME (blue ellipse) for a concentric tube robot.

joint variables q , as well as the VMEs are plotted. The initial
configuration of the robot is 1α = 0, 2α = π

2 ,
1β =

40[mm], 2β = 10[mm]. The velocity manipulability is shown
in blue. For visualization, we only plotted the 3D ellipsoid
regarding the translational motion of the robot end-effector.
As it can be seen in Fig. 2, the VME can estimate the optimal
direction of motion with respect to a unit change in joint
variables and provides a measure of effort in joint space and
robot motion in task space.

In the next simulation, we studied the accuracy of com-
pliance ellipsoid. The CME can estimate the direction of
motion of robot end-effector with respect to a unit change in
generalized forces in task space. Figs. 3 illustrate the nature
of the compliance ellipsoid. The the initial configuration of
the robot is 1α = 0, 2α = π

2 ,
1β = 35[mm], 2β = 5[mm].

In each figure, the concentric tube robot starts in the same
no-load configuration, and then experiences three equal end-
effector forces increasing from 0 to 10 N, applied separately in
x, y, and z directions on local frame of the robot end-effector.
A force applied in the positive y direction (Fig. 3(b)), produce
a much greater end-effector displacement than when applied
in local x and z directions (Fig. 3(a) and 3(c)). As it can
be seen, the ellipsoid gives excellent insight into the relative
response of the backbone of the concentric tube robot in each
case.

As discussed in Section II-C, the inherent compliance of
a continuum manipulator can be used to increase safety of
robotic manipulation. In the next simulation, we studied the
variations in CME and robot compliance as a function of
robot pose and configuration. The robot compliant can be used
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Fig. 3. Simulation results for robot under forces of the same magnitude at x, y, and z directions on local frame of the robot end-effector. Forces are shown
with red arrows. CME is scaled down by a factor of 0.1
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Fig. 4. (a) Effect of moving the robot outer tube and shape of the robot
backbone on direction, orientation and volume of robot CME. CMEs are
scaled down a factor of 0.5. (b) A schematic of a concentric tube robot and
the velocity, compliance, and unified force-velocity manipulability ellipsoids.

to increase the safety of robot interaction with soft tissue in
surgical robots. As it can be seen in Fig. 4(a), by changing
the length of the robot tubes, i.e., 1β and 2β, we can control
the shape and direction of CME. Thus, CME can be used to
study robot compliance throughout its workspace.

In the next simulation, the application of unified force-
velocity manipulability ellipsoid (UME) in quantifying the
robot interactions are studied. The velocity, compliance, and
unified force-velocity manipulability ellipsoids for a specific
configuration of the robot are shown in Fig. 4(b). As men-
tioned before, the VME only considers kinematics of the
continuum robot in free space. However, because of the com-
pliance of continuum robots backbone the optimal direction for
effecting force is not necessarily the same as VME. This fact
can be seen in Fig. 4(b), as the direction of optimal velocities
when the robot is in contact with an object (shown in red) is
very different from optimal velocity direction shown by VME
(in blue).

Figs. 5 illustrate the accuracy of UME in estimating the the
optimal direction of motion with respect to a unit change in
joint variables, when the robot is in contact with an object.
In the simulations, the desired stiffness of the robot end-
effector Λ is 1 N/mm in all directions, i.e, diag(1 · · · 1). In
each figure, the concentric tube robot starts in the same no-

load configuration in contact with a rigid object, and then
start moving in response to unit change in joint variables 1β
(Fig. 5(a)) and 1β (Fig. 5(b)), i.e, change in 1st and 2nd tube
length. For comparison, results of robot motion when it is
in free space is plotted in blue. Based on the results, when
the robot moves the greatest motion is in local y direction
as the UME shown in red predicts. Also, the robot is almost
incapable of moving in z direction as the UME has the smallest
value in that direction.

Unlike VME, the UME gives excellent insight into the
concentric tube robot motion in contact when it is applying
force. This can be clearly seen in bottom figure in Fig. 5(a).
When the robot moves in free space it can freely extend toward
z direction. However, when it is in contact with an object,
because of the backbone compliance, it is forced to move along
y direction. Revisiting the duality between velocity and force
again, it can be found that an optimal direction to actuate a
velocity is also an optimal direction to control a force. Thus,
for the continuum robot in the given configuration, in terms of
end-effector velocity, the performance is better along the local
y axis while in terms of end-effector forces, higher forces can
be applied along z direction.

IV. CONCLUDING REMARKS

The enhanced dexterity and manipulability offered by con-
tinuum robots such as the concentric tube robot can signifi-
cantly improve the performance of minimally invasive surg-
eries. In this paper, we proposed several manipulability indices
to quantify the manipulability of continuum robots, namely,
velocity, compliance, and unified force-velocity manipulabil-
ity. First, by generalizing the previous manipulability measures
commonly employed in manipulability analysis of rigid robots,
we introduced a velocity manipulability index which describes
the feasible motions of continuum robot end-effector in the
Cartesian space corresponding to unit joint velocity vectors.
We showed that due to inherent compliance of a continuum
robot, a velocity ME cannot predict optimal directions for
applying force when the robot is in contact with the envi-
ronment. Next, we proposed a compliance manipulability to
quantify the compliance of the continuum manipulator. Finally,
we employed the compliance and velocity manipulability to
introduce a unified force-velocity manipulability measure. The
unified force-velocity ME can be conveniently utilized not
only for analysing manipulability of the continuum robot
along different directions of the operational space, but also
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Fig. 5. Result simulation for a robot connected to a spring. Velocity, Compliance, and Unified force-velocity manipulability ellipsoids are shown. (a) Robot
motion in response to unit change in inner tube length 1β (b) Robot motion in response to unit change in outer tube length 2β )

for determining compatibility of the structure to execute a
task assigned along a direction. Several simulations were
performed to validate the proposed manipulability analysis.

In future, we will use the proposed measures of manipu-
lability in design and control of concentric tube robots. Such
a quantifiable measure of dexterity can be used for analysis
and comparison of designs of concentric tube robots. Also, the
proposed analysis allows for considering dexterity in motion
scaling, motion planning, and control of complex surgical tasks
such as suturing or navigation in the presence of anatomical
obstacles.
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