
Towards Table Tennis with a Quadrotor Autonomous Learning Robot
and Onboard Vision*

Rui Silva1 and Francisco S. Melo1 and Manuela Veloso2

Abstract— Robot table tennis is a challenging domain in both
robotics, artificial intelligence and machine learning. In terms of
robotics, it requires fast and reliable perception and control; in
terms of artificial intelligence, it requires fast decision making
to determine the best motion to hit the ball; in terms of
machine learning, it requires the ability to accurately estimate
where and when the ball will be so that it can be hit. The
use of sophisticated perception (relying, for example, in multi-
camera vision systems) and state-of-the-art robot manipulators
significantly alleviates concerns with perception and control,
leaving room for the exploration of novel approaches that focus
on estimating where, when and how to hit the ball. In this paper,
we move away from the hardware setup commonly used in this
domain—typically relying on robotic manipulators combined
with an array of multiple fixed cameras—and give the first steps
towards having autonomous aerial table tennis robotic players.
Specifically, we focus on the task of hitting a ping pong ball
thrown at a commercial drone, equipped with a light cardboard
racket and an onboard camera. We adopt a general framework
for learning complex robot tasks and show that, in spite of the
perceptual and actuation limitations of our system, the overall
approach enables the quadrotor system to successfully respond
to balls served by a human user.

I. INTRODUCTION

In this paper, we address the problem of intercepting a
target object moving in 3D space using an autonomous drone.
We are interested in a particular instantiation of this general
problem where the moving target is a table tennis ball thrown
at the drone by a human user. The drone is a commercial
quadrotor (the Parrot AR Drone), and the only information
about the target and the drone itself is provided by basic
sensing available onboard (including an onboard camera).

Our domain is inspired by robot table tennis, an appealing
domain for robot research, since a robot that is able to play
table tennis with some level of competence must successfully
address issues of

• (P) Perception, i.e., reliably detect the position and
velocity of the tennis ball as it moves towards the robot;

• (E) Estimation/decision, i.e., reliably predict the posi-
tion in which the robot will hit the ball (hitting point)
and select the best motion to hit it (hitting motion);

• (C) Control, i.e., reliably execute the hitting motion.

*This work was partially supported by national funds through
FCT—Fundação para a Ciência e a Tecnologia, with reference
UID/CEC/50021/2013, and a scholarship with the same reference.

1R. Silva and F.S. Melo are with INESC-ID and with Instituto Su-
perior Técnico, University of Lisbon, Porto Salvo, Portugal. E-mail:
rui.teixeira.silva@ist.utl.pt, fmelo@inesc-id.pt

2M. Veloso is with the School of Computer Science, Carnegie
Mellon University, Pittsburgh, Pennsylvania, USA. E-mail:
veloso@cs.cmu.edu

All above issues (perception, estimation and control) must
be addressed in real-time, to ensure that the robot reaches
the desired hitting point before the ball does.

Our work is related with recent work on drone applica-
tions, including cooperative load carrying [1] and acrobatic
object manipulation [2], [3]. In terms of the three aspects
discussed above, all aforementioned works rely on motion
capture systems or similarly sophisticated perception mod-
ules, providing real-time robust perception. Estimation relies
on analytical dynamical models. Control is computed from
trajectories generated on-the-fly. Unlike these works, our
perception relies solely on onboard sensing. Additionally,
we adopt a data-driven/model-free approach to estimate
the hitting point. Finally, we adopt a learning approach to
construct on-the-fly the hitting motion from a library of
parameterizable hitting motions.

Another related area of research is robot soccer, where the
robots must approach/intercept the moving ball based only
on visual information collected from the onboard cameras
[4], [5]. There are, however, important differences in terms of
the three dimensions identified above. In terms of perception,
the existence of teammates and opponents renders perception
more challenging—since the ball may often be occluded or
follow an unpredictable trajectory, also rendering estimation
quite challenging. On the other hand, both robots and the ball
essentially move in a 2D world, which is also quite distinct
from the 3D motion featured in our table tennis setting.

Finally, there is a significant volume of work on robot
table tennis. Early approaches to robot table tennis already
exhibited some level of success [6]–[10], in spite of the
limited hardware and computational power. Most approaches
focused on the design of real-time robust perception and
control (issues (P) and (C) above), and relied heavily on
human knowledge in the form of explicit models of the
task. Powerful hardware and software shifted the focus of
robot table tennis research to issues of generalization and
adaptation. In terms of the issues previously identified, ma-
chine learning techniques have been used mainly to address
the problem of hitting point estimation and hitting motion
selection, corresponding to issue (E) above.

In this paper, we address the problem of robotic table
tennis using a quadrotor drone (the Parrot AR Drone 2.0, see
Fig. 1a) equipped with a light cardboard racket (see Fig. 1b)
and an onboard camera. The robot is controlled via wireless
from an off-board commodity computer that processes the
camera feed and sends back the control commands to the
drone. The purpose of the racket is not to bounce back
the ball but merely to intercept it. The main distinction



(a) The Parrot AR Drone 2.0. (b) Cardboard racket used. (c) Assembled set in flight. (d) Simulator screenshot.

Fig. 1. Setup used in this paper (real and simulated).

between our work and existing work on drone applications
and robot table tennis is, perhaps, in terms of perception.
This difference translates in two key challenges. First, ball
tracking must rely exclusively on the onboard camera and
not on external motion caption systems or arrays of external
fixed cameras. Second, robot positioning relies only on
proprioception and, as such, is used minimally.

We adopt a general framework for complex robot tasks
that combines two powerful learning paradigms (imitation
learning and reinforcement learning), allowing initial knowl-
edge to be fed into the system from demonstration and
allowing the system to improve its performance by trial and
error [11], [12]. We adapt this framework to the constraints
imposed by our robotic setup (namely, the use of a single
onboard camera as the only sensor, and the much slower
response of the robot) and construct a library of hitting
motions that are combined to enable the robot to successfully
intercept tennis balls thrown at it by a human user. Our
results show, both in simulation and in experiments with
the real quadrocopter, that the overall approach is able to
accommodate the perceptual and actuation limitations of the
robot, while requiring minimum domain knowledge to be
explicitly provided to the system.

II. OVERVIEW OF THE APPROACH

In this section we describe the robotic platform used, and
provide an overview of the approach used.

A. The Robot

We use a commercial quadrotor drone, the Parrot AR
Drone 2.0 (see Fig. 1a). Among other sensors, the drone
is equipped with an HD camera (resolution of 720px at
30 fps), a gyroscope, an accelerometer, a magnetometer,
an ultrasound altimeter and flight stabilizers. The drone
offers the capability of remote programming, by creating a
dedicated Wi-Fi to which other devices can connect. There
is also a ROS driver for the robot and a model for Gazebo.
Using this model, we created a ROS-based realistic simulator
for the robot table tennis domain (Fig. 1d) that is used both
for allowing human users to provide demonstration data and
for initial trial and error learning to take place.

We attached a light card-board racket with the dimensions
of an official ITTF racket to the drone (Figs. 1b and 1c).
The material selected offers the advantage of being very light

Perception

Estimation

Control

Ball position
Ball velocity

Human
Demonstration

Hitting
motion

Smoother

Parameterized
hitting motion

Library

Decision

Hitting
motion

Hitting
point

R
ei
nf
or
ce
m
en

t
Le

ar
ni
ng

Im
it
at
io
n
Le

ar
ni
ng

Fig. 2. Overview of the framework used in the paper.

and, as such, does not interfere significantly with the flight
of the drone. It also provides a convenient “target surface”
to intercept the tennis ball, diminishing the possibility of
the latter contacting with the rotors. We note, however, that
the restitution coefficient of the racket is not sufficient for
the ball to bounce. While this is sufficient for our purposes,
a different racket would be necessary for the system to be
“tennis-table-ready”.

B. The Approach

We adopt the general framework described in Fig. 2. This
general framework has several appealing features as a general
framework for learning complex robotic tasks. First, the
use of RL enables the robot to adapt to the task at hand,
improving its performance while requiring little domain
knowledge to be explicitly encoded thereinto. Second, the
combination of RL with imitation learning enables human
users to provide (implicit) domain knowledge upon which
the RL algorithm can then improve. Thirdly, such domain
knowledge can be provided by experts on the task at hand,



Fig. 3. Real-time detection of a bouncing ball.

even if they have little expertise in robotics [13].
Different instantiations of the above framework that com-

bine RL with imitation learning have been used in different
domains. For example, Abbeel et al. use a similar approach
to “program” an RC helicopter to perform complex maneu-
vers [11]. Imitation learning relies on inverse reinforcement
learning, while the RL module uses differential dynamic pro-
gramming [11]. Muelling et al. adopt this same framework
in a robot table tennis system that is capable of returning
balls with a 94% success rate [12].

Our instantiation of the framework in Fig. 2 builds on that
of Muelling et al. [12]. We perform hitting point estimation
using a variation of regularized kernel regression, dubbed
cost-regularized kernel regression (CrKR), in which samples
are weighted according to their relevance for the task at hand
[14].1 Once the hitting point is estimated, the decision mod-
ule determines the hitting motion from a set of parameterized
hitting motions learned from human demonstrations. These
“motion primitives” are combined into one single motion that
depends on the situation (ball position and velocity, robot
pose, etc.) and on their estimated success. The weights are
adjusted using reinforcement learning.

III. TRACKING A TENNIS BALL WITH A MOVING
CAMERA

As discussed before, perception in our system relies essen-
tially on a single onboard camera. In particular, the camera
feed is used to estimate the 3D ball position and velocity
which, in turn, are used to determine the hitting point.

In order to recover the 3D position and velocity of the
ball from the single camera image, we adopt a simple
approach that ensures a relatively robust estimate in real-
time. Related approaches have been used in other works
requiring fast and accurate tracking, most notably in the
Robocup competition [15], [16]. In our approach, we use
simple HSV color segmentation to identify the table tennis
ball in each image captured by the onboard camera. We fit
the parameters of a circular boundary using regularized least-
squares, obtaining an estimate of the ball position in the
image [17].2 Figure 3 illustrates the real-time ball detection
in a sequence of images.

We now use the diameter of the ball in the image, himage,
and its position in the image, (x, y), to estimate its 3D
position and velocity. Both the position (X,Y, Z) and the

1In the specific case of table tennis, the samples are weighted by how
successful the corresponding hitting motion was.

2In our system, we used the OpenCV implementation of the aforemen-
tioned method.

velocity (Ẋ, Ẏ , Ż) of the ball are computed with respect to
the robot’s reference frame (see Fig. 6 for an illustration).
The selected reference frame matches that of the camera,
which avoids transformations between coordinate frames
and, as will soon become apparent, facilitates the integration
of estimation, decision and control.

To estimate the 3D position of the ball from himage, and
its position in the image, (x, y), we adopt a simple pinhole
model for the camera. The distance d between the ball and
the focal-point of the camera can be computed from the
projective relation

d =
f

m
· hworld

himage
, (1)

where f is the focal length of the camera, m is the pixel
size, and hworld represents the diameter of the ball in the
world. The parameters f and m are easily obtained from
the camera calibration and table tennis balls have a standard
diameter of 4cm, thus implying hworld = 4cm. Once d is
computed, and given the image coordinates x and y of the
ball, we can solve for X , Y and Z by solving the following
system of equations

x =
f

mx

X

Z
+

px
mx

, (2a)

y =
f

my

Y

Z
+

py
my

, (2b)

d =
√
X2 + Y 2 + Z2. (2c)

In (2), mx and my represent the horizontal and vertical
pixel size, and px and py represent the coordinates of the
image center. All these parameters are also estimated from
camera calibration. Finally, to estimate the ball velocity
in consecutive frames, we compute the ratio between the
distance traversed by the ball between the two frames, and
the time elapsed.

To evaluate our ball pose estimation approach, we use
the simulator to track the ball along a complete trajectory,
measuring the average error in both pose and velocity against
the simulator ground-truth. The results are summarized in
Table I and Fig. 4.

TABLE I
AVERAGE ESTIMATION ERROR PER TRAJECTORY. THE POSITION

ESTIMATE ERRORS ARE EXPRESSED IN CM, WHILE THE VELOCITY

ESTIMATION ERRORS ARE EXPRESSED IN CM/SEC. RESULTS ARE

AVERAGES OVER 20 RANDOM INDEPENDENT TRAJECTORIES.

X Y Z Ẋ Ẏ Ż

Error 0.77 4.96 24.15 17.07 119.0 478.0

Observing the results in Table I, we note that the error in
the Z coordinate (depth) is significantly superior to that in X
and Y (by one order of magnitude or more). This difference
in the order of magnitude of the error can be explained by
the fact that, as the distance between the ball and the robot
increases, so does the impact of a single pixel in the radius



0 0.2 0.4 0.6 0.8 1
−2

0

2

4

6

8

10
Ball Position Estimation vs. Ball Position Ground Truth − X component

Time (seconds)

Po
si

tio
n 

(c
m

)

0 0.2 0.4 0.6 0.8 1
−40

−20

0

20

40
Ball Velocity Estimation vs. Ball Velocity Ground Truth − X component

Time (seconds)

Ve
lo

ci
ty

 (c
m

/s
)

0 0.2 0.4 0.6 0.8 1
−20

0

20

40

60

80
Ball Position Estimation vs. Ball Position Ground Truth − Y component

Time (seconds)

Po
si

tio
n 

(c
m

)

0 0.2 0.4 0.6 0.8 1
−600

−400

−200

0

200

400
Ball Velocity Estimation vs. Ball Velocity Ground Truth − Y component

Time (seconds)
Ve

lo
ci

ty
 (c

m
/s

)

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400
Ball Position Estimation vs. Ball Position Ground Truth − Z component

Time (seconds)

Po
si

tio
n 

(c
m

)

0 0.2 0.4 0.6 0.8 1
−4000

−3000

−2000

−1000

0

1000
Ball Velocity Estimation vs. Ball Velocity Ground Truth − Z component

Time (seconds)

Ve
lo

ci
ty

 (c
m

/s
)

 

 

Ground Truth
Estimation

Fig. 4. Estimation error in both ball position and velocity for one trajectory.

of the ball in the image in the distance estimate. This impact
is also observed in the plots in Fig. 4: the steps observed in
the Z-coordinate estimate arise precisely from an increase in
the number of pixels of the ball diameter in the image.

Additionally, we note also that the noise in the position
estimates is greatly amplified in the velocity estimates,
mainly due to the small time between frames.

Nevertheless, our approach is able to provide relatively
accurate position estimates in real-time, while requiring no
dynamic model of the ball or the robot. More robust esti-
mates could be obtained by using, for example, an Extended
Kalman Filter. However, this would require a dynamic model
of the ball in the robot’s coordinate frame that could take into
account the motion of the latter, and it is not clear that the
computational burden associated with such approach would
prove advantageous in terms of performance.

IV. INTERCEPTING A TENNIS BALL WITH A QUADROTOR

This section describes the imitation and reinforcement
learning modules of our architecture.

A. Imitation Learning

In order for the robot to be able to successfully hit the table
tennis ball, we initially build a library of “hitting motions”
from which the robot can determine the best hitting motion
to take for any given ball. Such hitting motions are obtained
from a human expert piloting the robot, and parameterized in
the form of dynamic motor primitives [12]. The use of DMP
instead of other alternative representations is due to the fact
that they can be efficiently computed and reparameterized to
obtain similarly-shaped trajectories to any desired goal-point.

1) Dynamic Motor Primitives: A dynamic motor primi-
tive (DMP) is a dynamical system with the general form

ż(t) = h(z(t)), (3a)
ṡ(t) = f(z(t), s(t), sref ,θ). (3b)

0 0.5 1
−5

−4

−3

−2

−1

0
Changing trajectory duration

Time

P
o
s
it
io

n

0 0.2 0.4
−3

−2

−1

0
Changing final position

Time

P
o
s
it
io

n

0 0.2 0.4
−3

−2

−1

0
Changing final velocity

Time

P
o
s
it
io

n

0 0.5 1

−10

0

10

Time

V
e
lo

c
it
y

0 0.2 0.4

−10

0

10

Time

V
e
lo

c
it
y

0 0.2 0.4

−10

0

10

Time

V
e
lo

c
it
y

0 0.5 1
−200

−100

0

100

200

Time

A
c
c
e
le

ra
ti
o
n

 

 

Demo

Generalized

0 0.2 0.4
−200

−100

0

100

200

Time

A
c
c
e
le

ra
ti
o
n

0 0.2 0.4
−200

−100

0

100

200

Time

A
c
c
e
le

ra
ti
o
n

Fig. 5. Example of a DMP. By modifying the dynamics of the canonical
system and changing the value of sref it is possible to execute a similar
trajectory but in a different time-frame or reaching a different end-point.

Equation (3a) is known as the canonical system and (3b) as
the transformed system. We refer to z as the phase variable
and to s as the state of the transformed system;3 sref is the
reference state which roughly corresponds to the “goal state”
for the trajectory, and θ are the DMP parameters.

Given some observed trajectory that we wish to model,
{sdemo(t), t = ti, . . . , tf}, the parameter vector θ is selected
so that the state s(t) of the transformed system follows
sdemo(t) as closely as possible. Once θ is determined, it
is possible to “drive” the DMP to execute a similar motion
but to a different ending point by altering sref . Additionally,
the dynamics of the phase variable z do not depend on the
state s of the DMP, but the dynamics of s do depend on z.
Hence, it is also possible to “control” the pace at which the
DMP trajectory is executed by modifying the dynamics of
z. Figure 5 depicts an example of a DMP and how it can
easily be modified to reach a different final state or take a
different amount of time to execute.

In our implementation, the transformed system represents
a body pulled by a “moving target”. The state g(t) of the
moving target is g(t) = [g(t), ġ(t)] and the canonical and
transformed systems are given by

τ ż(t) = −αzz(t)
τ2s̈(t) = αs(βs(g(t)− s(t)) + τ(ġ(t)− ṡ(t)))

+ τ2g̈(t) + ηu(t),

(4)

where u(t) is a reference signal, τ is a temporal scaling
factor, and η, αz , αs and βs are tunable constants.4 By

3We represent the state of the transformed system as a vector s(t)
since it usually comprises a “position” component, s(t), and a “velocity”
component, ṡ(t). In other words, we are typically interested in situations
where s(t) = [s(t), ṡ(t)]> for some quantity of interest, s(t).

4We refer to [18] for additional discussion on these constants.



construction, g(t) is described as a 5th order polynomial

g(t) =

5∑
i=0

bit
i, (5)

whose coefficients bi, i = 0, . . . , 5, are computed to match
the initial and final states of the desired trajectory.

2) Hitting Motions as DMPs: In the robot table ten-
nis domain, DMPs are used to represent the trajec-
tories of the robot. For ease of notation, we repre-
sent the robot state at time t as a vector S(t) =
[X(t), Y (t), Z(t), Ẋ(t), Ẏ (t), Ż(t)]>. We write Si to refer
to any one of the coordinates X , Y or Z and Ṡi to
refer to its temporal derivative. Each state coordinate Si
is represented using a transformed system, with all three
transformed systems sharing the same canonical system. At
runtime, by selecting the desired final position and velocity
for each coordinate, we are able to send the robot to “any”
position of interest (namely, to the hitting point) within “any”
time-frame, by setting the phase variable and the reference
state adequately and executing the DMP—i.e., simulating
the corresponding dynamical system and using the observed
values for Ẋ , Ẏ and Ż to directly control the robot.5

To construct a DMP from a trajectory performed by a hu-
man expert pilot, we track the state S of the robot throughout
the complete hitting motion. Given the observed trajectory
{Sdemo(t), t = ti, . . . , tf}, we use (5) to compute, for each
coordinate Si, the corresponding “moving target” trajec-
tory, {gi(t), t = ti, . . . , tf}. From {gi(t), t = ti, . . . , tf}
we compute the associated reference signal, {ui(t), t =
ti, . . . , tf} according to (4). Finally, once the computation of
{ui(t), t = ti, . . . , tf} is complete, we can pair the reference
signal and the phase variable values to build a dataset
Di = {(z(t), ui(t)), t = ti, . . . , tf} and use, for example,
locally weighted regression to estimate the parameters θi
that minimize the weighted squared error of the estimator
ûi(z) = θ>i ψ(z) · z with respect to the data in Di. This
process is repeated for each coordinate Si.

B. Hitting Point Estimation

The trajectories provided by the human expert, corre-
sponding to successful hitting motions, are used not only
to build the DMP library but also a dataset from which the
hitting point estimator can be derived. Both data collection
and DMP construction are conducted using our simulator.

When a ball is launched towards the robot, the latter keeps
track of the position/velocity of the ball at each frame. As
soon as the ball crosses the 2.5m “plane”, its position sball
and velocity ṡball are recorded (Fig. 6). The instant ti at
which such crossing takes place is also recorded as the initial
instant of the trajectory.

From the instant ti onwards, and throughout the execution
of the hitting motion by the human expert, the trajectory of
the drone is tracked using proprioception. The trajectory is
considered complete at the instant tf when the robot hits the
ball, and the position and velocity of the robot at that instant,

5The robot is controlled by providing it velocity commands.

∼2.5m
ṡball

Yrobot

Xrobot

Zrobot

sball

Fig. 6. The instant the ball-robot distance drops below 2.5m is used as
the initial instant of the corresponding DMP. Additionally, the position and
velocity of the ball at that instant are used to estimate the hitting point.

srobot and ṡrobot, is recorded as the hitting point. A new data-
point (s, δ) is added to the dataset, where s = (sball, ṡball)
and δ = (srobot, ṡrobot, tf − ti).

Given the dataset {(sn, δn), n = 1, . . . , N} constructed
above, we use a variation of regularized kernel regression
[19] to build an estimator δ̂(s) with ith component

δ̂i(s) = k(s)>(K + λC)−1∆i. (6)

We use a Gaussian kernel k(s, s′) and write k(s) to denote
the vector with nth component k(s, sn). Likewise, we write
K to denote the matrix with mn element given by k(sm, sn).
Finally, ∆i is a N -dimensional column-vector in which the
nth component corresponds to the ith element of δn.

To describe in greater detail the particular variation of
regularized kernel regression used, we recall that each sample
point in our dataset is derived from a single hitting motion.
The approach used, known as Cost-regularized Kernel Re-
gression, or CrKR, uses the success (or lack thereof) of
the hitting motion to weight the different samples in the
dataset [14]. In particular, we associate with each sample
point (sn, δn) a cost cn that is inversely proportional to how
far the ball was hit into the table. Then, in (6), C is a diagonal
matrix whose nth nonzero entry takes the value cn.

C. Hitting Motion Selection

The robot is provided with a library of hitting motions
obtained from demonstration by a human expert and encoded
as DMPs. Let Π represent such library, and let πk, k =
1, . . . ,K, denote the individual DMPs in Π. Roughly speak-
ing, each DMP πk maps a hitting point δ into a particular
trajectory. The components srobot and ṡrobot of δ provide
the reference state for the DMP, while the component tf − ti
is used to adjust the phase variable of the DMP.

At runtime, after detecting that the ball has crossed the
2.5m “plane”, the robot determines the state s of the ball
and estimates the corresponding hitting point, δ̂(s). It then
computes the hitting motion as a mixture of the DMPs in
Π. The weight assigned to each DMP πk generally depends



both on s and δ̂(s). The resulting hitting motion, π̂, is

π̂(δ) =

K∑
k=1

γkπk(δ)∑K
k′=1 γk′

,

where γk is the weight assigned to the DMP πk. The motion
π̂ is executed and evaluated according to its success in
sending the ball towards the opponent’s court.

The evaluation of each successful hitting motion is pro-
vided in the form of a reward r that is used to evaluate the
individual success of each motor primitive and adjust the
corresponding weight. In particular, given a pair (s, δ), the
value V πk(s, δ) of the DMP πk is defined as the expected
reward received when πk is executed at (s, δ), with weight

γk(s, δ) = exp{V πk(s, δ)}.

Everytime the robot executes a successful hitting motion, the
value of V πk is updated to reflect the most recent value of
r observed. We represent V πk in the form

V πk(s, δ) = w>φ(s, δ)

and compute the parameter vector w using standard Bayesian
linear regression [19].

D. Control

We conclude our description of our adopted framework by
discussing the control module. The AR Drone 2.0 includes
flight stabilizers and automatically compensates for gravity.
As such, the control module needs only to provide, at
each time instant t, a command (Ẋ, Ẏ , Ż) corresponding
to the desired velocity for the robot at t. Therefore, once a
trajectory is encoded in the form of a DMP, the execution of
the latter directly provides the control commands necessary
to execute that same trajectory in the robot.

TABLE II
AVERAGE DMP EXECUTION ERROR. THE POSITION ERRORS ARE

EXPRESSED IN CM, WHILE THE VELOCITY ESTIMATION ERRORS ARE

EXPRESSED IN CM/SEC. RESULTS ARE AVERAGES OVER 10 RANDOM

INDEPENDENT RUNS.

X Y Z Ẋ Ẏ Ż

Error 0.40 3.82 6.77 0.89 12.58 26.88

To evaluate the accuracy of the control approach described,
we measured the average DMP execution error by comparing
the trajectory described by the robot when executing a
DMP and the “original” ideal trajectory. The results are
summarized in Table II.

Observing the results in Table II, we note that the error
generally remains around 5cm.6 An error of this order of
magnitude is quite manageable, in light of the dimensions of
the racket. Although closed-loop control could be deployed
using, for example, the approach of [20], it would require

6The results presented correspond to a trajectory where the displacement
in X was small, hence the small error in X .

0 50 100 150
1.8

2

2.2

2.4

2.6

2.8
Learning Performance

Size of training set (samples)

M
ea

n 
em

pi
ric

al
 e

rro
r 

 

 

h = 0.25
h = 0.5
h = 1
h = 2

(a) CrKR performance.

0 25 50 75 100
0

0.08

0.16

0.24

0.32

0.4

Pe
rc

en
ta

ge
 o

f b
al

ls
 h

it(
%

)

Number of trials

Average percentage of balls hit

 

 

Ground−truth
Vision

(b) Hitting performance

Fig. 7. Overal performance evaluation of the framework for robot table
tennis. In (b) the red line corresponds to the results with the vision system,
while the blue line corresponds to the results obtained using ground-truth
values for sball and ṡball.

accurate sensing with respect to the robot’s pose and, much
like the perception module, it is not clear that the compu-
tational burden associated with such approach would prove
advantageous in terms of performance.

V. EVALUATION

To evaluate the performance of the overall system, we
analyze its ability to predict the hitting point and the ability
to hit the ball. We use the robot table tennis simulator to
build an initial library of 10 DMPs from an expert human
pilot. As described in the previous section, this initial set
of DMPs also provides the data used to construct the initial
CrKR hitting point estimator.

From this initial condition, balls are randomly fired to-
wards the robot. The robot determines the adequate hitting
motion using the mixture of DMPs described in the previ-
ous section and executes the resulting trajectory. For every
successful hit, the mixture weights are adequately updated,
and the observed pair (s, δ) is added to the CrKR dataset,
enabling the CrKR estimator to also improve its estimates as
the robot plays more games.7

To analyze the performance of CrKR, we used a dataset
resulting from a total of 170 successful hits, and measured
how the estimation error varied with the number of samples
and as a function of the parameter λ (see (6)). The results are
depicted in Fig. 7a, and illustrate a quick initial improvement
in the estimation accuracy followed by a plateau. This plateau
is due mainly to the large errors in the ball velocity estimates,
as was observed in Table I.

We analyze the ability of the robot to hit the ball by eval-
uating the percentage of hits in 100 balls fired at the robot.
To better assess the impact of the inaccurate vision in the
performance of the system, we compare the results obtained
with the vision system with those obtained using ground-
truth values for sball and ṡball. The results are summarized
in Fig. 7b.8 While the impact of the vision errors is quite
evident from the plot, both plots evidence a similar plateau
effect to that observed in the CrKR performance. The plateau
effect appears sooner when using the vision system, but is
also visible when using ground-truth values for sball and

7The parameters used in our deployment are provided in the supplemen-
tary material.

8See also the supplementary video material.



ṡball. This may be partly due to the actuation limitations of
the robot, since its velocity does not allow it to reach balls
passing somewhat far from the robot. It was also observed
that several missed balls were “almost-hits”. Such almost-
hits may be due to small delays in the the computations.

Finally, we ported the setup deployed in the simulator to
the real robot and tested its performance against balls fired by
a human user. No adjustments were made to the parameters
used in simulation. In a first test, we evaluated the individual
performance of each of 4 motor primitives against balls fired
by a human user. For each motor primitive, the human user
was asked to launch a total of 20 balls towards the robot
with an approximately constant direction and velocity. Before
any learning, each motor primitive averaged a hitting rate of
approximately 20%. After the first successful hits, the hitting
rate increased to 32.5%.

In a second test, we evaluated the performance of the
system with a combined set of 10 DMPs (the same used
in the simulation). A human user was asked to again throw
the ball towards the robot, slightly changing in each throw
the direction and initial velocity of the ball. Before any
training, the performance of the system system was around
10%. However, after 80 successful hits, the value increased
to approximately 20% hitting rate.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we addressed the problem of intercepting
a target object moving in 3D space using an autonomous
drone and onboard camera, with a direct application to
robotic table tennis. Such limited perception poses two
important challenges for the task at hand: ball tracking
must rely exclusively on the onboard camera and not on
external motion caption systems or arrays of external fixed
cameras; additionally, robot positioning must rely only on
proprioception and, as such, is used minimally.

The tests established the success of the approach, having
reached hitting rates of 30% and 20% in simulation and with
the real quadrotor, respectively. Although the performance
of the system as a whole is below that of manipulator-
based systems, our experiments suggest that, after learning,
most balls missed were due to the relatively slow response
of the robot—causing it to reach the hitting point slightly
late, in what can be considered a “near-hit”. For this reason,
we believe that the overall performance of our system is
satisfactory, given the sensorial and actuation limitations of
the robot system used.

While our results are satisfactory, they also open the door
to several additional avenues for future work. On one hand,
and although a significant improvement in performance is not
expectable, it would be important to investigate the tradeoff
between computational effort vs performance involved in
including more sophisticated perception and control (e.g., by
the use of an EKF for ball tracking a closed loop controller).
Additionally, we would like to develop image-based visual
servoing (IBVS) to return the quadcopter to an initial po-
sition, at the top of the table. This would allow the robot
to respond to several balls in a row, something which is

currently not possible. We would also like to develop a
reachability analysis of the missed balls, in order to better
understand the “near-hits”. However, this would require us
to use additional equipment—a precise multi-camera vision
system to track both the quadrotor and the ball. Finally, it
would be interesting to explore the conjugation of IBVS
with DMPs, by representing trajectories in terms of image
features, thus eliminating the need of estimating the ball
pose.

REFERENCES

[1] D. Mellinger, M. Shomin, N. Michael, and V. Kumar, “Cooperative
grasping and transport using multiple quadrotors,” in Proc. 10th Int.
Symp. Distributed Autonomous Robotic Systems, no. 545–558, 2013.

[2] M. Müller, S. Lupashin, and R. D’Andrea, “Quadrocopter ball jug-
gling,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems,
2011, pp. 5113–5120.

[3] D. Brescianini, M. Hehn, and R. D’Andrea, “Quadrocopter pole
acrobatics,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and
Systems, 2013, pp. 3472–3479.

[4] M. Veloso, E. Winner, S. Lenser, J. Bruce, and T. Balch, “Vision-
servoed localization and behavior-based planning for an autonomous
quadruped legged robot,” in Proc. 5th Int. Conf. Artificial Intelligence
Planning Systems, 2000, pp. 387–394.

[5] S. Lenser, J. Bruce, and M. Veloso, “CMPack: A complete software
system for autonomous legged soccer robots,” in Proc. 5th Int. Conf.
Autonomous Agents, 2001, pp. 204–211.

[6] J. Knight and D. Lowery, “Pingpong-playing robot controlled by a
microcomputer,” Microprocessors and Microsystems, vol. 10, no. 6,
pp. 332–335, 1986.

[7] J. Hartley, “Toshiba progresses towards sensory control in real-time,”
The Industrial Robot, vol. 14, no. 1, pp. 50–52, 1987.

[8] H. Hashimoto, F. Ozaki, K. Asano, and K. Osuka, “Development of
a ping pong robot system using 7 degrees of freedom direct drive,”
in Proc. IECON 87: Industrial Applications of Robotics and Machine
Vision, 1987, pp. 608–615.

[9] R. Andersson, A Robot Ping-Pong Player: Experiment in Real-Time
Intelligent Control. MIT Press, 1988.

[10] H. Fässler, A. Beyer, and T. Wen, “A robot ping pong player:
Optimized mechanics, high performance 3D vision, and intelligent
sensor control,” Robotersysteme, vol. 6, no. 3, pp. 161–170, 1990.

[11] P. Abbeel, A. Coates, and A. Ng, “Autonomous helicopter aerobatics
through apprenticeship learning,” International Journal of Robotics
Research, vol. 29, no. 13, pp. 1608–1639, 2010.

[12] K. Mülling, J. Kober, O. Krömer, and J. Peters, “Learning to select and
generalize striking movements in robot table tennis,” Int. J. Robotics
Research, vol. 32, no. 3, pp. 263–279, 2013.

[13] S. Schaal, “Is imitation learning the route to humanoid robots?” Trends
in Cognitive Sciences, vol. 3, no. 6, pp. 233–242, 1999.

[14] J. Kober, A. Wilhelm, E. Oztop, and J. Peters, “Reinforcement
learning to adjust parametrized motor primitives to new situations,”
Autonomous Robots, vol. 33, no. 4, pp. 361–379, 2012.

[15] O. Birbach, J. Kurlbaum, T. Laue, and U. Frese, “Tracking of ball
trajectories with a free moving camera-inertial sensor,” in RoboCup
2008: Robot Soccer World Cup XII, 2009, pp. 49–60.

[16] J. Bruce, T. Balch, and M. Veloso, “Fast and inexpensive color image
segmentation for interactive robots,” in Proc. 2000 IEEE/RSJ Int. Conf.
Intelligent Robots and Systems, 2000, pp. 2061–2066.

[17] Z. Zhang, “Parameter estimation techniques: A tutorial with applica-
tion to conic fitting,” Image and Vision Computing, vol. 15, 1996.

[18] J. Kober, K. Mülling, O. Krömer, C. Lampert, B. Schölkopf, and
J. Peters, “Movement templates for learning of hitting and batting,” in
Proc. IEEE Int. Conf. Robotics and Automation, 2010, pp. 853–858.

[19] C. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.
[20] D. Mellinger and V. Kumar, “Minimum swap trajectory generation

and control for quadrotors,” in Proc. IEEE Int. Conf. Robotics and
Automation, 2011, pp. 2520–2525.


