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KVP: A Knowledge of Volumes Approach to Robot Task Planning

Andre Gaschler, Ronald P. A. Petrick, Manuel Giuliani, Markus Rickert and Alois Knoll

Abstract— Robot task planning is an inherently challenging
problem, as it covers both continuous-space geometric reasoning
about robot motion and perception, as well as purely symbolic
knowledge about actions and objects. This paper presents a
novel “knowledge of volumes” framework for solving generic
robot tasks in partially known environments. In particular, this
approach (abbreviated, KVP) combines the power of symbolic,
knowledge-level AI planning with the efficient computation of
volumes, which serve as an intermediate representation for
both robot action and perception. While we demonstrate the
effectiveness of our framework in a bimanual robot bartender
scenario, our approach is also more generally applicable to tasks
in automation and mobile manipulation, involving arbitrary
numbers of manipulators.

I. INTRODUCTION

In recent years, symbolic task planners have made sub-
stantial progress in their ability to reason about incom-
plete knowledge and perceptual information [1], [2], [3],
[4], laying the foundation for modelling realistic robot
environments. One promising technique is the knowledge-
based planning approach [5], [6], which enables a robot to
reason about unknown state information and the effects of
perceptual actions, thereby providing the tools needed for
robust planning when a robot may only have incomplete
information about its environment. However, integrating the
geometric properties of the robot and the environment into
a purely symbolic task planner poses significant challenges:
robot systems must reason about joint angles, spatial co-
ordinates and physical bodies in continuous spaces; while
high-level task planners typically rely on discrete, symbolic
representations of features, values, and actions described
in logical languages [2]. As a result, very few approaches
have successfully bridged the gap between geometric and
symbolic representations, allowing logical task planners to
work effectively with geometric constraints [7], [8].

In this paper, we describe a knowledge of volumes ap-
proach to robot task planning (abbreviated, KVP), which
treats volumes as an intermediary representation between
continuous-valued robot motions and discrete symbolic ac-
tions. An off-the-shelf, general purpose, symbolic AI planner
called PKS (Planning with Knowledge and Sensing; [6], [9])
is employed as a backend reasoning engine for efficiently
computing knowledge-level task plans, utilising the volume-
based representation in the underlying description of the
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Fig. 1. Typical robot tasks can be modelled as symbolic actions and
geometric volumes, representing both swept volumes of robot motions and
object boundaries.

robot’s operational domain. By combining these two tech-
niques, the robot can reason with incomplete information
about objects, motions, and actuation actions, and perform
information-gathering sensing actions when necessary. This
gives rise to a novel approach to robot task planning which
has certain inherent advantages:

1) 3D geometric volumes are a natural intermediate rep-
resentation, making it suitable for bridging the gap
between motion planning and high-level task planning.

2) Continuous geometry is preferable over indiscriminate
discretisation [8]: novel geometric simplification tech-
niques [10] allow computationally efficient collision
detection of volumes [11], enabling continuous geom-
etry planning to be applied in real systems.

3) Knowledge-based planning naturally allows reasoning
about acting and sensing in a structured, partially
known environment, which is reflected by concise
and clear domain descriptions, keeping the overall ap-
proach generic for a broad set of robotics applications.

As a result, this work makes a number of strong con-
tributions to the problem of combining continuous-space
geometric reasoning with high-level symbolic planning. Our
approach is among the first to use 3D geometric volumes
as the underlying representation for symbolic planning and
motion planning, and the first to combine this idea with an
off-the-shelf, general-purpose AI planner supporting deter-
ministic planning with incomplete information and sensing.
In contrast to more specialised approaches, which limit the
scope of application, our use of a general-purpose planner
provides us with a tool that can be applied in contexts beyond
that of the demonstrated bimanual robot, including tasks
in automation and mobile manipulation, involving arbitrary
numbers of manipulators. Moreover, by building on standard
planning representations, we can take advantage of new
planning engines that become available from the planning



community, which may be better optimised for our task.
Finally, our work is grounded in real-world application, and
all of our experiments are tested on actual robot platforms,
rather than solely in simulated environments.

The rest of this paper is structured as follows. In Sec-
tion II, we compare our work to related approaches, and then
describe our framework in greater detail in Section III. In
Section IV, we evaluate our approach in a real robot domain,
namely a two-handed robot bartender scenario. Finally, in
Section V, we discuss future work and conclude.

II. RELATED WORK

Some of the earliest work on robot task planning dates
back to systems like Shakey [12] and Handey [13]. Since
those early approaches, the field has made significant de-
velopments, with interest in the problem of real-world task
planning gaining momentum in recent years. In particular,
the problem has been explored from several diverse areas
of research, including probabilistic models from AI [14],
closed-world symbolic planning [7], [15], [16], formal syn-
thesis [17], [18], [19], and manipulation planning [20].

A very recent contribution, most closely related to our ap-
proach, is the belief space planner by Kaelbling and Lozano-
Pérez [14], which operates on a belief space of probability
distributions over states, providing robustness against uncer-
tainty and unexpected change. Perception (and estimation)
arises as a necessary precondition for manipulation, rather
than being hard-coded as a task itself. Using a simulation
of a PR2 mobile manipulator, Kaelbling and Lozano-Pérez
demonstrate the effectiveness of their approach through a
series of experiments in initially unknown environments.
In contrast to their notion of belief, our knowledge-based
planning approach relies on discrete logic and abstracted
state descriptions, which we believe is a viable alternative
in structured environments with certain, but incomplete,
information about the world. Moreover, we use an existing
planner which has proven successful in previous robot de-
ployments [2], rather than designing a new planner for the
task. In terms of volumes, Kaelbling and Lozano-Pérez work
with octrees, while we use sets of convex shapes, allowing
efficient collision detection in the deterministic case.

More traditionally, high-level task planning is often seen
as a computational layer on top of motion planning, and
several approaches try to integrate both layers. Our work is
in part inspired by Kaelbling and Lozano-Pérez’ earlier work
on hierarchical task and motion planning in [8], borrowing
the continuous geometry of swept volumes. But, whereas the
geometric preconditions may be similar, their aggressively
hierarchical planning strategy differs from our knowledge-
based approach which make use of abstract (but non-
hierarchical) structures. Cambon, Alami and Gravot [7], [21]
also propose a task planning algorithm that can internally
handle geometric preconditions and effects. Their approach
systematically integrates symbolic PDDL- (Planning Domain
Definition Language) [22] based states and actions together
with geometric motion planning. Dornhege et al. [16] also
present a mobile manipulation planner, which is similar to

the way the planner we use invokes and evaluates geometric
functions. More recently, Plaku and Hager [15] develop
a similar, sampling-based motion and action planning ap-
proach, additionally allowing differential motion constraints.

It is important to note that many of the above approaches
assume a closed world, where all symbols are either true
or false, which is a significant limitation for many robotic
scenarios. In contrast to this closed world assumption, our
task planning approach is based on an open-world knowledge
representation which naturally models incomplete informa-
tion and sensing actions—advantages which we elaborate on
in Section III-B. It should further be noted that in the related
works described above, either the evaluation of the combined
task and motion planner is confined to simulation [8], [7],
[16], [15], or a general domain-independent planning scheme
is not the focus of the work [20] when a real robot system
is used to evaluate the approach.

III. APPROACH

Integrated robot task planning requires a multidisciplinary
approach, adapting solutions from different fields ranging
from motion planning to formal methods. KVP combines
several of these techniques, which we outline below. We
begin by discussing the geometric models we use (Sec-
tion III-A), followed by a description of the knowledge-level
PKS planner (Section III-B), and the planning domain we
have defined (Section III-C). Finally, we describe the overall
system architecture of our framework (Section III-D). Our
evaluation scenario is a simple robot bartender that clears
away empty bottles from a table (see Figure 1), requiring
both sensing and manipulation actions.

A. Convex Decomposition of Volumes

We use volumes as an intermediary representation of a
geometric shape, modelled in a high-level symbolic form. In
KVP, volumes are used to represent the physical boundaries
of both static objects and dynamic motions—as well as the
view cone of a sensor, representing an area of perception.
It is therefore important to process these volumes using a
computationally-efficient data type, for which we use sets
of convex bodies. A convex body is defined by a set of 3D
points, and the body is the set of all convex combinations of
these points. To ease computations, the set of outer triangles
(triples of these point indices) is usually saved within the
same data object. Even though a single convex body may be
too conservative an approximation of the boundaries of most
volumes in our domain, a small set of convex bodies usually
suffices to accurately approximate volumes as complex as the
swept volumes of a robot, as shown in Figure 2. Using sets
of convex bodies also leads to a computationally-efficient
collision detection process, which is a significant advantage
of this approach in real-world applications.

Although the above approach provides a computationally-
efficient method that can be used online at run time, the
offline task of decomposing arbitrary geometric models into
sets of convex shapes remains a challenging problem. For
our KVP framework, we chose an implementation of the



Fig. 2. Convex decomposition allows an efficient approximation of swept
volumes. A typical robot mesh has 106 vertices and is non-convex (left).
Convex decomposition [10] simplifies this to 6 convex bodies with 10
vertices each (centre), allowing a typical swept volume description with
only 40 convex bodies, totalling 400 vertices (right) [23].

algorithm in [10] by Mamou and Ghorbel. In particular,
their approach performs a hierarchical segmentation on the
dual graph of triangles, which is lead by a cost function
based on concavity and an aspect ratio measure. As a
concavity measure for a given 3D mesh, they choose the
maximum distance of all mesh surface points in surface
normal direction to their projection onto the convex hull
of that mesh. For the aspect ratio, they define the squared
perimeter divided by the area of a given 3D mesh, adjusted
by a constant factor to yield one in the case of a disk.
In the iterative surface simplification, both cost function
components are weighted such that aspect ratio dominates
the early stage of the algorithm, which quickly compacts the
surface, followed by the concavity measure determining the
final simplifications. At each iteration, a half-edge collapse
decimation is performed on the dual graph.

Mamou and Ghorbel show that their approach is superior
to existing solutions, both in terms of the approximation
quality and number of convex shapes, as well as speed. As
indicated in Figure 2, their algorithm produces a concise
set of convex bodies, which are ideal for efficient collision
detection. A typical six-axes robot manipulator can be ap-
proximated by 6 to 10 convex shapes, totalling no more than
100 points. A swept volume of a typical motion for such a
robot will simplify to no more than 20–100 convex bodies,
and can be efficiently computed by merging subsequent
samples of the robot model along the motion path [23]. In
practice, sets of convex bodies provide a sufficiently efficient
geometric representation so that collision detection often
accounts for only a small fraction of total computation time.

B. Planning with Knowledge and Sensing (PKS)

High-level planning in KVP is provided by the off-the-
shelf PKS (Planning with Knowledge and Sensing) planner
[6], [9], which is able to construct plans in the presence of
incomplete information and sensing actions.1 PKS works at

1PKS is available from http://homepages.inf.ed.ac.uk/
rpetrick/software/pks/.

the knowledge-level [5] by reasoning about how the planner’s
knowledge, rather than the world state, changes due to action.
PKS is a symbolic planner that is built on a subset of a first-
order logical language with restricted inference, allowing it
to efficiently support a wide range of optimised features
that result from limiting its representation language. This
approach differs from planners based on possible worlds
or belief states, which often trade tractability for more
comprehensive representations and reasoning capabilities.

PKS is based on a generalisation of STRIPS [24] and uses
a database mechanism as its underlying state representation.
In particular, knowledge states in PKS are represented by
a set of five databases, each of which models a particular
type of knowledge. Actions can modify any of the databases,
which has the effect of updating the planner’s knowledge
state. To ensure efficient inference, PKS restricts the type of
knowledge (especially disjunctions) that it can represent. In
this work, we mainly focus on three of PKS’s databases:
Kf : This database is like a STRIPS database that stores
the values of regular fluents that the planner knows. Kf

is primarily used for modelling the effects of actions that
change the world. Unlike standard STRIPS, it works with an
open world model that can explicitly represent both positive
and negative facts. In particular, Kf can include any ground
literal `, where ` ∈ Kf means “the planner knows `.”
Kw: This database stores information about the effects of
sensing actions that return one of two possible outcomes,
providing support for information-gathering actions that ob-
serve the world but do not necessarily change it. A formula
φ ∈ Kw means that at plan time the planner either “knows φ
or knows ¬φ.” However, this disjunction will not be resolved
until run time when the action is actually executed.
Kv: This database stores information about function values
that will become known at execution time. In particular, Kv

can model the effects of sensing actions that return one of
many possible values. Kv can contain any function term f ,
where f ∈ Kv means the planner “knows the value of f .”
PKS also includes databases for modelling a restricted type
of disjunctive information (Kx), and local closed world
information (LCW ) [25], which are not used in this paper.

Reasoning in PKS is done through a limited set of prim-
itive queries that ask simple questions about the planner’s
knowledge state: (i) is a fact φ known to be true (i.e.,
K(φ)) or known to be false (i.e., K(¬φ))? (ii) does the
planner know whether a property φ is true or not (i.e.,
Kw(φ))? (iii) is the value of a function t known (i.e.,
Kv(t))? (iv) or the negation of the above queries. An efficient
inference algorithm evaluates primitive queries by checking
the contents of the databases and the relationship between
the databases. Details of this procedure can be found in the
original PKS papers by Petrick and Bacchus [6], [9].

An action in PKS is described by its parameters, precondi-
tions, and effects. An action’s parameters are a list of typed
variables which may be used throughout the action definition.
When evaluated, the planner replaces these parameters with
objects of the appropriate type, chosen by the planner, which



are bound to each occurrence of the parameter. An action’s
preconditions are a list of primitive queries which must eval-
uate as true before an action can be applied. Action effects
are described by a collection of STRIPS-style “add” and
“delete” operations that allow information to be inserted and
removed from individual databases. For instance, add(Kf , φ)
adds φ to Kf , and del(Kw, φ) removes φ from Kw. Two PKS
actions from our evaluation domain are shown in Table I,
which we will discuss in greater detail in Section III-C.

An important class of actions that PKS can model are
sensing actions that return information about the state of the
world. In PKS, sensing actions are specified by effects that
update the Kw or Kv databases (i.e., databases that track
properties with multiple potential outcomes). Given such in-
formation, the planner can build contingencies into a plan by
introducing a conditional plan branch for each possible out-
come of the sensing action. (E.g., the senseIfEmpty(?o)
action in Table I is an example of a sensing action in our
evaluation domain that provides information about the state
of isEmptyBottle(?o), which can be true or false.)

In general, PKS builds plans by reasoning about actions
in a forward-chaining manner: if the preconditions of an
action are satisfied by the planner’s knowledge state, then
the action’s effects are applied to produce a new knowledge
state. Planning then continues from this new state. The
choice of which action to apply next in a given state is
achieved by using either a depth-first search or breadth-first
search strategy, optimised by a set of heuristics. (Depth-first
search typically produces plans more quickly than breadth-
first search, however, breadth-first search generally results
in plans with fewer steps.) PKS can also build plans with
contingencies by considering the potential outcomes of a
sensing action (i.e., its Kw and Kv knowledge). For instance,
if φ is in Kw then PKS can introduce two branches into
a plan: along one branch φ is assumed to be true, while
along the other branch ¬φ is assumed to be true. Planning
continues along each branch until the goal conditions (a set
of primitive queries) are satisfied in each case.

One important feature of PKS, central to the KVP frame-
work, is its ability to integrate externally-defined procedures
(e.g., from support libraries) with its internal reasoning
mechanisms [26]. A special keyword, extern, supports this
facility, where an expression of the form extern(proc(~x))
means that the parameters ~x should be passed to an external
procedure proc for execution. ~x can contain symbols defined
in the planning domain, providing a link between the planner
and the externally-defined procedure. The return value of
an extern call is passed back to PKS, which can then
perform additional tests on this value, or include it in its
knowledge base. (E.g., the pickUp action in Table I uses
an extern call to invoke a path planner.) An extern call
can also be directed to cache its return value for efficiency.
PKS’s ability to invoke external procedures is key to our
KVP approach, enabling us to augment PKS’s reasoning
capabilities through motion planning, collision detection, and
other special purpose robotics libraries.

TABLE I
EXAMPLE PKS ACTIONS AND GOALS FOR THE BARTENDER SCENARIO

action senseIfEmpty(?o:object)
preconds:

¬Kw(isEmptyBottle(?o))
effects:
add(Kw, isEmptyBottle(?o))

action pickUp(?r:robot, ?o:object, ?l:location)
preconds:
K(?l = getObjectLocation(?o)) &
K(handEmpty(?r)) &
K(extern(isReachable(?l, ?r)))

effects:
del(Kf, ?l = getObjectLocation(?o)),
del(Kf, handEmpty(?r)),
add(Kf, inHand(?o, ?r))

goal: forallK(?o:object)
(K(getObjectLocation(?o) = dishwasher) |
K(¬isEmptyBottle(?o)))

Domain definition time
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Fig. 3. Overview of the implemented KVP software architecture.

C. Planning Domain Definition

The experimental application domain for this work is a
robot bartender scenario, where the robot can manipulate
objects (e.g., bottles) in the world. In order to use PKS in this
scenario we must first supply a symbolic domain description,
characterising its properties and actions, and the robot’s goal.

Properties in PKS are similar to logical predicates and
functions, and may have typed arguments. For our experi-
mental domain we define three types: robot, object, and
location. Using these types, we define predicates that
characterise the domain’s state space: isEmptyBottle(?o)
(object ?o is an empty bottle), handEmpty(?r) (robot
hand ?r is empty), inHand(?o,?r) (object ?o is in
robot hand ?r), and isReachable(?l,?r) (location ?l is
reachable by robot hand ?r). We also include a function,
getObjectLocation(?o)=?l (object ?o is in location ?l).

Using these symbols, we can formulate PKS actions,
as described above in Section III-B. Table I shows an
example of two PKS actions in the bartender scenario. Here,
senseIfEmpty(?o) is a sensing action that determines
whether or not a bottle ?o is empty. This information-
gathering action is modelled by an effect that adds the
isEmptyBottle(?o) predicate to the Kw database, pro-
vided this information isn’t already known to the planner.



The inclusion of senseIfEmpty(?o) allows the planner to
build contingent branches in its plan, where each branch con-
siders one of the possible outcomes of isEmptyBottle(?o)
(i.e., one contingency if isEmptyBottle(?o) is true, and
another if isEmptyBottle(?o) is false). However, at run
time, when the true value of isEmptyBottle(?o) is known,
the appropriate branch of the plan will be executed on the
robot. A more detailed description of sensing actions and
branched plans in this domain is given in [27].

Table I also includes the action pickUp(?r,?o,?l), a
physical action that uses robot hand ?r to pick up object
?o from location ?l. This action is modelled by a set of
preconditions that verify the planner knows the location of
?o is ?l, that hand ?r is empty, and that location ?l is
reachable with ?r. When the action is applied, the planner
comes to know that ?o is no longer at ?l, hand ?r is no
longer empty, and that the robot is holding ?o in hand ?r.

For a typical robot action, motion planning often needs
to be performed. To specify such behaviour as part of the
pickUp action, we include an external call to the procedure
isReachable(?l,?r) (indicated by the extern directive),
which directs PKS to invoke the path planner for a particular
location ?l and robot hand ?r, and report if a path could be
generated. This allows us to define actions to pick and place
objects. In contrast to the sensing action senseIfEmpty,
whose outcome is evaluated at run time, the motion planning
procedure isReachable is evaluated at planning time.

The complete PKS domain description also includes an
action putDown(?r,?o,?l), which allows the robot to place
an object ?o at a location ?l using hand ?r. This action is
defined in a similar manner to the pickUp action in Table I.

The final component of our domain definition is a spec-
ification of the robot’s goal. In our bartender scenario,
the robot is given the task of moving all empty bottles
to a location named dishwasher, specified by the goal
expression in Table I. The goal is achieved if each object
is either in the dishwasher, or isn’t an empty bottle. With
the slight addition of swept volume collision checking to
avoid collisions between robot hands (which we omit for
clarity of presentation), we obtain the domain definition used
in the evaluation in Section IV below. We note that even
though we use the bartender scenario as an example of our
approach, this domain description may easily be generalised
to other robot tasks as it involves common object transfers
and collision-avoiding robot motions.

D. System Architecture

The components described above—volume simplification,
the PKS planner, and the planning domain description—
account for only part of the KVP platform. To test the
effectiveness of our approach, we have implemented and
evaluated our framework both in simulation and on a real
robot system. The complete system architecture is shown
in Figure 3. Although this architecture contains a number of
support modules which aid the components described above,
the only computationally expensive task in this framework is
volume simplification, which can mostly operate offline: the

static scene, all object types, and the robot limbs need to be
simplified only once. Swept volumes need to be computed as
part of the planning process, and can be simplified by using
the previously calculated robot limb volumes.

During planning, PKS can generate motion plans and
check for collisions by directly calling functions from the
motion planning and collision detection components. Both of
these components rely heavily on the Robotics Library (RL)2

by Rickert [28]. RL includes several efficient motion plan-
ning algorithms and a manually optimised algebraic solution
of the inverse kinematics for a broad range of six degrees-
of-freedom robots, including the industrial manipulator used
in the evaluation. For path planning, we apply a simple
interpolation in configuration space between locations in the
defined domain. We also include a simple grasp planner that
can evaluate a set of grasping poses of the end effector.

In the evaluated bartender scenario (see below), the grasp-
ing poses are generated from one defined end effector pose
sampled around a bottle’s axis of rotation in 30 degree steps.
During path planning, paths are only checked for collisions
with the static environment. All other collision checks are
listed in the action preconditions and dispatched by PKS,
calling the collision checker when necessary. The actual
collision detection is based on the Bullet Physics Library,3

which is geared towards efficiency and can handle large
numbers of convex bodies using fast broad-phase detection.

Action execution at run time is mediated by a simple
plan execution component, which processes the plans gen-
erated by PKS, one action at a time. For robot actions,
plan execution calls a trajectory generator, which performs
a quintic interpolation of the robot paths in configuration
space. Once generated, these trajectories are then executed
on the physical robot. For sensing actions that give rise to
contingent (branching) plans, the outcome of the sensing
is used to determine which contingency (branch) of the
plan should be followed [27]. In our evaluation scenario,
the only run-time sensing action involves a simple colour-
based vision component (see Figure 4) that reports if a
bottle is full or empty. We note that the spatial locations
of the bottles are also visually detected by this sensing
component. However, since this information is also needed
for motion planning, it may already be available at planning
time. The plan execution component also acts as a recovery
mechanism that allows plans to be rebuilt in response to
unexpected changes in the environment. For example, in
our bartender domain, bottles that are newly detected at run
time could trigger a replanning stage, which would lead to
new (but few) geometric volume computations. While we
do not use replanning in our evaluated system, in general,
this mechanism provides a useful tool that can improve the
overall robustness of the system in many domains.

IV. EVALUATION

We performed an evaluation of our KVP implementation
both in simulation and on a bimanual robot system, whose

2http://roblib.sf.net/
3http://bulletphysics.org/



Fig. 4. Run-time sensing in the evaluated scenario includes simple colour-
based segmentation for empty and full bottles. [27]

Fig. 5. World model with two swept volumes of grasping motions (red),
movable objects (blue), and static obstacles (grey).

components are described in [29]. The robot setup consists
of two 6-DoF industrial manipulators with Meka Robotics
H2 humanoid hands. Visual input is given by a depth sensing
device mounted on top of the setup. The goal in this scenario
is to detect bottles located on the bar and remove all empty
bottles to a special dishwasher location at the right of
the robot. The three PKS actions available in this domain
(pickUp, putDown, and senseIfEmpty), are defined as
discussed above. Geometric data is confined to 3D models
of the robot, a bottle, and the bar environment, as indicated
in Figure 5. Finally, kinematic data of the two robot arms
and a simple grasping scheme is also included.

The planning and robot control software ran on a 2.8 GHz
desktop computer. The computer vision component ran on a
separate machine and the robot hands were controlled by
a separate real-time PC. The robot could execute the task
without human intervention. (For details, see Figure 6 and
the associated video.) Even in this simple scenario, KVP
must find a non-trivial solution. In order to move bottles
from the right side of the bar to the goal location, one arm
must first move them to a location in reach of the second
arm. Using the symbolic definition of volumes, all possible
collisions are avoided, including less obvious cases.

Table II shows the running times for various aspects of
KVP, under alternative search methods used by the PKS
planner for plan generation. While the results indicate depth-
first search is more efficient than breadth-first search for
scenarios more complicated than our evaluation domain,
breadth-first search may yield significantly shorter plans.
Furthermore, our results illustrate that the total planning time

TABLE II
EFFICIENCY OF KVP FOR THE BARTENDER SCENARIO

Depth-first Breadth-first
search search

Total domain definition time, of which: 27.399 s 27.389 s
Volume simplification 27.221 s 27.221 s

Total planning time, of which: 2.908 s 36.673 s
Motion planning of inverse kinematics 0.036 s 0.572 s
Robot volume computations 0.578 s 0.568 s
Swept volume simplification 2.251 s 34.949 s
Collision checking 0.001 s 0.002 s

Function calls
Motion planner path generation 8 16
Collision checking 20 153

Run-time execution time 68 s 68 s

is adequately short for the evaluated scenario, and does not
significantly impact on the overall execution of the system.
For depth-first search, planning is an order of magnitude
faster than both the offline simplification of static volumes
and the actual execution of robot actions, making it an
efficient technique for solving problems in this scenario.

V. CONCLUSION AND FUTURE WORK

In this paper, we describe an approach to robot task
planning that combines reasoning about complex geomet-
ric volumes with general-purpose knowledge-level planning
techniques. We demonstrate the effectiveness of our KVP
framework on a realistic two-robot setup that includes run-
time perception and physical robot actions in a bartender sce-
nario. Overall, we believe that volume-based task planning
is applicable to a broad range of robot tasks, and may prove
effective in structured and partially known environments, in-
cluding automation, robot-aided manufacturing, and mobile
manipulation, involving arbitrary numbers of manipulators.

We also view the use of a general-purpose planner that
has not been explicitly optimised for planning in robotics do-
mains as an advantage of our approach. First, our framework
profits from future updates and improvements to the actively-
developed PKS planner. Second, by treating planning as
a black box we keep our framework sufficiently modular,
allowing us to consider other symbolic planners from the
planning community which can be substituted for PKS and
tested in the KVP framework with minimal effort.

As future work, we plan to explore other symbolic plan-
ners, as well as extensions to PKS to improve its performance
in more complex robotics domains. We will also investigate
the notion of volumes for perception further, which neatly
fits into the KVP framework, and may enable us to identify
initially unknown or dynamic objects and obstacles.
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“Robot Task Planning with Contingencies for Run-time Sensing,” in
IEEE International Conference on Robotics and Automation (ICRA)
Workshop on Combining Task and Motion Planning, 2013.

[28] M. Rickert, “Efficient Motion Planning for Intuitive Task Execution in
Modular Manipulation Systems,” Dissertation, Technische Universität
München, 2011.

[29] M. E. Foster, A. Gaschler, M. Giuliani, A. Isard, M. Pateraki, and
R. Petrick, “Two People Walk Into a Bar: Dynamic Multi-Party
Social Interaction with a Robot Agent,” in Proceedings of the ACM
International Conference on Multimodal Interaction (ICMI), 2012.


