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Abstract

The goal of this work is the identification of humans based on motion
data in the form of natural hand gestures. In this paper, the identifi-
cation problem is formulated as classification with classes corresponding
to persons’ identities, based on recorded signals of performed gestures.
The identification performance is examined with a database of twenty-
two natural hand gestures recorded with two types of hardware and three
state-of-art classifiers: Linear Discrimination Analysis (LDA), Support
Vector machines (SVM) and k-Nearest Neighbour (k-NN). Results show
that natural hand gestures allow for an effective human classification.

Keywords: gestures; biometrics; classification; human identification; LDA;
k-NN; SVM

1 Introduction

With a widespread use of simple motion-tracking devices e.g. Nintendo Wii
RemoteTMor accelerometer units in cell phones, the importance of motion-
based interfaces in Human-Computer Interaction (HCI) systems has become
unquestionable. Commercial success of early motion-capture devices led to the
development of more robust and versatile acquisition systems, both mechanical,
e.g. Cyberglove Systems CybergloveTM, Measurand ShapeWrapTM, DGTech
DG5VHandTM and optical e.g. Microsoft KinectTM, Asus WAVI XtionTM.
Also, the interest in the analysis of a human motion itself [24], [28], [2] has
increased in the past few years.

While problems related to gesture recognition received much attention, an
interesting yet less explored problem is the task of recognising a human based
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on his gestures. This problem has two main applications: the first one is the
creation of a gesture-based biometric authentication system, able to verify ac-
cess for authenticated users. The other task is related to personalisation of
applications with a motion component. In such scenario an effective classifier is
required to recognise between known users.

The goal of our experiment is to classify humans based on motion data in
the form of natural hand gestures. Today’s simple motion-based interfaces usu-
ally limit users’ options to a subset of artificial, well distinguishable gestures
or just detection of the presence of body motion. We argue that an interface
should be perceived by the users as natural and adapt to their needs. While
modern motion-capture systems provide accurate recordings of human body
movement, creation of a HCI interface based on acquired data is not a trivial
task. Many popular gestures are ambiguous thus the meaning of a gesture is
usually not obvious for an observer and requires parsing of a complex context.
There are differences in body movement during the execution of a particular
gesture performed by different subjects or even in subsequent repetitions by the
same person. Some gestures may become unrecognisable with respect to a par-
ticular capturing device, when important motion components are unregistered,
due to device limitations or its suboptimal calibration. We aim to answer the
question if high-dimensional hand motion data is distinctive enough to provide
a basis for personalisation component in a system with motion-based interface.

In our works we concentrated on hand gestures, captured with two mechan-
ical motion-capture systems. Such approach allows to experiment with reliable
multi-source data, obtained directly from the device, without additional process-
ing. We used a gesture database of twenty two natural gestures performed by
a number of participants with varying execution speeds. The gesture database
is described in [14]. We compare the effectiveness of three established classi-
fiers namely Linear Discrimination Analysis (LDA), Support Vector machines
(SVM) and k-Nearest Neighbour (k-NN).

The following experiment scenarios are considered in this paper:

• Human recognition based on the performance of one selected gesture (e.g.
‘waving a hand’,‘grasping an object’). User must perform one specified
gesture to be identified.

• The scenario when instead of one selected gesture, a set of multiple ges-
tures is used both for training and for testing. User must perform one of
several gestures to be identified.

• The scenario when different gestures are used for training and for testing
of the classifier. User is identified based on one of several gestures, none
of which were used for training the classifier.

The paper is organized as follows: Section 2 (Related work) presents a selec-
tion of works on similar subjects, Section 3 (Method) describes the experiment,
results are presented in Section 4 (Results), along with authors’ remarks on the
subject.
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2 Related work

Existing approaches to the creation of an HCI Interface that are based on dy-
namic hand gestures can be categorized according to: the motion data gathering
method, feature selection, the pattern classification technique and the domain
of application.

Hand data gathering techniques can be divided into: device-based, where
mechanical or optical sensors are attached to a glove, allowing for measurement
of finger flex, hand position and acceleration, e.g. [37], and vision-based, when
hands are tracked based on the data from optical sensors e.g. [19]. A survey of
glove-based systems for motion data gathering, as well as their applications can
be found in [11], while [3] provides a comprehensive analysis of the integration
of various sensors into gesture recognition systems.

While non-invasive vision-based methods for gathering hand movement data
are popular, device-based techniques receive attention due to widespread use of
motion sensors in mobile devices. For example [8] presents a high performance,
two-stage recognition algorithm for acceleration signals, that was adapted in
Samsung cell phones.

Extracted features may describe not only the motion of hands but also their
estimated pose. A review of literature regarding hand pose estimation is pro-
vided in [12]. Creation of a gesture model can be performed using multiple
approaches including Hidden Markov Models e.g. [25] or Dynamic Bayesian
Networks e.g. [34]. For hand gesture recognition, application domains include:
sign language recognition e.g. [9], robotic and computer interaction e.g. [20],
computer games e.g. [7] and virtual reality applications e.g. [34].

Relatively new application of HCI elements are biometric technologies aimed
to recognise a person based on their physiological or behavioural characteristic.
A survey of behavioural biometrics is provided in [35] where authors examine
types of features used to describe human behaviour as well as compare accuracy
rates for verification of users using different behavioural biometric approaches.
Simple gesture recognition may be applied for authentication on mobile devices
e.g. in [21] authors present a study of light-weight user authentication system
using an accelerometer while a multi-touch gesture-based authentication system
is presented in [30]. Typically however, instead of hand motion more reliable
features like hand layout [1] or body gait [17] are employed.

Despite their limitations, linear classifiers [18] proved to produce good results
for many applications, including face recognition [33] and speech detection [22].
In [29] LDA is used for the estimation of consistent parameters to three model
standard types of violin bow strokes. Authors show that such gestures can be
effectively presented in the bi-dimensional space. In [26], the LDA classifier was
compared with neural networks (NN) and focused time delay neural networks
(TDNN) for gesture recognition based on data from a 3-axis accelerometer. LDA
gave similar results to the NN approach, and the TDNN technique, though
computationally more complex, achieved better performance. An analysis of
LDA and the PCA algorithm, with a discussion about their performance for
the purpose of object recognition is provided in [23]. SVM and k-NN classifiers
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were used in [36] for the purpose of visual category recognition. A comparison
of the effectiveness of these method is classification of human gait patterns is
provided in [4].

Thorough analysis of a gesture dataset used in the experiments, along with a
discussion on the benefits of naturality of HCI interface elements can be found in
[15]. PCA analysis of the same dataset together with visualization of eigenges-
tures can be found in [13].

3 User identification using classification of nat-
ural gestures

The general idea is to recognise a gesture performer. Experiment data consist
of data from ‘IITiS Gesture Database’ that contains natural gestures performed
by multiple participants. Three classifiers will be used. PCA will be performed
on the data to reduce its dimensionality.

3.1 Experiment data

(a) (b)

Figure 1: Scenes from recording of ‘IITiS Gesture Database’. Left DG5VHand
glove, right CyberGlove/CyberForce system.

A set of twenty-two natural hand gesture classes from ‘IITiS Gesture Database’1

[14], Tab. 1, was used in the experiments. Gestures used in this experiments were
recorded with two types of hardware (see Fig. 1). First one was the DGTech
DG5VHandTM2 motion capture glove [10], containing 5 finger bend sensors (re-
sistance type), and three-axis accelerometer producing three acceleration and
two orientation readings. Sampling frequency was approximately 33 Hz. The
second one was Cyberglove Systems CyberGloveTM 3 with a CyberForceTM Sys-
tem for position and orientation measurement. The device produces 15 finger

1The database can be downloaded from http://gestures.iitis.pl/
2http://www.dg-tech.it/vhand
3http://www.cyberglovesystems.com/products/cyberglove-ii/overview
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Table 1: The gesture list used in experiments. Source: [14]

Name Classa Motionb Comments

1 A-OK symbolic F common ‘okay’ gesture
2 Walking iconic TF fingers depict a walking person
3 Cutting iconic F fingers portrait cutting a sheet of paper
4 Showe away iconic T hand shoves avay imaginary object
5 Point at self deictic RF finger points at the user
6 Thumbs up symbolic RF classic ‘thumbs up’ gesture
7 Crazy symbolic TRF symbolizes ‘a crazy person’
8 Knocking iconic RF finger in knocking motion
9 Cutthroat symbolic TR common taunting gesture
10 Money symbolic F popular ‘money’ sign
11 Thumbs down symbolic RF classic ‘thumbs down’ gesture
12 Doubting symbolic F popular flippant ‘I doubt’
13 Continue iconicc R circular hand motion ‘continue’, ‘go on’
14 Speaking iconic F hand portraits a speaking mouth
15 Hello symbolicc R greeting gesture, waving hand motion
16 Grasping manipulative TF grasping an object
17 Scaling manipulative F finger movement depicts size change
18 Rotating manipulative R hand rotation depicts object rotation
19 Come here symbolicc F fingers waving; ‘come here’
20 Telephone symbolic TRF popular ‘phone’ depiction
21 Go away symbolicc F fingers waving; ‘go away’
22 Relocate deictic TF ‘put that there’
a We use the terms ‘symbolic’, ‘deictic’, and ‘iconic’ based on McNeill & Levy [24] classification,

supplemented with a category of ‘manipulative’ gestures (following [28])
b Significant motion components: T-hand translation, R-hand rotation, F-individual finger movement
c This gesture is usually accompanied with a specific object (deictic) reference

bend, three position and four orientation readings with a frequency of approxi-
mately 90 Hz.

During the experiment, each participant was sitting at the table with the
motion capture glove on their right hand. Before the start of the experiment,
the hand of the participant was placed on the table in a fixed initial position.
At the command given by the operator sitting in front of the participant, the
participant performed the gestures. Each gesture was performed six times at
natural pace, two times at a rapid pace and two times at a slow pace. Gestures
number 2, 3, 7, 8, 10, 12, 13, 14, 15, 17, 18, 19, 21 are periodical and in their
case a single performance consisted of three periods. The termination of data
acquisition process was decided by the operator.
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3.2 Dataset exploration

Figure 2 presents the result of performing LDA (further described in subsection
3.5) on the dataset: projection of the dataset on the first two components of
W−1B for both devices. It can be observed that many gestures are linearly
separable. In the majority of visible gesture classes, elements are centred around
their respectable mean, with an almost uniform variance. Potential conflicts for
small number of gestures may be observed for local regions of the projected data
space.

3.3 Data preprocessing

A motion capture recording performed with a device with m sensors generates
a time sequence of vectors xti ∈ Rm. For the purpose of our work each record-
ing was linearly interpolated and re-sampled to t = 100 samples, generating

data matrices Al = [x
(ij)
l ] ∈ Rm×t, where l enumerates recordings. Then data

matrices were normalized by computing the t-statistics

A′l =
x
(ij)
l − x̄i
σi

,

where x̄i, σi are mean and standard deviation for a given sensor i taken over all
l recordings in the database.

Subsequently every matrix A′l for was vectorized row-by-row, so that it was
transformed into data vector

xl = [x
(11)
l , . . . , x

(m1)
l , . . . , x

(1t)
l , . . . , x

(mt)
l ]T ,

belonging to Rp, p = mt. These data vectors were organised into n = 4 (for
DG5VHand) and n = 6 (for Cyberglove) classes Ck corresponding to partici-
pants registered with each device.

3.4 PCA

Principal Component Analysis [32] may be defined as follows. Let X = [x1,x2 . . . ,xL]
be the data matrix, where xi ∈ Rp are data vectors with zero empirical mean.
The associated covariance matrix is given by Σ = XXT . By performing eigen-
value decomposition of Σ = OΛOT such that eigenvalues λi, i = 1, .., p of Λ are
ordered in descending order λ1 ≥ λ2 ≥ . . . ≥ λp > 0, one obtains the sequence of
principal components [o1,o2, . . . ,op] which are columns of O [32]. One can form
a feature vector y of dimension p′ ≤ p by calculating y = [o1,o2, . . . ,op′ ]Tx.

3.5 LDA

Linear Discriminant Analysis–thoroughly presented in [18]–is a supervised, dis-
criminative technique producing an optimal linear classification function, which
transforms the data from p′ dimensional space Rp′

into a lower-dimensional
classification space Rd.
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Let the between-class scatter matrix B be defined as follows

B =
1

k − 1

k∑
i=1

ni(x̄i − x̄)(x̄i − x̄)T ,

where x̄ denotes mean of class means x̄i i.e. x̄ = 1
k

∑k
i=1 x̄i, and ni is the

number of samples in class i. Let within-class scatter matrix W be

W =
1

n− k
k∑

j=1

∑
xi∈Cj

(xi − x̄j)(xi − x̄j)
T ,

where n is the total number of the samples in all classes.
The eigenvectors of matrix W−1B ordered by their respective eigenvalues are

called the canonical vectors. By selecting first d canonical vectors and arranging
them row by row as the projection matrix Ã(d) ∈ Rd×p′

any vector x ∈ Rp′
can

be projected onto a lower-dimensional feature space Rd. Using LDA one can
effectively apply simple classifier e.g. for k-class problem. A vector x is classified
to class Cj if following inequality is observed ||Ã(d)(x−x̄j)|| < ||Ã(d)(x−x̄k)||,for
all k 6= j. || · || denotes Euclidean norm.

Note that when the amount of available data is limited, LDA technique may
result in the matrix W that is singular. In this case one can use Moore-Penrose
pseudoinverse [31]. Matrix W−1 is replaced by Moore-Penrose pseudoinverse
matrix W† and canonical vectors are eigenvectors of the matrix W†B.

3.6 k-NN

The k-Nearest Neighbour (k-NN) method [16] classifies the sample by assigning
it to the most frequently represented class among k nearest samples. It may be
described as follows. Let

L = {(yi,xi), i = 1, .., nL}

be a training set where yi ∈ {1, .., c} denotes class labels, and xi ∈ Rp, are
feature vectors. For a nearest neighbour classification, given a new observation
x, first a nearest element (yi1 ,xi1) of a learning set is determined

i1 = argmin
i

(d(x,xi))

with Euclidean distance d(·, ·)

d(x,xi) =
√

(x− xi)>(x− xi)

and resulting class label is yi1 .
Usually, instead of only one observation from L, k most similar elements

are considered. Therefore, counts of class labels for Y = {yi1 , . . . , yik} are
determined for each class

Ki =
∑
y∈Y

δiy
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where δiy denotes Dirac delta. The class label is determined as most common
class present in the results

y = argmax
i
{K1, . . . ,Kc}.

Note that in case of multiple classes or single class and even k there may
be a tie in the top class counts; in that case results may be dependent on data
order and behaviour of argmax implementation.

3.7 SVM

Support Vector machines (SVM) presented in [6] are supervised learning meth-
ods based on the principle of constructing a hyperplane separating classes with
the largest margin of separation between them. The margin is the sum of dis-
tances from the hyperplane to closest data points of each class. These points
are called Support Vectors. SVMs can be described as follows. Let

L = {(xi, yi), i = 1, .., nL},xi ∈ Rp

be a set of linearly separable training samples where yi ∈ {−1, 1} denotes class
labels. We assume the existence of a p-dimensional hyperplane (· denotes dot
product)

w · x + b = 0,

separating x in Rp.
The distance between separating hyperplanes satisfying |w · x + b| = 1 and

|w · x + b| = −1 is 2
||w|| . The optimal separating hyperplane can be found by

minimising

min(w) =
||w||2

2
=

w ·w
2

, (1)

under the constraint
yi(xi ·w + b) ≥ 1. (2)

for all xi, i = 1, .., nL.
When the data is not linearly separable, a hyperplane that maximizes the

margin while minimizing a quantity proportional to the misclassification errors
is determined by introducing positive slack variables ξi in the equation 2, wchich
becomes:

yi(xi ·w + b) ≥ 1 + ξi. (3)

and the equation (1) is changed into:

min(w) =
w ·w

2
+ C

n∑
i=1

ξi, (4)

where C is a penalty factor chosen by the user, that controls the trade off
between the margin width and the misclassification errors.
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When the decision function is not a linear function of the data, an initial
mapping φ of the data into a higher dimensional Euclidean space H is performed
as φ : RnL → H and the linear classification problem is formulated in the new
space. The training algorithm then only depends on the data through dot
product in H of the form φ(xi) · φ(xj). The Mercer’s theorem [5] allows to
replace φ(xi) · φ(xj) by a positive definite symmetric kernel function K(xi,xj),
e.g. Gaussian radial-basis function K(xi,xj) = exp(−γ||xi − xj||2), for γ > 0.

4 Results

Our objective was to evaluate the performance of user identification based on
performed gestures. To this end, in our experiment class labels are assigned to
subsequent humans performing gestures (performers’ ids were recorded during
database acquisition). Three experiment scenarios were investigated, differing
by the range of gestures used for recognition. The three classification meth-
ods described before were used, evaluated in two-stage k-fold cross validation
scheme.

4.1 Scenarios

Three scenarios related to data labelling were prepared:

• Scenario A. Human classification using specific gesture. Each gesture was
treated as a separated case, and a classifier was created and verified using
samples from this particular gesture.

• Scenario B. Human classification using a set of known gestures. Data
from multiple gestures was used in the experiment. Whenever the data
was divided into a teaching and testing subset, proportional amount of
samples for each gesture were present in both sets.

• Scenario C. Human classification using separate gesture sets. In this sce-
nario the data from multiple gestures was used, similarly to Scenario B.
However, teaching subset was created using different gestures than a test-
ing subset.

4.2 Experiments

The three classifiers were used, with the following parameter ranges:

• LDA, with number of features n = 3, 5, 10, 15, 20, 25, 30, 35;

• k-NN, with number of neighbours k = 1, 2, 3, 4, 5, 7, 10, 20, 30, 40, 50;

• SVM, with Radial Basis Function (RBF) and C, γ ∈ 〈0.001, 1.0〉.

Common parameters values found by cross-validation:
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• LDA, 3− 5 features

• k-NN, 1− 3 neighbours for Scenarios B,C, 20− 50 for Scenario C;

• SVM, γ ∈ 〈0.001, 0.005〉 C ∈ 〈0.001, 0.01〉.

The parameter selection and classifier performance evaluation was performed
by splitting the available data into training and testing subset in two-stage k-
fold cross validation (c.v.) scheme, with k = 4. Inner c.v. stage corresponds
to grid search parameter optimization and model selection. The outer stage
corresponds to final performance evaluation. The PCA was performed on the
whole data set before classifier training. The amount of principal components
was chosen empirically as p′ = 100.

4.3 Results and discussion

Scenario Accuracy

DG5VHand CyberGlove

LDA k-NN SVC LDA k-NN SVC

A 97 94.7 96.2 99.4 99.7 99.9
B 88.9 94.7 94.8 99.6 99.7 100
C 75 52.3 73.8 92.8 69.3 89.9

Table 2: Classification accuracy (%) for three considered scenarios.

The accuracy of the classifiers for three discussed scenarios is presented in
Tab. 2. Confusion matrices for experiments B,C are presented on Figure 3.
High classification accuracy can be observed for scenarios A and B when a clas-
sifier is provided with training data for specific gesture. In scenario C, however,
the accuracy corresponds to a situation when a performer is recognised based
on an unknown gesture. While the classification accuracy is lower than in pre-
vious scenarios, it should be noted that the classifier was created using a limited
amount of high-dimensional data. The difference between the accuracy for both
devices can be explained by significantly higher precision of a CyberGlove de-
vice, where hand position is captured using precise rig instead of an array of
accelerometers.

Results of the experiment show that even linear classifiers can be successfully
employed for recognition of human performers based on their natural gestures.
Relatively high accuracy for experiment C indicates that the general charac-
teristics of a human natural body movement is highly discriminative, even for
different gesture patterns. While mechanical devices used in experiments pro-
vide accurate measurements of body movements, they may be replaced by less
cumbersome data gathering device e.g. Microsoft KinectTM.
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5 Conclusion

Experiments confirm that natural hand gestures are highly discriminative and
allow for an accurate classification of their performers. Applications of such
solution allow e.g. to personalise tools and interfaces to suit the needs of their
individual users. However, a separate problem lies in the detection of particular
gesture performer based on general hand motion. Such task requires deeper
understanding of motion characteristics as well as identification of individual
features of human motion.
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Figure 2: Visualisation of data separability gestures dataset with use of LDA.
The original data is projected on d = 2 canonical vectors.
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Table 3: Confusion matrices for scenarios B and C, all classifiers and both
devices.

16


	1 Introduction
	2 Related work
	3 User identification using classification of natural gestures
	3.1 Experiment data
	3.2 Dataset exploration
	3.3 Data preprocessing
	3.4 PCA
	3.5 LDA
	3.6 k-NN
	3.7 SVM

	4 Results
	4.1 Scenarios
	4.2 Experiments
	4.3 Results and discussion

	5 Conclusion

