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Abstract—In recent years WiFi became the primary source of
information to locate a person or device indoor. Collecting RSSI
values as reference measurements with known positions, known
as WiFi fingerprinting, is commonly used in various positioning
methods and algorithms that appear in literature. However, mea-
suring the spatial distance between given set of WiFi fingerprints
is heavily affected by the selection of the signal distance function
used to model signal space as geospatial distance. In this study,
the authors proposed utilization of machine learning to improve
the estimation of geospatial distance between fingerprints. This
research examined data collected from 13 different open datasets
to provide a broad representation aiming for general model
that can be used in any indoor environment. The proposed
novel approach extracted data features by examining a set of
commonly used signal distance metrics via feature selection
process that includes feature analysis and genetic algorithm. To
demonstrate that the output of this research is venue independent,
all models were tested on datasets previously excluded during the
training and validation phase. Finally, various machine learning
algorithms were compared using wide variety of evaluation
metrics including ability to scale out the test bed to real world
unsolicited datasets.

Index Terms—WiFi fingerprinting, RSSI, machine learning,
distance estimation indoor positioning, supervised learning

I. INTRODUCTION

In the last decade, the proliferation of smart devices has
increased significantly, their processing power and capabilities
allow users to access services that facilitate their life like com-
munication, wireless payment, messaging, navigation, maps,
etc. Many of those services rely on the user’s position to adjust
the information shown, and the most common way to obtain
it outdoor, is through Global Navigation Satellite Systems
(GNSS) like GPS, GLONASS, BEIDOU or GALILEO. In
indoor environments like offices, shopping malls, subway
stations, among others, the common no line of sight to the
satellites prevent it from providing an accurate position [1]
and the smart devices require additional sources to obtain the
location information.

Many technologies had been used to estimate the position
of a user indoors [2], including ultrasound [3], visible light
communication [4], visual odometry [5], magnetic fields [6],
dead reckoning [7], bluetooth [8], Ultra Wide Band [9], Wi-
Fi [10], among others. This research will focus in the use
of Wi-Fi technology and its use in positioning due to its wide

availability in all of those indoor environments. A Wireless Ac-
cess Point (WAP) can provide different measurements to use
for positioning, however the Received Signal Strength (RSS)
[11] has become the most common information source due to
its low cost and easy implementation [12]. This measurement
can be used in many different ways to estimate positions,
initial works replicated the range estimation of GNSS systems,
estimating the distance between a WAP with a known position
and the device from the power decay of the signal [13],
however indoors, the multipaths and attenuations alter the
propagation in a non predictable way.

The most common approach to address the non regularity of
the power decay with respect to the position is to take samples
(fingerprints) of the RSS values from multiple WAPs in a
grid of reference points. The position of a new fingerprint can
then be estimated from the similarity or distance between the
new signal and the previous reference points [14]. The signal
differences can use several metrics (Euclidean, Manhattan,
Jaccard, Cosine, etc. [15]), and from those values, the position
can be estimated using deterministic, probabilistic or pattern
recognition methods.

It has been observed that the signal difference used affects
significantly the performance of the positioning algorithm
and the authors in this paper propose to use data science
methodologies to improve the estimation of the spatial dis-
tance between 2 fingerprints. Most fingerprint and distance
estimation methods are based on specific datasets of almost
laboratory conditions, the authors propose to use a multi-
environment training, and isolated dataset testing as a predic-
tion of the performance of the distance estimation in unknown
environments.

The remainder of this paper is structured as follows: in Sec-
tion II related studies in the field are discussed, in Section IV
contribution and how the method serve the Indoor Positioning
System (IPS) are described, in Section V the system architec-
ture and details of the experiments are explained. Section VII
contains the results of the experiments and discussion, and in
Section VIII the conclusions are presented.

II. RELATED WORK

Recently, many Artificial Intelligence (AI) techniques; such
as Machine Learning (ML) and Deep learning (DL) have
been used in the solution of indoor positioning problems.
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The ability of data science to solve high complexity real life
problems without the need for exact rules and equations has
made AI methods very attractive [16], [17] for positioning
problems. In the IPS field, RADAR [18] was one of the first
research works to propose a ML based solution using K-
nearest neighbours (KNN) to estimate the location of a user
with a few meters error distance. Since then other algorithms
were also tested; Gradient Boosted Classifier (GBC) and
Random Forest Classifier (RF) in [19], Deep Neural Networks
(DNN) based classification in [20], and novelty Graph-based
classification algorithm (Hierarchical Navigable Small World
Graphs) in [21].

KNN and its extension weighted K-nearest neighbours
(WKNN) have remained quite common for indoor positioning
using a reference set, and it is usually referred as fingerprint-
ing. The work of [18] was based on the Euclidean distance
between the fingerprints, but as many authors have highlighted,
the accuracy of the system is heavily affected by the distance
metric used [15], [18], [22]. That distance estimation can
be applicable not only for localization, but also tracking of
mobile devices and its interactions. This can be valuable
for the inference of the network of social relationships, and
recently it has helped in the contact tracing of positive cases
of COVID-19. In [23] and [19], the authors deduced the
proximity network, based on the trajectories and WiFi signal
distances between mobile devices.

Currently, the most common distance (or feature) used
for fingerprinting positioning is the Euclidean distance, but
subsequent studies improve the metric by extending the feature
list with new distances; Jaccard, Manhattan [19], Kendall
[20], correlation coefficients [24], [25], Sørensen and 53 other
distances [15]. Although, most works measure the quality with
one distance or a combination of a few at a time, only [20]
tries to estimate the distance using many distance features,
training a deep neural network to estimate the real distance
from 14 distance features.

These applications are trained and tested on the data ob-
tained from single buildings such as universities [26], [27] or
the well known UJI Indoor Localization dataset [15], [21] that
provides real life data from multiple floors.

III. MOTIVATION

Today, people spend a lot of time in large buildings such
as hospitals, airports, shopping malls. It is very important,
sometimes even vital, to find directions or locate personnel and
equipment in a building. In such areas, where satellite systems
do not work efficiently, positioning using WiFi signals and
machine learning methods are quite common. However, most
of the common studies train machine learning models using
data collected only from a single or few collocated buildings.
Furthermore, it is widely common to use the same venue for
training and testing which render such approach as prone to
overfitting and unreliable in unknown environments. To deal
with this problem, we propose a generalized model trained
as venue independent. We expect that this model will have a
wider use with a better extrapolation to unknown scenarios.

Furthermore, It has been observed that most available re-
search in this concept use a single or limited combination of
signal modelling distance functions to estimate the similarity
between 2 fingerprints. Given that each distance function usual
provide context for a specific characteristics in the signal
distribution, which obviously cannot work everywhere, we
propose to analyse the influence of each function separately
as a feature in our distance modelling. Therefore, expanding
the context of one machine learning model to utilize more
attributes and functions of available WiFi data has motivated
our work in this paper.

IV. CONTRIBUTION

In this study, we proposed a distance estimation model that
detects whether two fingerprints are close to each other and
estimates the approximate distance between RSS fingerprints
using supervised ML methods; regression and classification.
With this study, we have made the following contributions.

• We conducted a research with focusing on reproducibility.
Our steps are easy to follow to create a new models
and applicable on new data from different structures;
buildings, train stations, airports etc.

• We investigate a broad spectrum of ML and DL algo-
rithms. We assume that it will be a good reference point
to comparison for future studies.

• Instead of using one dataset obtained from one building,
which used frequently for both training and testing pur-
poses in previous studies, we have reserved 2 datasets
for testing purposes only, 13 different datasets in total.
We used strictly isolated training and testing data col-
lected from separate buildings. In order to optimize the
parameters and estimate distances initially, we used third
dataset named validation. In this way, we think that more
generalizable models and realistic results can be obtained.

• We do not only estimate the distance between two points
(with regression), but also measure the success of our
system in predicting the closeness of results (with clas-
sifier).

• We made the dataset, code used and results obtained
publicly available1.

V. METHODOLOGY

In this section, dataset, feature extraction, features, ML
algorithms and evaluation metrics are explained.

A. Data

Many studies uses datasets from the same building for the
model training and testing. However, the goal of this paper
is to create a generalizable model that can be applicable in
any indoor environments. In this respect, while making the
dataset that will be used in our study, it was prioritized to
have a high representation ability. For this purpose, 11 datasets
were used [28]–[38] from the IPIN conference resources and

1Source code available at:github.com/kahramankostas/WiFi-Fingerprint

http://ipin-conference.org/resources.html
https://github.com/kahramankostas/WiFi-Fingerprint


additionally two datasets collected by Huawei2. The most
important difference of Huawei datasets from other datasets
is that the data is collected from shopping centers. Therefore,
the new datasets better represent the indoor data samples
encountered on daily basis.

IPIN 1
IPIN 2
IPIN 3
IPIN 4
IPIN 5

IPIN 7
IPIN 8
IPIN 9
IPIN 10

IPIN 11
IPIN 6 Huawei 1

Huawei 2

IPIN 11

Huawei 1

Merged Dataset  
IPIN 1-10 + Huawei 2

70% 15%15%

Train ValidationTestIsolated Test

Fig. 1: The creating process of training, validation, testing and
isolated test datasets from the data.

A large dataset was created by combining the 10 IPIN
datasets [28]–[37] and one of the Huawei datasets [39].
Thus, we ensured that it contains data from different building
structures. The dataset was partitioned into three sets (70%,
15%, and 15%) for training, validation and testing purposes
respectively. The validation data was used in the evaluation
process of every stages, while retaining the test data for final
evaluation independent and isolated. On the other hand, one
of the Huawei datasets [40] and one of the IPIN datasets [38]
were isolated from the initial training, testing and validation
data to evaluate the generalization of the system. The creation
process of the datasets is also visualized in Fig. 1.

B. Feature Extraction

The distribution of the Received Signal Strength Indicator
(RSSI) values in the datasets is given in Fig. 2. Almost all
data are tucked between -20 decibel (dB) and -95 dB, except
for some exceptional values in this figure. Ignoring RSSI
values less than -95 dB and greater than -20 dB, outliers are
cleared. In the feature extraction process, RSSI values of the
fingerprints were converted into vectors. The distance between
these vector pairs which representing fingerprints, was cal-
culated with various distance-similarity calculation methods.
The names and formulas of these calculation methods are
given in Table I. However, the fingerprints in the dataset
are quite different from each other in terms of both the size
and the device they contain. Fig. 3 shows the distribution of
fingerprints according to the number of devices they have in
Huawei datasets. While calculating the features, fingerprints
intersected 2 or more Medium Access Control (MAC) ad-
dresses were taken into account, the others were excluded. In
addition, only RSSI values of intersecting MAC addresses are
taken into account while calculating the distance, and values
of non-intersecting MAC addresses are ignored. Since datasets
do not share any MAC addresses with each other, the distance

2These datasets were presented to the competitors in the University
Challenge Competition 2021 with the concept of "Data Science for Indoor
positioning" organized by Huawei-UK.

TABLE I: 12 distance calculation methods we use in feature
extraction. p: scalar, w: weight, u and v : 1-dimensional arrays,
m: point-wise mean of u and v, D: the Kullback-Leibler
divergence.

Name Formula

Bray-Curtis
∑
|ui−vi|∑
|ui+vi|

Canberra
∑
i
|ui−vi|
|ui|+|vi|

Chebyshev maxi |ui − vi|

City Block
∑
i |ui − vi|.

Correlation 1− (u−ū)·(v−v̄)
||(u−ū)||2||(v−v̄)||2

Cosine 1− u·v
||u||2||v||2

Euclidean
√∑

i=1 (ui − vi)
2

Jaccard |u∩v|
|u|+|v|−|u∩v|

Jensen-Shannon
√
D(u‖m)+D(v‖m)

2

Minkowski (
∑
|ui − vi|p)1/p

Squared Euclidean
∑
i=1 (ui − vi)

2

Weighted Minkowski (
∑

(|wi(ui − vi)|p))1/p

between fingerprints in different datasets is not calculated. Two
more features have been added that represent the number of
MAC addresses contained by fingerprint pairs. These are the
number of intersecting and combination MAC addresses. The
actual distance between fingerprints pairs is used as the label
value. The distribution of the distance between the fingerprints
in the datasets is given in Fig. 4.
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Fig. 2: The distribution of RSSI values in all datasets.

C. Evaluation Metrics
To evaluate the results, the Root mean squared error

(RMSE) was used
√

1
nΣni=1(yi − ŷi)2 (y represents the actual

https://huawei-uk-challenge.bemyapp.com/
https://huawei-uk-challenge.bemyapp.com/
http://hanj.cs.illinois.edu/cs412/bk3/KL-divergence.pdf
http://hanj.cs.illinois.edu/cs412/bk3/KL-divergence.pdf
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Fig. 3: The distribution of fingerprints according to the number
of MAC addresses they contain (Huawei datasets [39], [40] )
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Fig. 4: The distribution of distances between fingerprint pairs.

value, ŷ the estimated value and, n number of samples).
In addition to RMSE, the problem was translated into a

classification, using a limit value (4 meters in this case). The
value below this limit is accepted as TRUE and the value
above it as FALSE, and the regression problem is transformed
into binary classification. Using this method, the recall can
be calculated as TruePositive(TP )

TP+FalseNegative(FN) and the precision as
TP

TP+FalsePositive(FP ) . Due to level of noise in the data, our
scoring metric for is biased towards precision over recall. To
give a higher weight to the precision the Fβ score was used
(with a β value of 0.05), calculated as:

Fβ =
(1 + β2) ∗ Precision ∗Recall
β2 ∗Recall + Precision

(1)

D. Algorithm Selection

In the datasets, the actual values of the desired outputs
along with the fingerprints are shared as the distance in meters
between the test points. Based on these data, we can say that
this problem is a supervised learning and regression problem.

Today, deep learning approaches are very successful, espe-
cially when data is plentiful like ours. On the other hand, some
classical ML methods have shown remarkable success with
tabular data [41]. In addition, every dataset is unique, and there
is no perfect ML method that succeeds on every dataset. While

TABLE II: The list of ML types and algorithms we used.

Machine Learning Type Machine Learning Algorithm
Classical linear regressors Linear Regression (LR)
Tree based Decision Tree (DTR)
Bayesian method based Bayesian Ridge (BR)
Kernel method based Linear Support Vector (LSVR)
Ensemble methods based eXtreme Gradient Boosting (XGBR)
Instance based K-Nearest Neighbors (KNN)
Deep Learning Artificial Neural Networks (ANN)

choosing the ML model, we tried multiple alternative ML
methods, considering that each algorithm should be evaluated
separately for a dataset. While choosing these ML methods,
we tried to provide as wide a scope as possible, but considering
that there are hundreds of methods today, it is not practical to
try them all, which led us to choose one method from each type
of learning. We have shared the ML types and the list of the
algorithms we selected from them in Table II. We used keras
(keras.io/) for ANN, XGBoost (github.com/dmlc/xgboost) for
XGBR, and scikit-learn (scikit-learn.org/stable/) library for
other ML algorithms.

VI. EXPERIMENTS

Experiments section consists of four subsections. In the
first part, an initial evaluation is made using different ML
methods with training and validation datasets. In the second
part, ideal limits are found by filtering the training data with
different thresholds. In the third section, feature selection is
made using feature importance scores and genetic algorithm
(GA). After that, the ideal hyperparameters are found for
each ML algorithm by optimization. In the last part, all ML
models are tested with isolated datasets in order to measure
the generalizability of the obtained methods. The experiment
process is visualized in Fig. 5.

Initial Experiments 

We used all the features
and all the machine
learning methods. 

Filtering Training Data 

We limited the training
data with different
distance values.

Feature Importance 

We examined feature
importance scores. 

Feature Selection  

Finding the most
suitable feature set by

genetic algorithm. 

Final evaluation 
Results of all optimized
ML models trained with

filtered data and selected
features are listed. 

Hyperparameter
Optimisation 

We found optimal hyper-
parameters using random

search.

Fig. 5: Steps of the experimental process.

A. Choosing Machine Learning Method

As an exploratory step, we performed initial experiments
using 14 features and the ML methods given in Table II.
Table III shows the results obtained from this process. Among
ML methods XGB has the highest score followed by ANN
and KNN very closely. However, KNN is particularly notable
for its extremely high inference time. In real life solutions, it
can be a disadvantage. Although LR and NB are two methods
with the lowest scores, they stand out with low training and
inference time.

https://keras.io/
https://github.com/dmlc/xgboost
https://scikit-learn.org/stable/


In the next steps, we will observe the results of the LR algo-
rithm in the stages of reshaping our data and feature selecting.
The main reason for selecting LR needing less training and
inference time in these time-consuming processes. In addition,
because it is very simple and deterministic algorithm it does
not contain multiple variables e.g., hyper-parameters, random
seed and gives stable results.

TABLE III: Comparison of ML algorithms with average of 10
repeats using validation dataset. t is time in seconds. Standard
deviation is given with Fβ . The best values are underlined.
Hardware: Intel-Core i7-8565U 1.99GHz CPU, 16GB RAM.

ML Precision Recall Fβ RMSE Train-t Test-t

V
al

id
at

io
n

DTR 0.368 0.374 0.368±0.000 23.898 1294.1 10.421
LR 0.168 0.031 0.166±0.000 23.345 17.798 0.225
BR 0.168 0.031 0.166±0.000 23.345 10.646 0.201
KNNR 0.626 0.215 0.623±0.000 21.118 637.70 579.71
XGBR 0.667 0.160 0.662±0.000 19.271 341.44 3.180
LSVR 0.209 0.308 0.206±0.193 110.38 17647 1.692
ANN 0.631 0.159 0.624±0.065 19.961 6434.8 87.941

B. Filtering Training Data

We have shared the distribution of the distances in Fig. 4.
According to this figure, the distance between fingerprints
varies between 0 and 160 meters and it is quite scattered. In
most cases, as the distance between two fingerprints increases,
the RSSI decreases and correspondingly, the noise level in the
dataset will increase. This noise is likely to affect the model
negatively. Therefore, we observed the change of the model
by adding various thresholds at training data. For example, a
threshold value of 20 means that only fingerprint pairs that
are 20 meters or less apart are used in training. In Fig. 6 the
Fβ results with different thresholds are shared. According to
this plot Fβ increases between 15 and 25 metres, it starts
to decrease after 25. With setting the threshold to 25, we
increased the Fβ score from 0.17 to 0.52 for LR. So, we will
use the training dataset limited 25 metres which is the peak
value, in our next step.

10 15 20 25 30 35 40 45 50 55 60 No Limit
Limits (metres)
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Fig. 6: The change in Fβ value according to thresholds.

C. Feature Selection

The model is only as good as the features it uses. That’s
why we’re going to select the most efficient ones among

14 features. In the first stage of this process, we will use a
voting system (pypi.org/project/xverse/) to see the importance
level of each features. This voting system uses six different
feature importance scoring methods (chi-square, extra trees,
information value, L1-based, recursive feature elimination, and
random forest). Each of these methods votes for a feature as
useful or not. The features and the votes they received from
each method are given in Fig. 7. Although the feature scores
give a general idea about the features, they do not allow us
to understand which feature group is better. To make up for
this point, we used an wrapper method, the GA. It takes 214

trials to discover the best feature set of 14 features by trial and
error. The GA can create feature sets that perform very well
with reasonable computational cost. The Fβ change occurring
parallel to the generations in GA can be seen from the Fig. 8.
When all features were used, the score was around 0.53. After
GA applied it increased to over 0.65. The GA discarded four
out of 14 features and introduced a new feature set with 10
features3. When we look at the eliminated features importance
scores, three of them (Sqeuclidean, Cityblock, and Uniting
MAC) can be classified as unimportant, while the other feature
(Braycurtis) is classified as quite important. An insignificant
feature can become more important if it is combined with
another feature. On the other hand, an important feature may
undermine the model by conflicting with another feature or
features. Braycurtis feature may have disabled because it
conflicts with other features.

After finding the ideal feature set with feature selection, we
performed hyper-parameter optimization for the MLs. We used
the random search method (as used by scikit-learn. org/stable/)
for optimization. So, we were able to search for a wide range
of parameters within reasonable computational time. In all our
processes so far, we have only used the validation dataset to
evaluate the performance of steps.

D. Final Experiments

So far, we have carried out all experiments and studies
using LR. In this step, we adapted all of the experiments
to other ML algorithms and reported our final results. For
all ML methods, we created models using the training set
filtered with a distance of 25 meters and 10 selected features
and measured their performance level. In this measurement, in
addition to the validation we used at the beginning, we also
used other datasets that we isolated. For this, the model created
by using the training dataset was tested on four datasets. After
the model training was done once, the same model was used
in all four datasets, and the operations were repeated 10 times.
The results are given in Table IV.

VII. RESULTS AND DISCUSSION

When we compare the validation part of our final results
with the initial experiments, there is a high increase in the
success of each of the seven ML algorithms. When we take

3selected features are : Correlation, Chebyshev, Intersecting MAC,
Euclidean, Cosine, Jensenshannon, Jaccard, Canberra, Minkowski, and
Wminkowski

https://pypi.org/project/xverse/
https://scikit-learn. org/stable/
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Fig. 8: The change in the Fβ with generations in the GA.

an overview of Table IV, the XGBR method is the most
successful method for all datasets, results varying between
0.76 and 0.90, in terms of Fβ score. It is followed by DT,
KNN and ANN methods. If we focus on methods in terms
of speed, the XGBR method is reasonably fast, besides its
outstanding success. However, the extremely fast and reason-
able results of DT may make this method a suitable choice
in real life applications. Although LR and BR, which have
very short inference times, achieved remarkable success in
test and validation datasets, they could not maintain their
performance on isolated datasets. The reason for the lower
success may be that LR (and similar method BR) is biased
against validation and test sets. Since the validation dataset
has been used many times with LR in the experimental steps
such as feature selection and filtering, this caused an overfitting
against the validation and test set (because of both them are
created with the training dataset, they have a similar structure).
However, the experimental steps contributed to all other ML
methods as well.

TABLE IV: Comparison of ML algorithms with average of
10 repeats using four datasets. t is time in seconds. Standard
deviation is given with Fβ . The best values are underlined.

ML Precision Recall Fβ RMSE Train-t Test-t

V
al

id
at

io
n

DTR 0.796 0.042 0.759±0.023 35.847 27.605 1.192
LR 0.809 0.010 0.675±0.000 36.180 3.132 0.173
BR 0.809 0.010 0.675±0.000 36.180 4.512 0.157
KNNR 0.606 0.104 0.599±0.000 35.906 139.254 398.1
XGBR 0.791 0.065 0.769±0.000 36.191 1969.59 10.54
LSVR 0.373 0.054 0.340±0.244 35.453 2062.70 0.142
ANN 0.812 0.032 0.754±0.042 35.730 4038.79 113.5

Te
st

DTR 0.798 0.042 0.762±0.025 35.847 27.605 1.166
LR 0.812 0.010 0.679±0.000 36.178 3.132 0.158
BR 0.812 0.010 0.679±0.000 36.178 4.512 0.157
KNNR 0.610 0.103 0.603±0.000 35.902 139.254 399.6
XGBR 0.794 0.065 0.773±0.000 36.190 1969.59 10.57
LSVR 0.374 0.055 0.343±0.244 35.451 2062.70 0.138
ANN 0.814 0.033 0.757±0.038 35.730 4038.79 114.2

H
ua

w
ei

DTR 0.943 0.028 0.821±0.091 9.384 27.605 0.183
LR 1.000 0.002 0.446±0.000 9.833 3.132 0.033
BR 1.000 0.002 0.446±0.000 9.833 4.512 0.028
KNNR 0.916 0.094 0.897±0.000 9.728 139.254 53.43
XGBR 0.970 0.034 0.907±0.000 8.975 1969.59 1.415
LSVR 0.788 0.219 0.746±0.143 11.013 2062.70 0.026
ANN 0.967 0.025 0.801±0.140 9.217 4038.79 20.80

IP
IN

DTR 0.694 0.014 0.602±0.083 19.473 27.605 0.091
LR 0.800 0.000 0.061±0.000 19.921 3.132 0.017
BR 0.800 0.000 0.061±0.000 19.921 4.512 0.013
KNNR 0.547 0.040 0.530±0.000 19.683 139.254 33.43
XGBR 0.891 0.031 0.833±0.000 19.736 1969.59 0.763
LSVR 0.689 0.036 0.444±0.273 19.546 2062.70 0.014
ANN 0.741 0.003 0.394±0.210 19.323 4038.79 10.22

The proposed models are based on the optimization of a Fβ
score for a classification of fingerprints distances closer than
4 m. However, most of the datasets have uniformly distributed
fingerprints, where the pairwise distances are usually higher
than that value. It has been observed that if all the distance
pairs are allowed in the training, the model will focus more
in the far region, where there is a smaller WiFi overlap and
less correlation with the spatial distance. To minimize this
effect, the training datasets only have fingerprint pairs where
the distance is bellow 25 m, as we have found that increasing
that threshold above that value affects the training, reducing
the Fβ score and increasing the error in the close region.

In addition to the numerical results, the comparison of the
estimated and actual values for the three selected models
is given in Fig. 9. By examining these figures, a deeper
understanding of both the data structure and the distribution
of estimated distances can be gained. As can be seen from
the figure, especially for distances below 25 meters, the esti-
mates obtained are very compatible with the actual distance.
However, there is no estimation of models above this limit.
From the figure it can be observed that the KNN model might
have an overfitting problem. After analyzing the data it was
observed that some of the reference points were repeated
in several dataset, therefore to have an independent analysis
without overfitting, we will focus on the isolated dataset.

When comparing our results with other studies in the field,
it is difficult to make an exact comparison. There are 2
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Fig. 9: Comparison of real (x-axis) and predicted (y-axis) data
on histogram using three machine learning method and all
datasets. Images sorted according to the dataset horizontally
and according to the model vertically.

main reasons for this; (1) Most of the studies use the data
set obtained from the same building for testing and training
purposes. (2) The studies give their results using different
metrics such as; Accuracy, Area under the ROC Curve (AUC),
RMSE etc. We should note that our study mainly focused on
Fβ value so this may cause lower achievement in other metrics.
While we reported results with Fβ we also calculated different
metrics for comparison. The NearMe [42] study, one of the
pioneering research in the field, carried out the training steps
on the office building dataset and achieved the RMSE of 13.97
meters on the cafeteria building dataset as an unseen test-set.
We achieved RMSE of 8.97 meters with XGBR algorithm on
Huawei dataset, which is a reliable dataset in our experiment
collected from shopping center and reflects the daily life which
was used isolated datasets. Our models gives better results
below 25 metres proximity but our test data demonstrates
skewed distributions (more data above 25 metres), this causes
an increase in the error rate. When we look at the results only
focusing on 25 metres and below, we achieved quite improved
results (see Table V). In the study named Wide [20], train and
test sets were splitted from same building data and obtained
3.0 meters in terms of Mean absolute error (MAE) using deep
neural network. Our study achieved MAE of 4.8 metres when
evaluation was made of 25 meters or less between fingerprints
with test data which has similar nature with train data. Also we

got 5.4 metres in Huawei dataset. At first glance, the success
rate seems low compared to the WIDE study, it is a good result
in terms of being a generalizable score when we consider
that our dataset is a composition of 11 different datasets
from various environments. Another study [19], focuses only
proximity inference task between two person and they reported
0.89 in AUC using 10 metres threshold. We achieved 0.907
in terms of Fβ score on Huawei dataset using XGBR with 4
metres distance.

TABLE V: Comparison of ML algorithms results for four
datasets. Only fingerprint pairs with an actual distance of 25
meters or less between them were evaluated.

ML MAE RMSE MSE Prec Recall Fβ

V
al

id
at

io
n

DTR 4.944 6.011 36.133 0.772 0.061 0.750
LR 5.343 6.378 40.684 0.823 0.010 0.684
BR 5.343 6.378 40.684 0.823 0.010 0.684
KNNR 5.065 6.362 40.475 0.662 0.104 0.653
XGBR 4.804 5.848 34.197 0.791 0.065 0.770
LSVR 6.336 7.792 60.720 0.144 0.068 0.143
ANN 4.863 5.925 35.105 0.766 0.054 0.741

Te
st

DTR 4.948 6.017 36.209 0.776 0.060 0.754
LR 5.346 6.384 40.757 0.831 0.010 0.692
BR 5.346 6.384 40.757 0.831 0.010 0.692
KNNR 5.064 6.365 40.508 0.665 0.103 0.656
XGBR 4.808 5.854 34.271 0.795 0.065 0.773
LSVR 6.332 7.787 60.631 0.146 0.069 0.145
ANN 4.867 5.933 35.200 0.763 0.054 0.738

H
ua

w
ei

DTR 6.244 7.103 50.453 0.951 0.009 0.756
LR 6.935 7.688 59.112 1.000 0.002 0.446
BR 6.935 7.688 59.111 1.000 0.002 0.446
KNNR 6.386 7.511 56.416 0.918 0.094 0.898
XGBR 5.454 6.284 39.489 0.970 0.034 0.907
LSVR 5.403 6.611 43.711 0.651 0.357 0.650
ANN 5.800 6.643 44.135 0.965 0.025 0.881

IP
IN

DTR 5.441 6.526 42.588 0.717 0.029 0.677
LR 5.480 6.525 42.575 1.000 0.000 0.062
BR 5.480 6.525 42.575 1.000 0.000 0.062
KNNR 5.783 7.059 49.823 0.669 0.040 0.643
XGBR 5.344 6.388 40.802 0.895 0.031 0.836
LSVR 5.736 6.841 46.804 0.486 0.046 0.475
ANN 5.380 6.467 41.827 0.904 0.005 0.628

VIII. CONCLUSION

In our study, we developed a machine learning-based dis-
tance estimation model that does not depend on specific
MAC vectors and does not require per venue training, which
detects whether two fingerprints are close to each other and
estimates the approximate distance between fingerprints. For
this process, from the RSSI values we extracted 14 different
features that represent relationships between fingerprint pairs
using various difference metrics. After analyzing the impor-
tance score of these features, we found the best performing
feature set using genetic algorithm. During these processes, we
isolated the training and test data from each other to increase
the robustness of the inference and to measure its extrapolation
capabilities in unknown environments. The datasets we used
in the final consist of data that it never sees in the training of
the models and the subsequent feature selection and optimiza-



tion steps. Thus, our results are generalizable and far from
overfitting.
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