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Abstract—As we reach the limit of Moore’s Law, researchers
are exploring different paradigms to achieve unprecedented
performance. Approximate Computing (AC), which relies on
the ability of applications to tolerate some error in the results
to trade-off accuracy for performance, has shown significant
promise. Despite the success of AC in domains such as Machine
Learning, its acceptance in High-Performance Computing (HPC)
is limited due to its stringent requirement of accuracy. We need
tools and techniques to identify regions of the code that are
amenable to approximations and their impact on the application
output quality so as to guide developers to employ selective
approximation. To this end, we propose CHEF-FP, a flexible,
scalable, and easy-to-use source-code transformation tool based
on Automatic Differentiation (AD) for analysing approximation
errors in HPC applications.

CHEF-FP uses Clad, an efficient AD tool built as a plugin
to the Clang compiler and based on the LLVM compiler
infrastructure, as a backend and utilizes its AD abilities to
evaluate approximation errors in C++ code. CHEF-FP works
at the source level by injecting error estimation code into the
generated adjoints. This enables the error-estimation code to
undergo compiler optimizations resulting in improved analysis
time and reduced memory usage. We also provide theoretical and
architectural augmentations to source code transformation-based
AD tools to perform FP error analysis. In this paper, we primarily
focus on analyzing errors introduced by mixed-precision AC
techniques, the most popular approximate technique in HPC.
We also show the applicability of our tool in estimating other
kinds of errors by evaluating our tool on codes that use
approximate functions. Moreover, we demonstrate the speedups
achieved by CHEF-FP during analysis time as compared to the
existing state-of-the-art tool as a result of its ability to generate
and insert approximation error estimate code directly into the
derivative source. The generated code also becomes a candidate
for better compiler optimizations contributing to lesser runtime
performance overhead.

I. INTRODUCTION

As we enter the post-Moore era, where we no longer enjoy
the free lunch of performance growth from shrinking the
transistor features, researchers are exploring other computing
paradigms to increase computational throughput. Approximate
Computing (AC) has garnered significant interest as a promis-
ing approach for increasing peak performance. AC relies on
the application to tolerate some amount of error to achieve

performance gains. Among the various AC techniques that
currently exist, reduced floating-point (FP) precision, or mixed
precision, has gained in popularity. Computer architectures
support multiple levels of precision for FP data and arithmetic
operations — 64 bits double precision, 32 bits single precision,
128 bits quad precision, and 16 bits half precision. The
choice of precision determines the amount of rounding error.
While using higher precision for data and operations may
result in increased accuracy, it can lead to an increase in
application execution time, memory and energy consumption.
Mixed-precision tuning involves using higher precision when
necessary to maintain accuracy and using lower precision
where we can improve performance.

Despite the availability of multiple levels of precision for FP,
it is challenging to apply them in HPC and scientific codes. To
use them effectively, developers need to understand the details
of rounding errors as well as how they propagate through their
applications. Due to the lack of scalable and rigorous tools
that analyze error sensitivity in the applications’ code regions,
developers often resort to the safer option of using high
precision throughout. We need scalable tools to understand
the impact of lowering the precision of data and computation,
identify error-tolerant regions, and provide guidance to users.

Several techniques have been proposed to estimate the sen-
sitivity profile of an application, including automated search
based approaches [1], [2], static analysis [3], [4], or using
Automatic Differentiation (AD) [5]. Unfortunately, the exist-
ing set of tools fail to provide a feasible solution for HPC
applications. Search-based approaches are very expensive as
the state space is significantly large and quickly become
infeasible even for small benchmarks. Static analysis-based
approaches using interval analysis or Taylor series approxi-
mation provide rigorous estimates for FP errors but are so far
limited to programs with a small number of operations [4].
Several methods [5], [6] leverage AD to determine error-
resilient regions of codes. While they have been shown to
work well for smaller HPC benchmarks, they often require
manual code changes and incorporating several software tools
together [7]. These tools are slow and have high memory
overhead, making them infeasible for large HPC workloads.
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We propose CHEF-FP, a scalable, flexible, and easy-to-
use tool, for analyzing approximation errors in HPC appli-
cations. We use Clad [8], an efficient AD tool built as a
plugin to the Clang compiler as a backend for the presented
framework and utilize its AD abilities to evaluate FP errors
in C++ code. Clad builds derivatives by transforming the
internal compiler representation of the program. This level of
granularity allows CHEF-FP, built as an extension to Clad, to
exploit a program’s source information to automatically add
auxiliary instructions to the generated derivative depending on
a set of rules. Accordingly, CHEF-FP annotates code with FP
error information without user intervention. This automation is
beneficial for large-scale codes wherein going into hand-write
annotations becomes complex, tedious, and error-prone. More-
over, CHEF-FP enables domain-specific FP error analysis due
to the increased flexibility of a compiler-based backend. This
allows easy modification of parts of the CHEF-FP framework
to achieve a more tailored FP error analysis. This level of
variability enables a finer-grained analysis where users can
themselves query source information and make more precise
decisions for the direction of the analysis.

Finally, because we generate FP error estimation (EE) code
directly into the derivative source, we observe a significant
speedup compared to other tools performing similar FP error
analysis. The generated code also becomes a candidate for
further compiler optimizations contributing to better runtime
performance. We use the FP error profile provided by CHEF-
FP to guide the design of a mixed-precision version of
the code and achieve performance improvements of 8% for
HPCCG and 65% for Black-Scholes while satisfying the
user-specified error threshold. At analysis time, CHEF-FP
obtained a maximum time speedup of 217% with the Simpsons
benchmark and a memory efficiency of 632% with the Black-
Scholes benchmark.

Key Contributions
• CHEF-FP, an efficient tool to automate AD-based FP

error analysis. CHEF-FP inlines error calculations into
the adjoint code and results in faster and more memory-
efficient analysis, making it suitable for use in data-
intensive applications;

• Formalism for augmenting AD to perform FP error anal-
ysis. Specifically, we present a generic way to extend
source code transformation-based AD tools;

• Customizable EE module that supports any AD-based
user-defined error model;

• Tool evaluation using a set of HPC benchmarks for
mixed-precision and approximate function error analysis.

II. BACKGROUND

Floating-point arithmetic operations are the most prevalent
computation in HPC applications. Computer architectures sup-
port multiple levels of precision for FP data and arithmetic
operations. In the IEEE 754 standard [9], the most common
representation today for real numbers, choices are 64 bits
double precision, 32 bits single precision, 128 bits quad

precision, and 16 bits half precision. The choice of precision
determines the amount of rounding error.

The FP rounding error is the accumulation of FP errors
from each variable toward the target function’s result. Target
functions are modeled as a series of multiple assignment
operations. These assignments and function inputs are assumed
to be independent (FP error analysis on correlated variables is
still a nascent field, and definitive methods of estimation are
yet to be established). We define an expression to calculate and
accumulate the FP error introduced by each assignment and
refer to these error calculation and accumulation expressions
as FP error models. CHEF-FP, aims to estimate an upper
bound on these FP rounding errors.

A. Modelling Floating-Point Errors

The error model describes a metric that can be used in error
estimation analysis. This metric is applied to all assignment
operations in the function, and the results from its evaluation
are accumulated into the total FP error of the left-hand side
of the assignment. The Taylor series approximation is well
suited to model floating point errors. Let’s assume an arbitrary
function y = f(x), where x is represented in the standard
IEEE 754 single precision. Assuming a floating point error of
h in x, we define f̃(x) = f(x+ h). A symbolic Taylor series
expansion yields:

f(x+ h) = f(x) +
h

1!
f ′(x) +

h2

2!
f ′′(x) +

h3

3!
f ′′′(x) + ...

Here f ′(x) represents the derivative of the function with
respect to x. Approximating the series to first-order results in:

f(x+ h) = f(x) +
h

1!
f ′(x) +O(h2)

An expression for the absolute floating point error in f is:

Af = |f̃(x)− f(x)| ⇒ Af = | h
1!
f ′(x)| ⇒ Af = |hf ′(x)|

To determine the maximum absolute floating point error in
f , we write h = εm|x| where εm is known as the machine
epsilon. The machine epsilon gives the maximum relative
representation error in floating point variables due to rounding.
It is a machine-dependent value and follows the IEEE standard
in most compilers. The absolute error can then be written as:

Af = |εm|x|f ′(x)| (1)

This error model is sufficient for most smaller cases and can
produce loose upper bounds of the maximum permissible FP
error in programs. Here, AD techniques can enable efficient
computations of f ′(x) that scale to real-world workflows.

B. Automatic Differentiation Basics

AD takes as input program code that has meaningful dif-
ferentiable properties and produces new code augmented with
pushforward or pullback operators [10]. The AD mode, which
produces pushforward operators to capture the sensitivity from
inputs to outputs, is commonly known as forward mode. The
AD mode capturing the sensitivity from outputs to inputs is
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called reverse mode, adjoint mode, or backpropagation. The
computational merit of the pullback is that it provides a very
efficient way to compute the function’s gradient with relative
time complexity which is independent of the input size [11].

AD tools can be categorized by how much work is done
before program execution. AD typically starts by building a
computational graph, or a directed acyclic graph of mathemat-
ical operations applied to an input. At one extreme, the tracing,
or taping approach constructs and processes the computational
graph at the time of execution each time a function is invoked.
In contrast, the source transformation approach does as much
as possible at compile time to create the derivative only
once. The tracing approach is easier to implement and adopt
into existing codebases. The source transformation approach
has better performance but usually covers a subset of the
language. Tracing: Records the linear sequence of compu-
tation operations at runtime into a tape. The control flow is
flattened to produce a derivative. A typical implementation is
via operator overloading, defining a special floating type with
overloaded elementary operations. Algorithms use this type to
trigger differentiation by calling a special function. There are
numerous C++ AD tools based on tracing, including ADOL-
C [12], and Adept [13]. As the derivative is produced at run-
time, the just-in-time differentiation process is constrained to
perform optimizations quickly. Metaprogramming techniques,
such as expression templates, can mitigate the issue, but they
cannot optimize across statements and generally do not handle
control flow [13], [14]. Source Transformation: Constructs
the computation graph and produces a derivative at compile
time. More compile-time optimizations can be applied, such
as reorganizing or evaluating simple constant expressions and
common subexpression elimination. Source transformation is
more difficult to implement as it requires a significant in-
vestment in developing and maintaining a language parser.
Tapenade [15] is an example of a source transformation tool
with custom parsers for C and Fortran. Source transformation
tools usually do not support the full language feature set (e.g.
certain language idioms are particularly hard to differentiate).

Historically, toolmakers made trade-offs between ease of
use, performance, and ease of integration. AD now bene-
fits from better language support to avoid such trade-offs.
Recently, production compilers like Clang allowed tools to
reuse the language parsing infrastructure. Enzyme [16] and
Clad [8] are examples of compiler-based AD tools using such
preexisting parsers.

III. AD-BASED FP ERROR ESTIMATION USING CHEF-FP
An important aspect of dealing with FP applications with

high precision requirements is identifying the sensitive, or
more error-prone, areas to devise suitable mitigation strategies.
This is where AD-based sensitivity analysis can be very useful.
It can find specific variables or regions of code with a high
contribution to the overall FP error in the application.

The sensitivity of a variable x to FP errors (Sx) can be
deduced from the default error model described in Eq. 1 as:

Sx = |xf ′(x)|

Here, the total contribution of FP errors to the function
(either a routine or an entire program) by variable x increases
as Sx increases. A study of the trends of these sensitivity
values across the domain of a function can reveal insights
into the numerical stability of the function and help determine
possible causes of instabilities. Sensitivity values can also be
used as a guide for a class of type-based optimizations called
Mixed Precision Tuning.

Mixed Precision Tuning involves demoting certain variables
to lower precision without severely affecting the overall accu-
racy of the application. In corollary, it involves preserving or
promoting the precision of variables that have a significant
effect on the accuracy. A mixed precision tuned configuration
is only valid when the difference of the pre- and post-
tuning accuracy is less than some defined threshold value. An
effective way to maintain this requirement is by analyzing
the sensitivity of all input and intermediate variables and
selecting the ones with lower sensitivity to be demoted. The FP
error contributions of the demoted variables are accumulated
and compared to the threshold value. A mixed precision
configuration is reached when the accumulated error meets
the threshold value.

Taylor-based analyses described in section II-A require
modeling assignments to FP variables and their respective
adjoints. The adjoint accumulation mode naturally offers such
mapping. The CHEF-FP implementation exports this infor-
mation from Clad. Clad can be used either as a part of
the compilation lowering pipeline or to generate source code
that can be compiled by another compiler toolchain. Clad
implements forward and adjoint mode AD, together with a
flexible extension system that allows user code to subscribe to
events during the process of adjoint creation.

Compiler-based AD tools can operate at the level of dif-
ferent program representations, and each implementation has
its own set of pros and cons. For example, Clad implements
AD on Clang’s high-level representation to make use of bet-
ter diagnostics, support compile-time programming, generate
understandable source code, and use a standard optimization
pipeline. These properties are key for AD-based FP analyses.
If AD runs before the optimization pipeline, unsafe optimiza-
tions might introduce extra floating point errors. Running AD
after optimization, as done by tools including Enzyme, avoids
these errors. In this case, even standard optimizations could
break differentiability. It is still to be seen if there is a way to
combine the strengths of both approaches.

While many AD-based approaches exist for error analysis,
they typically involve significant manual effort to perform
code changes or long toolchains to automate it. In this work,
we present CHEF-FP, an AD-based FP error estimation
framework that requires less manual integration work and
comes packaged with Clad, taking away the tedious task of
setting up long toolchains. The tool’s proximity to the compiler
and the fact that the FP error annotations are built into the
code’s derivatives allows for powerful compiler optimizations
that provide significant speedups of the analysis time when
compared to the current state-of-the-art tools like ADAPT [5].
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Another advantage of using source-level AD tools (like
Clad) as the backend is that they provide important source
insights. A higher-level representation, for example, enables
us to identify and attribute FP errors to variables as they are
visible at the source. Recovery of such information (variable
names, IDs, source location, and so on) becomes difficult for
lower-level tools, where optimizations can optimize away vari-
ables of interest. Clad can also identify special constructs (such
as loops, lambdas, functions, if statements, and so on) and tune
the error code generation accordingly. This information, while
available to lower-level tools, is more difficult to extract and
process at that level.

A. Source Transformation FP Error Estimation Using AD

Algorithm 1 describes a transformation that connects the
variable-adjoint mapping available in a source transformation
AD engine with an FP EE framework. For each function
annotated for EE, we use the mapping (in AdjointAD) while
differentiating (NewFunction) to hand the control to the EE
model (AssignError) to insert extra instructions. In the end, we

Algorithm 1 Error Estimation Generation Process

Require: Selected by estimate error functions
Ensure: Generated error estimated functions ”function”

1: for all function in estimate error.functions do
2: map〈variable, adjoint〉 ← ADJOINTAD(function)
3: function ← NEWFUNCTION(function,map)
4: for all variable, adjoint in map do
5: ASSIGNERROR(function, variable, adjoint)
6: end for
7: FINALIZEEE(function)
8: end for

compute the total error (FinalizeEE) by allowing the custom
model to pass it as an output parameter or print it on the
screen. One important aspect is that the algorithm does not
impose constraints on the structure of the right-hand side of
the FP assignments. For implementations of certain functions,
this implies that the right-hand side can contain arbitrary
long expressions. In turn, the error contribution of longer
expressions is computed with less precision. This feature
gives users implicit control by allowing them to reduce the
expression size manually. The generated code depends on
the particular implementation of the EE model; however, we
can schematically list a possible generalization for a better
understanding of the process.

B. Sample Syntactic Structure of the Generated Function

Algorithm 1 transforms the input program in Fig 1 and
produces another program as shown in Fig 2. Fig 1 represents
a function written in a computer programming language that
takes P parameters and returns a result of type T . Without
loss of generality, its body consists of instructions denoted by
Li,∀i ∈ [1..n], where S = fi(S) manipulating internal state S
and returning the final state S in result(S). This notation does

not exclude control flow constructs which can be represented
with a sufficiently long linear sequence of Li.

The adjoint accumulation mode of AD computes partial
derivatives starting from the function’s (FuncName) outputs
towards the function inputs (P ). It requires executing the
function in reverse order. Fig. 2 illustrates the AD adjoint
accumulation transformation, which is a possibly augmented
instruction sequence Li. The augmented instruction records a

function FuncName(P ) : T

Initialize S with P

L1: S = f1(S)

. . .

Li: S = fi(S)

. . .

Ln: S = fn(S)

return result(S)

Figure 1: Structure of the original function FuncName

subset of the internal state (denoted as out(Li) ⊂ S, which
depends on fi) necessary to preserve the semantics when

function FuncName(P , E) : void

Initialize S and S

L1: Push(out(L1)); S = f1(S)

fo
rw

ar
d

sw
ee

p

. . .

Li: Push(out(Li)); S = fi(S)

. . .

Ln−1: Push(out(Ln−1)); S = fn−1(S)
←−
Ln: S = S×f ′n(S); AssignError(

←−
Ln)

ba
ck

w
ar

d
sw

ee
p

Pop(out(Ln−1))

. . .

Pop(out(Li))←−
Li: S = S×f ′i(S); AssignError(

←−
Li)

. . .

Pop(out(L1))
←−
L1: S = S×f ′1(S); AssignError(

←−
L1)

E = FinalizeEE(FuncName, S)

Figure 2: Structure of the error estimated function
FuncName

the instructions are executed in reverse order. A common
implementation mechanism is to use a LIFO structure such
as a stack and insert push or pop operations via Push or Pop.
This transformation is known as forward sweep. The backward
sweep is responsible for computing the adjoint (S) for each
instruction

←−
Li. S may require restoring altered state S by using

a pop operation to correctly evaluate f ′i(S).
Our adjoint accumulation mode extension adds 3 elements:

another output parameter E to FuncName modeling the total
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error; a callback call to AssignError for every assignment
taking variable and its adjoint as parameters; and a function
FinalizeEE computing the total error E.

C. Structural Operational Semantics of the Transformation

The transformation from the pseudo-code shown in Fig. 1
to its error estimation form, shown in Fig 2, can be described
with the structural operational semantics notation. Similar to
Hascoet and Pascual’s work describing AD semantics in [15],
we can extend the rules to describe the EE specific trans-
formations. Due to space limitations, we show only essential
rules supporting FP EE. They describe how a generic source-
transformation AD framework can be extended to support AD-
based FP analysis. The rest of the rules associated with AD
are already available in [15].

S1:

isEstErrFunction(FuncName)

FuncName
newFunction−−−−−−−−−→ FuncName

Params→ Params Locals, Params→ Locals

Stmts→

[−−−−→
Stmts
←−−−−
Stmts

function FuncName(Params) : T {
Locals; Stmts

}
→ function FuncName(Params, E : T ) : void {

Locals;
−−−−→
Stmts;

←−−−−
Stmts;

E = FinalizeEE(FuncName)
}

In rule S1, the premises are fulfilled when: (i) Predicate
isEstErrFunction is true when FuncName is selected for being
an error estimation candidate; (ii) newFunction can create a
FuncName; (iii) Params and Locals can be transformed;
and (iv) The original function’s statement sequence has been
transformed into a forward and backward sweep. When all
antecedents are fulfilled, FinalizeEE is added at the end of the
backward sweep.

S2:

isLive(Stmt) isDiff(Ref)
Stmt→ Ref = Expr

typeof(Ref)
newLocal−−−−−−→ V ar

Expr, V ar
Expr−−−→ Stmts

Ref,Expr, V ar
buildAssignError−−−−−−−−−−−−→ Est

Ref = Expr

→
[
Push(Ref); Ref = Expr; V ar = 0
Pop(Ref); Stmts; Est

In rule S2, the premises are fulfilled when: (i) isLive is true
when the statement Stmt is useful for the derivative computa-
tion; (ii) isDiff is true when the memory location is relevant
for the derivative computation; (iii) newLocal can create a
variable of the type of Ref; (iv) Expr can differentiate Expr;
and (v) buildAssignError can generate EE instructions Est.
When all antecedents are fulfilled, then AssignError augments
the backward sweep. Ref represents a memory location where
a value can be stored.

S3:

isLive(Stmt) ¬isDiff(Ref)
Stmt→ Ref = Expr

Ref,Expr
buildAssignError−−−−−−−−−−−−→ Est

Ref = Expr →
[
Push(Ref); Ref = Expr
Pop(Ref); Est

S4:

¬isLive(Stmt) isDiff(Ref)
Stmt→ Ref = Expr

typeof(Ref)
newLocal−−−−−−→ V ar

Expr, V ar
Expr−−−→ Stmts

Ref,Expr, V ar
buildAssignError−−−−−−−−−−−−→ Est

Ref = Expr →
[
V ar = 0
Stmts; Est

The next two rules S3 and S4 consider the variations of the
values of the isLive and isDiff predicates.

When either isDiff or isLive is false, then we still create
the adjoints and insert the AssignError to capture variable’s
error contribution. Function calls and parameter passing can
be expressed by analogy.

D. Programming Model & Framework Design

Clad’s callback system allows the creation of extensions
that can augment generated code. We use this ability to build
a lightweight framework to insert FP error estimation code
in Clad generated adjoints. CHEF-FP leverages the flexible
design of Clad and adds itself as a native extension that
synthesizes error estimation code as part of the differentiation
process. Fig. 3 outlines its high-level design. CHEF-FP’s
implementation is broadly divided into an Error Estimation
Module and an Error Model.

CHEF-FP

Error 
Model

Error Estimation Module

Clad InterfaceCode Generator & Emitter

Source Info 
Capture

E
rr

or
 M

od
el

 
In

te
rf

ac
eDerivative Tracker

Code Clang Code Clang

Figure 3: FP EE Generation Workflow in CHEF-FP.
The control from Clang’s compilation pipeline is intercepted
by Clad, and detection of calls to estimate_error()
instantiates the Error Estimation Module and sets up callbacks.
The Error Estimation Module then listens to callbacks from
Clad’s adjoint mode and is responsible for augmenting the
derivative body with the error estimation code defined in
the Error Model before passing the control back to Clad.
The Error Estimation Module is also responsible for caching
values, tracking derivatives, capturing the required structural
and source information, and accumulating errors.

5



Error Estimation Module: The error estimation module is
the major component that makes up CHEF-FP. The registration
of calls to estimate_error(), by which the user anno-
tates the functions of interest, instantiates the Error Estimation
Module. This sets up error estimation callbacks and passes the
control back to Clad. The Error Estimation Module listens to
callbacks from Clad’s adjoint mode and takes control when an
interesting (from EE perspective) callback is triggered. The
Error Estimation Module augments the derivative body by
adding the EE expressions received from the Error Model and
passes control back to Clad until the next callback is invoked.
Thus, it is responsible for interfacing with Clad, defining the
various methods that facilitate the generation and emission of
FP error estimation code, and exchanging information with
the Error Model to produce specifically augmented code. The
error estimation module also caches values, tracks derivatives,
captures the required structural and source information, and
accumulates errors to provide the final FP error estimate.

Error Model: The Error Model defines an interface to
describe the error expression to generate. It receives derivative
expressions as the derivative is being generated and returns
respective error expressions. By default, a call to a user-defined
function getErrorVal is synthesized, allowing users to
write their formulas in plain C/C++ code. An additional
interface that can be programmed to generate advanced calls
that export more adjoint information to incorporate other
advanced custom Error Models also exists. This interface
can be completely customized to make the FP error analysis
more specific to an application. Listing 1 demonstrates the
programming model with a minimal example.

Listing 1 Minimal demonstrator of the usage of CHEF-FP.
float func(float x, float y) {
float z;
z = x + y;
return z;

}
int main() {
// Call estimate error on target function.
auto df = clad::estimate_error(func);
// Declare the inputs, their derivative
// outputs and the final error output.
float x = 1.95e-5, y = 1.37e-7;
float dx = 0, dy = 0;
double fp_error = 0;
// Execute the generated code.
df.execute(x, y, &dx, &dy, fp_error);
// fp_error now contains the error of func.
std::cout << "Error in func: " << fp_error;

}

E. Implementation

CHEF-FP registers an API (estimate_error) in Clad
that can be used to calculate the floating point errors in a given
function using a default error estimation model. An example
of a typical invocation of CHEF-FP is illustrated in listing 1.

For more complex analyses, it may be necessary to
change the underlying error model to achieve satisfactory

estimates. This can simply be achieved by implementing the
FPErrorEstimationModel interface with the appropriate
error model, compiling it into a shared library, and passing that
library to CHEF-FP. An example of such an implementation
is described in listing 2. Here AssignError builds the code

Listing 2 A template for declaring custom model classes.
struct CustomModel : public

FPErrorEstimationModel {↪→

CustomModel(DerivativeBuilder& builder)
: FPErrorEstimationModel(builder) {}

// Returns the error expression to be
// calculated for each variable assignment.
clang::Expr* AssignError(StmtDiff refExpr,

const char* name) override;↪→

};

expression (expressed as Clang’s internal expression types)
that can then be emitted into code by the error estimation
module. This function exposes three values that can be used
to implement the custom model - the name of the variable,
the variable itself, and its derivative.

Listing 3 An example implementation of AssignError
that builds calls to external functions. The implementation
generates a call to a user-defined function getErrorVal.
namespace clad {
double getErrorVal(double dx, double x,

const char* name) {↪→

return dx * (x - (float)x);
}

}
clang::Expr* CustomModel::AssignError(StmtDiff

refExpr, std::string name) {↪→

// Build a vector-like container to store
// the parameters of the function call.
llvm::SmallVector<clang::Expr*, 3> params{

refExpr.getExpr_dx(), refExpr.getExpr(),
utils::CreateStringLiteral( m_Context,
name)};

↪→

↪→

// Return a call to getErrorVal.
return GetFunctionCall("getErrorVal",

"clad", params);↪→

}

There are two broad ways to implement AssignError
- building an arithmetic expression or building an external
function call. Both methods involve building an assignable
expression. The former approach involves directly building
the arithmetic expression to be assigned and so it is fairly
limited. It also requires that the model be re-built for every
modification in AssignError. While we provide an API
useful for building simple expressions, it becomes unintuitive
to implement complex models based on just a single expres-
sion. Hence, we build calls to external functions as a valid error
model as long as the function has a compatible return type to
the variable being assigned the error. This approach allows
users to define their error models as regular C++ functions,
allowing for the implementation of more computationally
complicated models.
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Listing 3 demonstrates how to implement an arbitrary
function getErrorVal and use it as a custom error model.
In the listing, we build the model used in ADAPT-FP, whose
mathematical notation is described as follows:

∆ =

n∑
i=1

δf

δxi
∗ (xi − (float)xi), (2)

where ∆ is the accumulated error in the function f due to
the rounding errors for all xi. Here, the error assigned to
each variable is the difference between its single and double
precision values. Note, this model imposes a requirement that
all functions it is used on are of double or higher precision.

It is also possible to modify the signature and composition
of the example external error function (i.e., getErrorVal)
defined in listing 3 by modifying the AssignError function.
This allows users to add relevant meta information of the
variables exposed by Clang. For example, users can implement
AssignError to build calls to an error function that can take
in a variable’s source location. This information can be used
for identifying specific areas of code more prone to errors.

IV. EXPERIMENTS

We compare CHEF-FP against the current state-of-the-art
ADAPT using five different algorithms: Arc Length, Simpsons,
k-Means clustering, HPCCG, and Black-Scholes. For the first
4 benchmarks, we use the error model described in equation
2. The time taken is measured using Google benchmark and
peak memory by GNU time. The benchmarks were done on the
Princeton Tiger cluster [17] with a 2.4GHz Intel Xeon Gold
6148 CPU and 188 GB of RAM. Similar benchmark results
were obtained using the LLNL Quartz [18] system, which is a
cluster consisting of Intel Xeon E5-2695 processors with 2.1
GHz cores and 128 GB of memory per node.

Benchmark Threshold Actual Error Estimated
Error Speedup

Arc Length 1e-05 3.24e-06 3.24e-06 1.11

Simpsons 1e-06 7.80e-08 1.32e-07 2.25

k-Means 1e-06 0.00e+00 0.00e+00 -

HPCCG 1e-10 5.21e-12 5.92e-11 1.08

Table I: Error and performance measurements of the
mixed precision versions of the benchmarks. The table
shows a comparison between the actual error and CHEF-FP’s
estimated error in the mixed precision versions of the original
program. It also shows the execution speedup of the mixed
variant. For k-Means, CHEF-FP’s identified mixed precision
configuration for the defined threshold showed no speedup.

For all of the following benchmarks, we present reductions
in the analysis time and memory while still producing results
that are at par with tools such as ADAPT. We also utilize this
section to comment on how the analysis for certain examples
can be extended and how CHEF-FP can be used to perform
more sophisticated approximate analysis. Lastly, we present a
summary of the mixed precision analysis results in table I to

demonstrate how CHEF-FP can produce correct floating-point
analysis results while requiring little to no user intervention.

1) Arc Length: The arc length function approximates a
curve’s length (L) by sampling various points on the curve and
summing up the straight line distance between two consecutive
points on the curve.

L = lim
n→∞

n∑
i=1

√
∆x2 + ∆yi

2

We vary the number of iterations, n, that the arclength
algorithm is run for, to benchmark CHEF-FP against ADAPT.
Fig. 4 compares the time taken and memory used to analyze
the algorithm for mixed precision analysis. The absence of a
data point for ADAPT at 108 iterations is due to it running out
of memory. CHEF-FP’s memory footprint is lower because
the error calculation is inlined in the gradient function.

2) Simpsons: Simpsons is an iterative algorithm to ap-
proximate the integral of a function in the given interval by
summing the integral over multiple small intervals:∫ b

a

f(x) dx ≈ h

3

f(a) + f(b) + 4

2n−1∑
i=1,3,5

fi + 2

2n−2∑
i=2,4,6

fi


Here, fi = f(a + ih), h = (a + b)/2n, and n is the
number of iterations. Fig. 5 compares ADAPT and CHEF-
FP on the basis of time and memory usage. Similar to
arc length we vary the number of iterations to benchmark
the two tools. CHEF-FP’s recommended mixed precision
configuration gives a speedup of 2.25 times when compared
against the same program in higher precision. It is also able
to predict the actual error in the mixed-precision version of
the application, as seen in table I.

3) k-Means Clustering: Part of the Rodinia benchmark
suite [19], the k-Means clustering algorithm is used for group-
ing multiple data points into k clusters. We instrument the
Euclidean distance function as it is the major computational
hotspot of the application. Similar to previous benchmarks,
we compare the performance of CHEF-FP against ADAPT
in fig. 6.

The Euclidean distance function has three major variables:
attributes, clusters, and sum. It can be represented as follows:

sum =

√√√√ n∑
i=0

(attributesi − clustersi)2

The error estimated by Clad for attributes is 0 because the
input data of the benchmark is represented with four digits
after the decimal. The errors estimated for clusters and sum
are higher than the threshold set for k-Means in table I. Hence,
CHEF-FP recommends only converting attributes to lower
precision. To test out CHEF-FP’s error estimates, we went
a step ahead and converted each of the variables to lower
precision individually and found the actual error introduced by
them. These configurations were executed on 106 datapoints,
and the findings are shown in table III.
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Figure 4: Arc Length
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Figure 5: Simpsons
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Figure 6: k-Means algorithm
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Figure 7: HPCCG
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Figure 8: Black-Scholes

Benchmark Time Memory

Arc length 1.61x 1.95x

Simpsons 2.17x 1.44x

k-Means 2.02x 4.44x

HPCCG 1.03x 1.02x

Black-Scholes 1.76x 6.32x

Table II: Performance Improvements

Figures 4 to 8 show the results of benchmarking CHEF-FP, ADAPT, and the original function. The labels below the
function show the algorithm being benchmarked. The lines show peak memory usage and the bars represent the time taken
during the FP error analysis of the given algorithm. Table II summarises CHEF-FP’s performance improvements over
ADAPT. The improvements are given as ’times improved’ over the FP error analysis and represent the average improvement
across all the data points. Our benchmarks show that CHEF-FP outperforms ADAPT, which is the current state-of-the-art
AD-based FP error estimation tool while producing mixed precision analysis results that agree with ADAPT’s analysis.

Variable(s) in Lower Precision Actual Error Estimated Error

attributes 00e+00 00e+00

clusters 3.67e-04 9.35e-04

sum 8.33e-04 7.08e-03

all 3 2.40e-03 8.01e-03

Table III: k-Means – Error measurements of various
mixed precision configurations. We demote the 3 variables
(attributes, clusters and sum) to lower precision one by one
and compare the resulting errors with CHEF-FP’s estimate.

4) HPCCG: Part of the Mantevo benchmark suite, HPCGG
is a simple conjugate gradient benchmark code for a 3D
chimney domain converted to be single-threaded. The analysis
is done while scaling the inputs from the base dimension of
20× 30× 10 to the recommended size of 20× 30× 160 and
then further to 20× 30× 320. The results in fig. 7 show that
ADAPT runs out of memory for the 20×30×320 dimension.

CHEF-FP is also used to analyze HPCCG for a possible
loop perforation based optimization. We already generated
errors for intermediate variables, so we only needed to slightly
tweak it to dump the sensitivity of the variables over each
iteration. We analyzed the change in sensitivity of the various
variables over the total run of the application, and we found
that the sensitivity for all variables drops below our set
threshold after almost 60 iterations. The normalized sensitivity

Figure 9: HPCCG Variable Heatmap. This illustrates the
normalized sensitivity of the variables r, p, x, and Ap for every
iteration. This sensitivity profile can be used to determine more
fine-tuned optimizations.

of the variables is shown in the form of a heat map in fig. 9.
Based on these findings, we split the main loop of HPCCG
into two chunks - the first chunk runs the full loop for the first
60 iterations in high precision, and the second chunk runs for
the remaining iterations in lower precision. This configuration
gives us a speedup of 8% as shown in table I.

5) Black-Scholes: Part of the Parsec-benchmark suite [20],
the Black-Scholes equation is a differential equation that
describes the change in the value of an option as the price of
the underlying asset changes. To compare against ADAPT, we
analyze the function that calculates the option price depending
on the factors that influence the stock. ADAPT is not able to

8



scale beyond 104 data points in our benchmarks. The results
are shown in fig. 8. For this benchmark, both CHEF-FP and
ADAPT showed that most of the intermediate variables are
very sensitive to errors and could not identify an effective
mixed precision configuration.

In addition, we leveraged the customizability of CHEF-
FP to analyze the effect of using Paul Minero’s FastApprox
library [21] instead of the standard C math library to gain
performance improvements. The FastApprox library provides
approximate versions of various math functions that trade off
accuracy for performance. CHEF-FP can determine the error
introduced by replacing the standard versions of the math func-
tions with the approximate ones in any program. We identified
three math functions in the Black-Scholes application that had
approximate versions in the FastApprox library. The inputs to
these functions were identified, and a map was formed with
their names mapping to the functions they were input to. The
map is used in a custom model to match each variable with the
correct function and its approximation. These values are then
used by the custom model to accurately estimate the errors
due to approximation in the application. The algorithm for
the custom model is illustrated in algorithm 2. The estimated
error, actual error, and speedup from FastApprox in the Black-
Scholes application are shown in table IV.

Algorithm 2 Estimating approximation-based errors.

Require: input variable as x and its name as name, the partial
derivative of x wrt. the function as dx, and a map of
variables of interest as S : name→ function name

1: ∆← 0
2: if name is contained in S then
3: fName← S.GETVALUE(name)
4: ∆← EVAL(fName, x)−EVALAPPROX(fName, x)
5: end if
6: xApproxError ← |dx ∗∆|
7: REGISTERERROR(name, xApproxError)
8: return xApproxError

V. DISCUSSION

CHEF-FP shows consistently better performance than
ADAPT while suggesting similar hints for mixed precision
tuning and yielding similar performance benefits. CHEF-FP
provides an efficient, straightforward, and flexible way to
analyze FP errors in complex C++ applications. We demon-
strate the use of CHEF-FP for mixed precision tuning and
sensitivity analysis on 4 benchmarks – Arc Length, Simpsons,
k-Means and HPCCG, and its use for approximation analysis
on 1 benchmark – Black-Scholes. In this section, we discuss
in more detail the experimental results and current limitations.

A. Summary of Results From CHEF-FP

CHEF-FP identified stable mixed precision configurations
for the Arc Length and Simpsons benchmarks for a given
threshold; on conversion to these mixed precision configura-
tions, both applications saw a noticeable speedup, summarised

in table I. For the k-Means benchmark, CHEF-FP could not
identify a mixed precision configuration (with a threshold of
10−6) that resulted in a speedup. However, CHEF-FP provided
good upper-bound estimates of the error in the application for
different mixed precision configurations (table III).

For the HPCCG benchmark, the tool was used to analyze
the sensitivity of variables across the main loop. This allowed
for us to discover a mixed precision configuration that involved
splitting the main loop into performing the first 60 iterations
in higher precision and the rest in lower precision. Lastly, we
also demonstrated the flexibility of CHEF-FP by leveraging
its custom model support to perform an approximation error
analysis on the Black-Scholes benchmark. CHEF-FP was able
to accurately quantify the errors related to approximation in
a set of specific functions. Additionally, CHEF-FP generated
two different approximation configurations, and a report on
the estimated errors from the same is shown in table IV.

B. Current Limitations

Quantifying overhead of type-casts: It is possible for
a mixed-precision configuration to show worse performance
than the high-precision version. Usually, this is due to the
overhead of the implicit type-casts that have been introduced
in the code by lowering the precision of some variables. One
way to combat these overheads is to keep track of them via
counters; for example, a trivial implicit casts counter can be
implemented using Clang’s AST Matchers.

Variety of analysis datasets: The results of the mixed-
precision configurations formed here are input dependent. To
form a general mixed-precision configuration, it is important
to analyze the application over a representative set of inputs.

Source rewriting for mixed precision configurations:
CHEF-FP provides sensitivity profiles, and error estimates
to guide the process of mixed-precision re-implementation.
Currently, we manually rewrite the source code to imple-
ment the mixed precision configurations suggested by CHEF-
FP. We can use source transformation tools, such as Type-
forge [22], to automate the generation of mixed-precision code.
As future work, this process can be automated by combining
the decision-making and code generation by using the error
information at runtime to just-in-time optimize areas of code
with lower sensitivity to run in lower precision.

Compiler optimizations: Certain floating-point unsafe op-
timizations (such as --ffast-math or -fp-model fast) can cause
CHEF-FP’s predicted errors to be different than the actual er-
rors. Currently, CHEF-FP cannot distinguish errors introduced
by optimizations from the expected FP errors. Since these
optimizations take place post the derivative generation, certain
substitution optimizations may cause even the derivative to be
incorrect, leading to the underlying error propagation to also
be incorrect. Users of CHEF-FP should be careful as these
optimizations can cause incorrect analysis results. Another
way the analysis results can be affected is by changing the
intermediate rounding mode for mixed precision expressions
(through flags such as -fp-model). Changing this may cause
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App Configuration
Actual Errors Estimated Errors

Speedup
avg. max. acc. avg. max. acc.

FastApprox w/o Fast exp 1.16e-04 9.62e-05 1.16e+01 9.16e-04 6.25e-04 9.60e+00 1.14

FastApprox w/ Fast exp 5.8e-04 6.9e-04 5.88e+01 3.5e-03 5.0e-03 1.07e+02 1.65

Table IV: Black-Scholes - Error and performance analysis of the various FastApprox based configurations. This table
shows the actual error and CHEF-FP’s estimated error of the approximate version of the application. More specifically, it
outlines the average, maximum, and accumulated error over 1000 data points. For the first row, the original program uses
approximate versions of the log and sqrt functions. For the second row, the application uses the approximate version of exp.

the mixed precision version of the program to suffer perfor-
mance degradation. We recommend using the source mode for
rounding of intermediate calculations for consistent results.

VI. RELATED WORK

Many floating point error analysis tools have been pro-
posed in literature, including both static and dynamic tech-
niques. Dynamic approaches require running the program to
gather necessary information to perform analysis. Brown et
al. [23] designed FloatWatch, built on Valgrind, to deter-
mine if floating-point operations can be optimized by using
a lower precision representation or fixed-point arithmetic.
This is done by tracking the maximum difference between
single and double precision computations by performing both
simultaneously. Benz et al. [24] presented an approach where
every floating-point computation is executed side by side
in higher precision to assist the programmer in locating
floating-point accuracy problems. Lam et al. [25] proposed
a dynamic approach using a binary analysis tool, DynInst, to
detect floating-point cancellations. An et al. [26] developed a
dynamic binary analysis, FPInst, based on DynInst to compute
errors by applying simple error accumulation formulas and
tracking the error throughout a program. Static analysis tools,
such as FPTaylor [4], SATIRE [27], and Precisa [28], use
a global optimizer to estimate the upper bound of rounding
errors. Gappa [29] automates error evaluation and propagation
using interval arithmetic. Static analysis approaches provide a
rigorous error analysis, but have been applied only to small
benchmarks. SEESAW [3] employs symbolic adjoint mode
AD to give tighter error bounds for intervals of input values
and has been shown to work on practical HPC benchmarks.
None of these methods targeted mixed-precision.

Several efforts have evaluated whether a program can take
advantage of mixed-precision. Most of the techniques used
search-based optimization to select suitable mixed-precision
versions of the program that satisfies a user-provided error
threshold. Lam et. al [28], [30] proposed CRAFT which uses a
search algorithm to automate the identification of code regions
that can use lower precision. Gonzales et al. [1] used delta
debugging to narrow the search space for mixed-precision
configuration. It was extended to consider groups of variables
to further reduce the search space [31]. Laguna et. al [32]
proposed GPUMixer, a tool used to tune FP precision on GPU
programs with a focus on performance improvements. It uses
shadow computations analysis to compute the error introduced
by mixed-precision for each kernel and uses a search-based

technique to identify the best mixed-precision configuration.
These methods work by identifying a set of variables that can
be in single precision while leaving the rest of the variables in
double precision. Search-based techniques have the drawback
that they require several runs of the application, and exploring
the space is extremely time-consuming.

There have been several efforts directed towards analyz-
ing applications for introducing mixed precision as well as
estimating the error due to reduced precision representation
using AD. AD has been used for estimating the rounding
error in numerical algorithms since the early 90s [33], where
partial derivatives given by AD were used to obtain a first-
order approximation of the global rounding error due to
elementary rounding errors. Interval analysis with the mean
value theorem was used to provide tighter upper-bound for
rounding error estimation. Later Langlois [34] proposed the
CENA method, where a correction term was introduced to
the first-order effect of rounding errors on the output of the
numerical algorithms to improve the accuracy of estimation.
Subsequently, ADAPT [5] used AD to estimate errors, en-
abling mixed-precision tuning by identifying regions where
lower precision can be applied while staying within an er-
ror threshold. While ADAPT provided guidance for mixed-
precision implementation, it involved manual annotations and
code transformations. To address this issue, FloatSmith [7] was
introduced, it integrated ADAPT with Codipack (AD tool) [35]
and Typeforge (based on Rose [36] compiler) to automate
the process of analyzing numerical codes. However, this long
toolchain made it slow and cumbersome to work with.

VII. CONCLUSION

In this paper, we have defined formalism to augment auto-
matic differentiation to perform floating-point error analysis,
and demonstrated an efficient tool using compiler-based source
transformation that does not overwhelm the already overly
complex reverse accumulation AD mode. We present CHEF-
FP, a flexible, scalable, and easy-to-use source-code trans-
formation AD-based tool for the analysis of approximation
errors in HPC applications. CHEF-FP works on the source
level to inject error estimation code into generated adjoints,
allowing analysis to be sped up via compiler optimizations.
This setup allows CHEF-FP to operate on higher memory
loads when compared to other FP error estimation tools.
It provides considerable flexibility on what estimation code
is generated by using custom error models, facilitating the
exploration of other areas of approximation error analysis.
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We demonstrated that CHEF-FP performs the same anal-
ysis as ADAPT-FP in a time and memory-efficient manner
using five benchmarks. At analysis time, CHEF-FP obtained a
maximum speedup of 2.17x over ADAPT-FP for the Simpsons
benchmark and a memory reduction of 6.32x for the Black-
Scholes benchmark. We showed how CHEF-FP could be
used to perform sensitivity analysis and further provided
recommendations on how to perform mixed-precision tuning
on various applications. We illustrated how it could be used to
accurately evaluate different precision configurations. Finally,
we explored estimating approximation-based errors and eval-
uated the resulting approximate configurations on the Black-
Scholes benchmark showing a speedup of up to 65%.

The open-source artifact for this work is available at the
DOI: 10.5281/zenodo.7660443.
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