1705.09566v1 [cs.GT] 26 May 2017

arXiv

Rational Fair Consensus in the

GOSSTP Model

Andrea Clementi!, Luciano Guala!, Guido Proietti?, and Giacomo
Scornavacca?

YWniversita Tor Vergata di Roma,
clementi/guala@mat.uniroma2.it
2 Universita degli Studi dell’Aquila, guido.proietti@univaq.it,
giacomo.scornavacca@graduate.univaq.it

September 21, 2018

Abstract

The rational fair consensus problem can be informally defined as fol-
lows. Consider a network of n (selfish) rational agents, each of them ini-
tially supporting a color chosen from a finite set 3. The goal is to design a
protocol that leads the network to a stable monochromatic configuration
(i.e. a consensus) such that the probability that the winning color is ¢ is
equal to the fraction of the agents that initially support ¢, for any c € X.
Furthermore, this fairness property must be guaranteed (with high prob-
ability) even in presence of any fixed coalition of rational agents that may
deviate from the protocol in order to increase the winning probability of
their supported colors. A protocol having this property, in presence of
coalitions of size at most ¢, is said to be a whp -t-strong equilibrium.

We investigate, for the first time, the rational fair consensus problem
in the GOSSTP communication model where, at every round, every agent
can actively contact at most one neighbor via a push/pull operation. We
provide a randomized GOSSZP protocol that, starting from any initial
color configuration of the complete graph, achieves rational fair consensus
within O(log n) rounds using messages of O(log?n) size, w.h.p. More in
details, we prove that our protocol is a whp t-strong equilibrium for any
t = o(n/logn) and, moreover, it tolerates worst-case permanent faults
provided that the number of non-faulty agents is (n). As far as we know,
our protocol is the first solution which avoids any all-to-all communication,
thus resulting in o(n?) message complexity.

1 Introduction

There is an increasing interest on algorithmic tasks performed by distributed
systems that are formed by a finite set of selfish, rational agents. When the sys-
tem does not provide for any central authority, the techniques for studying this
kind of processes lie at the intersection of two scientific fields, Distributed Com-
puting and Algorithmic Game Theory. Typically, there is a social task/decision

http://arxiv.org/abs/1705.09566v1

to be performed by the distributed system and, at the same time, every agent
of the system has his own profit: The latter being a fixed function of the fi-
nal configuration reached by the system. A feasible solution here consists in a
protocol that not only computes the desired task but it even must result prof-
itable for every rational agent: In other words, agents should not get any gain
(according to their own profit functions) to deviate from the protocol’s local
rules. Protocols satisfying this property are said Nash equilibria or, even bet-
ter, t-strong (Nash) equilibria when this robustness property is guaranteed even
if agents can form a deviating coalition of size at most ¢ [4]. Perhaps, this frame-
work has been investigated for the first time in [I3], where rational behaviour
is analyzed in secret-sharing problems and multiparty computations. More re-
cently, the impact of rational adversaries has been investigated on fundamental
tasks in Distributed Computing such as leader election, consensus, and wake-up
problems [2] [3], 12} [14].

Inspired by this new line of research, we here study the rational fair consen-
sus problem [I4] which can be informally defined as follows (see Section [2 for a
formal definition). At the onset, every agent supports a color ¢ € ¥ where X is
the color space. The goal of the system is to reach a stable monochromatic con-
figuration where all agents support the same winning color and the probability
that the winning color is ¢ equals the fraction of agents initially supporting ¢, for
any color ¢ € X1 Moreover, every rational agent v has his own profit function
which is maximized whenever the winning color is the one he supported at the
onset, while it is smaller when the winning color is any other color, and, finally,
it is much smaller (and minimized) whenever the protocol fails to achieve con-
sensus. More general classes of profit functions have been studied for rational
fair consensus (e.g. [2]). The well-known fair leader election problem is the
special case of the fair consensus problem where the color initially supported by
each agent is his own ID.

In this setting, a with high probabilit (for short, w.h.p.) t-strong equilib-
rium (see Def. [I) for the rational fair consensus problem is a protocol P that,
given any initial color configuration ¢ for the n agents, w.h.p. achieves fair con-
sensus and, moreover, for any coalition C of size at most ¢ and for any deviating
strategy of C, there is at least one agent in C' that, according to the deviating
strategy, w.h.p. will not increase his chance to make his color win.

Several versions of consensus in presence of rational agents have been recently
studied [2 B} [12] but only few of them consider the fairness property. As far as we
know, rational consensus has been studied only in the LOCAL communication
model [8 [T5] where, at every round, every agent can exchange messages with all
his neighbors. In [2], Abraham et al. present a protocol for fair leader election
that is an (n—1)-resilient equilibrium (t-resilient equilibrium is a stronger version
than t-strong equilibrium, where no agent of the coalition will profit from a
deviation [I]). However, their protocol is not robust against crash faults. A
protocol achieving consensus is given in [I2] in presence of a rational adversary
that controls a proper subset of agents (this model is different from the ones
studied in [2} [3] [T4] and in this work). Their protocol does not guarantee fairness
and assumes there are no crash faults. In [3], a protocol achieving (n—1)-resilient

INotice that this fairness property is stronger than validity, the latter being required in
the classic consensus problem - see Section
2We will adopt here the standard notion in probabilistic algorithms: An event is said to

hold with high probability if its probability is 1 — nQ—l(l)

equilibriunﬁ is provided for fair leader election, while, in presence of crash faults,
the protocol is shown to be (only) a Nash equilibrium. This protocol does not
work for the rational fair consensus problem and, in general, we emphasize that,
even though any protocol for fair leader election can be easily transformed to
one for fair consensus, if agent’s rational behaviour is considered - i.e. if the
“rational” versions of such two problems are considered -, then this reduction
is no longer true [I4]. Further results are presented in [7] for some versions of
rational consensus in models which depart significantly from ours.

More recently, Halpern and Vilaca [14] studied the rational fair consensus
problem in the LOC AL communication model assuming that agents have unique
IDs. They study the problem in the complete graph and in presence of dynamic
patterns of crash faults. It is first shown that if the adversary can adaptively
choose the initial configuration and the dynamic fault-pattern (i.e. a worst-case,
dynamic adversary), then no protocol can achieve a Nash equilibrium for ratio-
nal fair consensus. Then, they consider a much weaker, natural adversary on the
complete graph: The adversarial fault pattern is chosen randomly according to
some distribution 7. They prove that, if © satisfies some reasonable conditions,
then it is possibile to design a protocol achieving a Nash equilibrium for rational
fair consensus provided that the overall number of faulty agents is smaller than
n — 1. Their protocol is not “light-weight” [15] since it has to take care about
random dynamic fault patterns and it requires €2(n?) messages. The authors
also claim that its robustness against coalitions is quite hard to analyze and
thus it is not included in the paper.

Our contribution. Recently, there has been strong interest in the design of
algorithms for several versions of consensus problems in network models that
severely restrict communication and computation [5l 6] [[0]: This both for effi-
ciency considerations and because such models capture aspects of the way con-
sensus is reached in social networks, biological systems, and other domains of
interest in network science. From the point of view of computation, the restric-
tive setting is to assume that each node only has polylogarithmic size of memory
available, while, as for communication, this bound is also required to link band-
width available in each round. Finally, the number of interactions a node can
open in one round are severely constrained. These constraints are well-captured
by the synchronous GOSSZP model [0, O] 10} [8, 16l I7]: At every round, every
node can actively push or pull a (short) message (say, of polylogarithmic size)
with at most one of his neighbors. Notice that, in every round, a node can
receive more than one message but the number of active links is always O(n): A
per-round communication pattern that can be considered definitely reasonable
in several real network applications.

A major point is that all the previous protocols for rational (fair) consen-
sus [2 [3] 4] heavily rely on broadcast operations made by every (non faulty)
agent: In the complete graph, every agent directly communicates some piece of
information (e.g. his own ID) to all the agents. It turns out that the number of
exchanged messages is Q(n?).

Achieving Nash equilibria without the use of all-to-all operations is a major
technical issue we want to investigate in this paper.

As in the work of Halpern and Vilaca [I4], we consider a complete network
of n agents, each of them having a unique ID which is an integer in the set

3 Actually, in [3], the obtained property is improperly named as t-strong equilibrium.

[n] :={1,...,n}. We consider the GOSSZP communication model and, con-
cerning rational fair consensus, we assume each agent w initially knows his ID,
his initial opinion ¢, € ¥ and the network size n. When two nodes communi-
cate, despite their selfish behaviour, they cannot cheat each other about their
ID’s. This condition is more than reasonable in several network scenarios, it is
assumed in the previous works (e.g. [I4]) and it definitely does not make the
problem easy. Taking in mind the strong negative result obtained by Halpern
and Vilaca [I4] about worst-case dynamic agent faults, we explore a weaker
kind of adversary, the worst-case permanent one: At the very beginning, every
agent can be either active or faulty and we assume this initial setting can be
managed by a worst-case adversary. After this setting, then no further action
of the adversary is allowed. We again remind that rational fair consensus in any
model allowing only sparse communication patterns has never been studied so
far, even in the fault-free case: This communication constraint essentially makes
previous solutions of little use. Moreover, the presence of this static adversary
introduces further issues to take care about: a rational active agent can pretend
to be a faulty node in some rounds, and hence the protocol must be robust also
against this kind of (potentially profitable) deviations.

We provide a GOSSTP protocol that, starting from any initial color con-
figuration, achieves rational fair consensus in O(logn) rounds using local mem-
ory and messages of O(log2 n) size, w.h.p., thus resulting in O(n log® n) overall
communication complexity. We prove that our protocol is a whp -t-strong equi-
librium for any ¢ = o(n/logn) and, moreover, it tolerates worst-case permanent
faults provided that the number of active agents is €(n). We remark that the
known previous protocols [2, 3, 4], on the complete graph, use €(n?) messages
and local memory of size Q(n). It is always possible to simulate a LOCAL pro-
tocol over the GOSSTP model thanks to the general technique introduced in
[8]. However, this approach would yield exponentially larger message size and it
is not clear whether the so-obtained simulation achieves any kind of equilibrium
w.r.t. selfish behaviour.

To the best of our knowledge, our protocol is the first efficient solution for
rational fair consensus on the GOSSZP model and, thus, it represents a first
evidence of the fact that a short sequence of sparse communications patterns
(each pattern formed by n push/pull operations) suffices to reach this kind of
equilibria. We believe this result might open interesting directions in the design
of more scalable solutions in real network applications where fair consensus in
presence of selfish agents is a crucial issue [18].

2 Preliminares

We consider a complete graph G([n], E') of n nodes, each of them having a unique
label in [n] = {1,...,n}, and we adopt the synchronous GOSSTP model: at
every round, each node can make either a pull or a push operation with one of
his neighbors. The choice of the neighbor can be made uniformly at random (for
short, uw.a.r.). At the onset, every node u knows n and how to communicate with
every other node over a secure channel: during a communication over the edge
{u, v}, the two nodes are aware about the label of his peer and the exchanged
message is private (this is fully in the line of the related previous works [2] [3]
and, moreover, it well reflects the real scenarios inspiring the GOSSZP model,

such as peer-to-peer and opportunistic networks).

The classic consensus problem in presence of unknown, permanent node-
faults can be defined as follows. At round ¢ = 0, every node is either in the
active state or in the faulty state and let A be the subset of active nodes. The
permanent faults are chosen by a worst case adversary that knows the protocol.
A node, starting in the faulty state, will remain quiescent for all the process
while each active node u € A supports a color ¢, € ¥ (X being a shared set of
colors). A protocol solves the consensus task if all the following conditions are
met:

o Termination: Every active node gets into a final state within a finite number
of rounds.

o Agreement: When all active nodes have reached a final state they will support
the same color c. We say that c is the winning color.

e Validity: The winning color ¢ must be a wvalid one, i.e., a color which was
initially supported by at least one active node.

In the fair-consensus task [15],[14] the validity property is replaced by a stronger,
probabilistic property.

e Fairness: The probability that a color ¢ € ¥ is the winning one is equal to
the fraction of active nodes that initially support c.

We remark that, initially, every node only knows his label and his state
(active or not) while he knows nothing about the other nodes. It is only assumed
that the (unknown) set A has linear size, i.e. |A| = ©(n). A well-studied special
case of the above task is the fair leader election where every node initially
support his own ID as a color and, hence, every active node must have the same
chance to be elected.

Non-cooperative setting. Besides permanent node faults, we consider nodes
that act as selfish (rational) agents according to the standard definition in Game
Theory. For this reason, we denote the problem as the rational fair consensus.
Formally, each node (from now on, agent) u € [n] has a utility function util,(s)
defined on every final state s € S of the protocol, where S = X U { L} (the
protocol can either converge to a color or, if agreement is not reached, fail). We
focus on the natural scenario where the utility function of agent u is maximal
when the winning color is ¢,, it is much less when the protocol converges to
another color, and, it is minimal (in fact, it is very bad) when the protocol fails.
We assume the following (normalized) payoff scheme: For each agent u there is
exactly one value ¢, € ¥ such that util,(c,) = 1; moreover, util, (s =1) = —x,
for an arbitrary fixed value y > 0, while util, (¢') = 0 otherwise.

The strategy of an agent u is that of choosing an adaptive local algorithm
oy, from a set of feasible rules satisfying the system constraints. The adaptive
algorithm defines the actions of an agent at every round: These actions may
depend on the set of messages received so far during the process. Each agent
chooses such an algorithm in order to maximize his expected utility, where the
expectation is defined over the random choices performed by the agents during
the process. A protocol thus results in the vector of the n local (randomized)
algorithms chosen by every agent (also called strategy profile in Game Theory).

Given a protocol P and an initial color configuration ¢, we call Q(P, é) the set
of all the possible executions of P starting from & Moreover, let ¢(P,¢) be the
random variable over Q(P, €) representing a random execution of P. We define
f:Q(P,&) — S as the function that returns the outcome of any execution. For
brevity’s sake, for any agent u, we define r, (P, ¢) = util, (f(¢(P, 2))).

We adopt the following notion of equilibrium, called whp t-strong equilibrium
that it is a probabilistic relaxation of ¢-strong equilibrium (a similar relaxation
is considered in [I1] for deterministic truthfulness). Such an equilibrium is a
protocol (strategy profile) such that, for any deviation of any fixed coalition
of size at most ¢, there is an agent in the coalition that will not improve his
expected utility, w.h.p. This is formalized by conditioning the expected utility
of the agents to a large subset of “good” executions of the protocol. Formally,
let us consider a protocol P, a coalition C' C [n] and a (restricted) protocol P’
for C. By (P_¢, P(;) we denote the protocol where the agents in A\ C follow P
while the active agents in C follow P’. Given a color configuration ¢, protocols
P and P’, we let Q = Q(P,¢) and Q' = Q((P-¢,P,),E) be the probability
spaces yielded by running P and (P_¢, Pf) from ¢, respectively.

Definition 1. We say a protocol P is a whp - t-strong equilibrium if, for any
initial color configuration ¢, for every coalition C of at most t agents, and for
every restricted protocol P’ for C, the following properties hold:

o There is a subset G C Q) of executions such that Prq(G) > 1 — ﬁ;

o There is a subset G' C Q' of executions such that Pro,(G') > 1 — ﬁ;

o There is an agent w € C such that

EQ[Tw(Paé')M((Pva € g] >

Ea [ro (P—c P1), Dla(P—c, P, &) € G, o

3 An Efficient Protocol for Rational Fair Con-
sensus

Informal description of the protocol. In order to reach fair consensus,
our protocol adopts a simple and natural idea (see, for example [2]): Choose
uw.a.r. an active agent of the network and then lead the system to stabilize
on the color supported by this agent. It is easy to show that if all the agents
follow the protocol then a fair consensus is achieved. However, the presence of a
coalition of rational agents requires further protocol actions in order to prevent
convergence towards unfair consensus: This is obtained using some verification
procedures that work in logarithimic time and use messages of size O(log2 n).

The protocol is parametrized in the maximum number an of faulty agents
(where 0 < « < 1 is the so-called fault-tolerance parameter of the protocol)
and it assumes every agent knows the size n of the system. Its local rules are
organized in the following consecutive phases. A detailed description of the
protocol is given in Algorithm 1.

4if agent v does not reply (or replies in a unexpected way), then he is marked as faulty
(Vi € lg], b3 = 0).
5For each z, appearing in Wiin N L., check if the vote is the same.

Algorithm 1 Protocol P

The local rules for Protocol P
Local Data: Each agent u € [n] knows label u, his supported color ¢, € ¥,
the agent number n, and the fault-tolerance parameter +;
Initialize(): u computes the parameters m = n* and the number of rounds
q = vlogn;
Voting-Intention(): Choose a list of votes H,
Hy, = {(hu1,2u,1) .- (hu,g, Zu,q) } where
Vi in [g] hy,; is chosen w.a.r. in [m] and z,; is chosen w.a.r. in [n]
Commitment(): Compute a list L,, of collected vote intentions
L,:=0
for ¢ rounds do
Pull from an agent v chosen u.a.r. his list Hﬂ
Vj € [q] update L, := L, U{(v, hy j, 20,;) };
Receiving a pull requests: send your own H,, list
end for
Voting(H,): Push your votes according to H, and collect the received votes
in W,

W, =10

fori=1,...,q rounds do
Push h,; to agent z,;
Receiving wvotes: let {hy,...,he} be the votes received (in round
1) from agents {z1,...,2¢}, respectively and update W, := W, U
{(h1,21) ... (he,20)}

end for

Compute the value ky := >y, h mod m
Find-Min(CE, = (ky, W, ¢y, u)):
CE™™ .= CE,
for ¢ rounds do
Pull from an agent v w.a.r. in [n] his Certificate CE"
if kmin < kMt then
CE™™ .= CEI™
end if
Receiving a pull request: send CE™™
end for
- Coherence (CE™™):
for ¢ rounds do
Push to an agent v w.a.r. in [n] the Certificate CE["""
Receiving a set of Certificates CE:
if ICE""" € CE : CE™™ # CE"™™ then
Make the protocol fail;
end if
end for
Verification(L,,):
CEmln = (kmzn; Wmi'rh Cmin, Zmzn)
if kpin = (Zhewmm h mod m) and Wi, is consistentd with the list of votes
in L, then
Support the color ¢ipn
else if then
Make the protocol fail;
end if 7

- In the VOTING-INTENTION phase each agent u randomly chooses a “small”
(i.e. a logarithmic) number of agents and, for each of them, he decides one
random vote (chosen w.a.r. in the range [n3]): The resulting list is called the
vote intention H, of agent u.

- In the COMMITMENT phase, each agent u asks (using pull operations) a small
number of agents to send him their vote intentions: All such data will be stored
in a set we call L,. If an agent v does not answer to one of u’s requests, then v
is marked as faulty by u and, from now on, u will consider all the votes of H,
equal to zero.

- In the VOTING phase, each agent u votes (via the push mechanism) according
to H, and, thus, in turn, u also gets the set W, of the received votes from the
other agents. Now each agent u can compute the value k, equal to the sum
of all the received votes modulo m = n? and creates his Certificate CE,. The
certificate contains the value k., the received votes W,,, his color ¢, and his
label u. The choice of this value for m ensures that all k,,’s are different, w.h.p.
and, so, the minimum is unique (this fact will be exploited in the next phase).
- All the agents start the FIND-MIN phase that makes every active agent con-
verge on the “minimal” certificate CE, = (k., W, ¢,, z) such that k., = min,c 4 k,.
The agents perform this task using pull operations as in the standard GOSSZP
broadcast protocol [19], taking O(log n) rounds. More precisely, at every round,
every agent u stores the current “minimal” certificate, i.e., that with the mini-
mum value of k. he has seen so far and u asks (via a pull operation) to a random
neighbor v his current minimal certificate. We call CE™™ the certificate owned
by u at the end of the FIND-MIN phase.

- The COHERENCE phase is performed in order to ensure that all the agents
posses the same certificate, namely the one resulting from the FIND-MIN phase.
In particular, agent u sends his CEg1in to a logarithmic number of randomly
chosen agents and he makes the protocol faild if he receives a different certificate
CE™™ from an agent v.

- At the end of the VERIFICATION phase, every agent u agrees on the color
¢, if the votes in W, are compatible with the votes in L,. The votes are not
compatible if there is a vote in W, say a vote given to z by w, which is different
from the vote to z by w stored in L, (hence, u pulled w in the COMMITMENT
phase).

In Subsection Bl we show that the proposed protocol w.h.p. achieves fair
consensus in presence of at most an faulty agents, while, in Subsection 3.2, we
prove that our protocol is a whp t-strong equilibrium for any ¢ = o(n/logn).

3.1 Analysis of the protocol in the cooperative setting

In this section we analyse Protocol P when all the active agents follow P. We
first give the concept of a good execution of P. In a good execution, every
active agent receives O(logn) votes, all the k,, values are all distinct (S0, kmin 18
unique), and after the FIND-MIN phase, every active agent agrees on the same
Certificate of minimal value. Formally, we introduce the following definition:

Definition 2. Let ¢(P,¢) € Q(P, &) be a random execution of the protocol. We
say that q(P,¢) is good (and define G C Q as the set of all good executions) if
all the following events hold:

6For instance, the agent can enter in an invalid state by supporting a color not in X.

1. Every agent in A receives ©(logn) votes.
2. The ky values are all distinct (so, kmin s unique).

3. Let CE™™ be the certificate of the agent getting the minimal value Emin -
Then, after the FIND-MIN phase, for every active agent u, we have CE;"" =
CEmZn'

Lemma[B below shows that, if number of non-faulty agents is ©(n), a random
execution of P is good w.h.p.

Lemma 3. Let o be an absolute constant such that 0 < o < 1. If the number
of faulty agents is at most an, then the random execution of P (with a suitable
choice of parameter v = y(a)) is good, w.h.p., i.e. Prq(G) > 1 — ﬁ
Sketch of Proof. We assume that there are at most an faulty nodes and that all
the active agents follow the algorithm for vlogn rounds (for a suitable constant
v(a)). As for Point 1, for every agent v, consider the random variable X, that
counts the number of votes agent v will get after the VOTING phase. In this
phase, at each of the ylogn rounds, every active node chooses independently
and u.a.r. one agent to vote. So, X, can be written as the sum of ©(nlogn)
mutually independent Bernoulli random variables. Using Chernoff’s bound (see
Lemma [§) on every random variable X, and the Union Bound, we have that
(for a suitable choice of parameter v = y(«)) two positive constants 31, B2 exist
such that
Bilogn < X, < Balogn, Yu e A, w.h.p.

As for Point 2, since the k, values are independently chosen w.a.r. in [m] = [n?)]
using standard argument, there will be no collisions and, thus, the minimum of
these values is unique, w.h.p.
As for Point 3, observe that the FIND-MIN phase is equivalent to a standard
single-source broadcast operation of the message CE™™ on the complete sub-
graph induced by the subset A of active agents. The convergence time of this
basic task on the complete graph for the GOSSZP model - when agents use the
pull mechanism - is known to be G(logn) (w.h.p) [I9]. The only difference here
is the presence of faulty agents. However, by a suitable choice of the constant
v = v(«a), we can easily adapt the analysis in [19] for the complete subgraph
induced by any subset A of active agents provided that [A| > (1 — a)n (essen-
tially, the presence of an faulty agents is balanced by a slightly longer broadcast
phase). O

The three properties guaranteed by a good execution are the key ingre-
dients in the proof of the next theorem stating that Protocol P achieves a
fair-consensus.

)

Theorem 4. Let o be an absolute constant such that 0 < o < 1. If the number
of faulty agents is at most an, Protocol P (with a suitable choice of parameter
v = ~v(a)) computes a fair consensus within O(logn) rounds and using messages
of size O(log®n), w.h.p.

Sketch of Proof. Conditioning to ¢(P,é) € G (an event that holds w.h.p. be-
cause of Lemma[B]), we can assume that the protocol does not fail. Indeed, from
Definition 2] (property 1), for every active agent u the value k,, is defined, from

Definition [(property 2) the value k,;;, is unique and, from Definition [(prop-
erty 3), after the FIND-MIN phase all active agents converge to a unique CE™"",
So, there are no multiple minimal certificates that can make fail the COHERENCE
phase and in the VERIFICATION phase the Certificate is valid (each agent votes
as declared in the COMMITMENT phase). By simple probabilistic arguments,
the computation of k, = > new, b mod m performed by every agent u implies
that every agent has the same chance to get the (unique) minimal value. So,
the protocol computes a fair leader election and the network converges to the
leader color in the VERIFICATION phase. The protocol terminates in O(logn)
rounds (by construction) and the largest message is the Certificate of the most
voted agent that have size O(log2 n). Indeed, thanks to Definition P11, it gets
O(logn) votes, each of them having size O(logm) = O(log n). O

3.2 Analysis of the protocol in the presence of rational
agents

In this section we analyse Protocol P in the presence of rational agents and
show that P is a w.h.p. t-strong equilibrium, for any ¢ = o (@) We recall
that A is the set of active agents, C' the set of agents that deviate to a new
set of local algorithms P(, while A\ C is the subset of active agents that follow
Algorithm 1l W.l.o.g. we assume C' C A. Moreover, we say that an agent w is
in the vote intention of an agent v € A\ C if it holds (x,u) € H, (thus in the
VOTING phase u will receive a vote of v).

Following the same approach of Section 31l we first revise the notion of good

execution in order to deal with the selfish behaviour of rational agents.

Definition 5. Let C' be the coalition, P be the new set of local algorithms
for C, and q((P-c,P{),€) be the random variable over Q((P-c,Pi),¢). We
say that q((P-c,P,),€) is good (and define G' C Q' as the subset of all good
executions) if the following events hold:

1. In the COMMITMENT phase each agent u € A receives at least one pull request
by an agent v € A\ C asking for (a copy of) H,.

2. At the end of the COHERENCE phase either Protocol (P—_c, P¢) fails or every
agent v € A\ C gets the same certificate CE™™.

3. At the end of the COMMITMENT phase, let M C A be the set of agents that
have received at least a pull request by an agent in C. Then for every agent
u € A, there exists an agent v € A\ (C'U M) such that w is in the vote
intention of v (i.e. u receives the vote from v in the VOTING phase).

Under some reasonable assumptions of the number of faulty agents and the
size of the coalition, the next lemma shows that the random execution of protocol
is good w.h.p., even when a coalition deviates from P.

Lemma 6. Let « be an absolute constant such that 0 < o < 1. For any set
of faulty agents of size at most an and for any coalition C of size o (%),
the random execution q((P—c,P¢),) (with a suitable choice of the parameter

v =~(a)) is good, w.h.p., i.e. Pra/(G') > 1 — —5.

10

Proof. The theorem hypothesis imply that |A\ C| = o/n for some constant
0 < o < 1—« and we recall that each active agent in A\ C runs each phase of
Algorithm [3T] for vlogn rounds.

1) For any agent u € A and for any agent v € A\ C, define the binary random
variable X, , = 1 iff in the COMMITMENT phase agent u € A receives a pull
request by v asking for (a copy of) H,. Since v follows the protocol, it easily

holds that
1 vlogn
Pr(X,,=0)= (1 — —)
n
Since, all agents v € A\ C follow the protocol, thus making mutually indepen-

dent u.a.r. pull requests, we get

1 a’n-ylogn
Pr(vve A\C: X, ,=0)= <1 —)

n

< e—o/'ylog n_
— na/’Y

Finally, choosing a sufficiently large v and applying the Union Bound, we get

1
PI‘(E'U,V'U S .A\C : Xu,’u = 0) = m
2) Assume that at the beginning of the COHERENCE phase there are at least two
distinct Certificates, and let CE’ be one of them. We thus consider the subset
X of A\ C formed by all the agents having CE’. Without loss of generality

assume |A\ (C U X)| > |X| thus |A\ (CUX)| > %n Then, using similar
arguments to those in the proof of Point 1, we can fix v(«) such that (after
~vlogn rounds) there is (at least) one agent in X that, following the protocol,
will send his Certificate to an agent in A\ (C'U X) w.h.p. Then the protocol

fails.

3) Since |C] = o(g5;) and the length of the COMMITMENT phase is O(logn)
rounds, the overall number of pull requests during this phase made by C' is
o(n). Thus we can assume that |4\ (C'U M)| > An for a fixed constant A,
with 0 < A < /. Moreover, the overall number of votes sent by A\ (C' U M)
(towards an agent chosen independently u.a.r. in [n]) in the VOTING phase is
greater than Aynlogn. Hence, since all the agents in A\ (C' U M) follow the
protocol, using similar arguments to those in the proof of Point 1, we can fix
v() in order to ensure that every agent in A receives at least one vote from an
agent in A\ (C'UM), w.h.p. O

Lemma [0 ensures that, at the end of a good execution, the following facts
hold w.h.p.: 1) The vote intention of any agent u in the coalition C' can be
verified by at least one agent v which does not belong to C; 2) If the protocol
does not fail, then all the agents which does not belong to C agree on the
same certificate CE™™ and they check the same set of votes Wiin; 3) All the
agents receive at least one vote from an agent which does not belong to C.
This guarantees that for every agent u the value k, cannot be controlled by the
coalition C, and thus, according to the protocol rules, k, is chosen u.a.r. in the
range [1,m]; The three facts above will be used to prove that the protocol P is
a whp t-strong equilibrium.

11

Theorem 7. Let a be an absolute constant such that 0 < a < 1. For any set
of faulty agents of size at most an, protocol P (with a suitable choice of the

parameter v = y(«)) is a whpt-strong equilibrium for any t = o (1ogn)'

Proof. Let us consider an arbitrary coalition C' of at most ¢ agents and fix the set
of local algorithms P/, for them. We need the following preliminary definitions:

e Ny, is the vote declared by agent v for the agent u in the first declaration of
v to some agent z € A\ C during the COMMITMENT phase (we recall that if
v has not correctly replied to z or (x,u) ¢ H, then hy , = 0). We also define
ky = > ,eahy. Notice that kj may be different from k,, the latter being
the value that u should declare (in the Certificate CE,,) during the FIND-MIN
phase and also observe that k, is a value agent u can lie on. The difference
between £ and k,, leads us to introduce the following two concepts of winner.

e We call Winner the agent whose label is contained in the (unique - whenever
the execution is good) certificate CE™™ after the COHERENCE phase. Notice
that the certificate CE™™ contains the value ki, which is the minimum value
among the declared values k.

e Let a = argmin,c 4\¢ kv, and let b = argmin,ec k. We say that the Legiti-
mate Winner is a if k, < k;, and it is b otherwise. Notice that the definition
of Legitimate Winner does not depend on the values k, declared by agents in
C and thus it may be case that Winner and Legitimate Winner are not the
same. In particular we are interested in the following distinct two events.

e For any u € A, let E, be the event "the Legitimate Winner is v” and define
Ec = UyecEy. Furthermore Ef, is the event “the Winner is an agent in C”.

We now prove that, in a non-failing good execution of (P_c,Pf), if the
Legitimate Winner is not in C, then the Winner is not in C' as well.

Claim 1. Let us consider any good execution which does not fail. Conditioning
to the event Ec, the Winner turns out to be the Legitimate Winner (hence Ec
implies E(,).

Proof. (of Claim [I) The proof argument is by contradiction. Assume that the
Legitimate Winner v belongs to A\ C and the protocol does not converge to c¢,.
Then this happens only if agent v accepts a certificate CE,, = (ky, W, ¢y, u)
different from his own Certificate CE, = (k,, Wy, ¢,, v) and such that k, < k.
Notice that, by definition of Legitimate Winner, u must belong to C' and k, #
k. Hence, thanks to Definition [(property 2), at the end of the COHERENCE
phase every agent v € A\ C gets the same certificate CE,, (hence, the same set
W) and thanks to Definition [l (property 1), some agent z € A\ C exists whose
local data (i.e. L) is not consistent w.r.t. W,, thus making the protocol fail. A
contradiction. O

Claim 2. Let us consider any good execution, every agent in A has the same
chance to be the Legitimate Winner (i.e. Yu € A, Pr(E,) = I_j\\)

Proof. (of Claim) We will argue that (i) for any b € C' we have that k; is
w.a.r. in [m] and (ii) for any a € A\ C we have that k, is u.a.r. in [m]. To prove

12

(1), notice that &} is defined in the COMMITMENT phase: Thanks to Definition
(property 3) at the end of this phase, for every b € C there is still at least
one agent z in A\ C that voted b and was not pulled by any agent of C. Since
ze A\ C, h? ,, coincides to the vote of z actually given (in the VOTING phase)
to b, which is distributed w.a.r. in [m]. For the principle of deferred decision
this implies that k; is w.a.r. in [m] as well. To prove (ii), notice that k, is
determined in the VOTING phase: Thanks to Definition [l (property 3) at the
end of the VOTING phase, for every a € A\ C there is still at least one agent z
in A\ C that voted for a and was not pulled by any agent of C. Since z € A\ C,
h} , coincides to the vote of z actually given (in the VOTING phase) to a which
is distributed w.a.r. in [m]. For the principle of deferred decision this implies
that k, is w.a.r. in [m] as well. Observe that, since both z and a are in A\ C,
R} , cannot be discovered by any agent in C' during the VOTING phase.
Claim 2 follows from (i), (ii), and from the fact that, for simple symmetry
argument, any agent has the same chance to get the minimal value. O
Given any subset X C A and any color ¢ € X, we define N(X,c) as the
number of agents in X supporting ¢. Then Claims [[l and [2] easily imply the
following properties of a good execution.

Claim 3. Let us consider any good execution which does not fail. Conditioning

to the event Ec, the protocol converges to a color ¢ € X with probability %

Claim 4. Let us consider any good execution which does not fail. Then it holds

e
that Pr(Ep) < -

Thanks to Lemmal[G we can now consider only good executions (i.e. ¢((P-c,P,),C) €
G") where Claim [B] and Claim [do hold. We now use such claims to show by
contradiction that the protocol is a whp ¢t-strong equilibrium.

For any ¢ € ¥ define Pr(c) as the probability the protocol converges to color c.
Then for every agent u € C, we can evaluate his expected utilit

Eq [ru((P-c,Pe), 0)] =

Pr(f(q((P-c,Pe),€) = eu) = x Pr(f(a((P-c, Pe),¢) =1) <
Pr(f(¢((P-c,Pe),€) = cu) =

Pr(E¢) Pr(ca EG) + Pr(Eg) Pr(cu| E)

Hence,

EQ’[TU((P—CaP/C)aE)] < ~ -
Pr(E¢) Pr(cu| E¢) + Pr(Eg) Pr(cu|E¢) (2)

Thanks to Claim Bland @ we can fix some ¢ € [0, 1] such that the above formula
can be rewritten as:

(5 (45 25

"Recall that all the events in €' and € are conditioned to q((P_¢,Pg),6) € G’ and
q(P,¢) € G, respectively. For the sake of clarity, with a little abuse of notation, we will not
explicitly write it.

13

Note that, thanks to Theorem [if all the agents follow Protocol P the expected
utility of every agent u is N (A, ¢,)/|A|. According to Definition [, in order to
have a profitable deviation for C, for every agent u € C, we should have:

Eq [ru((P-c. Pe), 6)] > Ba[ru(P,)]

Thanks to Inequality], the above condition implies that

(- (4 255

N(A,c,)
> R ———
|A|

Hence,
Pr(cy|Ep) >

1 (Ne) (JA\C] [\ NA\Ce)
|C|/|A|6(A (|A| *5) A\ C])

It thus follows that

IC|/|A] =0 7

Pr(cy|E¢) >

where in the last inequality we used the fact that, by definition,
N(Cv C’u.) = N(A7 C’u.) - N(A\ Ca Cu)

Let X(C) be set of all the colors that are supported by at least one agent in
C'. So, for any ¢ € %(C), Inequality Bl should hold. Then, saturating the above
inequalities over all colors in X(C'), we get:

Z Pr(c|Eq) >

ceX(C)
N(C,e)/JA] — SN(A\ C,0)/]A\ €
c@z@ /A~ 5 @
Since
S NG =[O,

cex(C)

then the r.h.s. of Inequality @] can be rewritten as

Z N(C,e)/|A| = 6N(AN\C, o) /AN C| _
cen(C) ICI/|A] =6

[CI/IAl = 0 cexc) N(ANC o) /AN C] %)
ICI/IA] =6

Since, by definition, it holds that

> N(A\C,0) < |A\C|

ceX(C)

14

then we get
ICI/IAl =~ 0 Yocemioy) NAN G o)/ANC] ©)
ICI/|A] =6 -
From Inequalities @6, we should have) .., o) Pr(c[E¢) > 1: This is clearly

false. Thus, there must be at least one agent in C' that will not increase his
expected utility, concluding the proof. O

3.3 Useful probability bounds

Lemma 8 (Chernoff bounds). Let X = > | X; where X;’s are independent
Bernoulli random variables and let p = E [X]. Then,

JZ;L

1. Forany0 <6 <4, Pr(X > (1 +dp) <e 1 ;
2. For any 6 >4, Pr(X > (1 +6)u) < e™%;

3. Forany \>0,Pr(X > pu+) < o222 /n

4 Conclusions

Efficient algorithmic methods for consensus tasks in fully-decentralized systems
where agents may reveal a selfish behaviour is a central issue that arises in sev-
eral scientific fields such as social networks, peer-to-peer networks, biological
systems, e-commerce, and crypto-currency. Hence, the definition of reasonable
distributed models and specific problems capturing some of the major technical
questions is a line of research that is currently attracting increasing interest
from the distributed computing community. One of the technical goals in this
context is that of reducing local memory and communication cost of the pro-
posed consensus protocols. Considering the specific network scenarios where
this kind of rational consensus may play an important role, we believe this is
an important question which is still far to be well-understood. Our contribu-
tion provides a first step for this general aim since it shows that, on complete
networks, fair rational consensus can be obtained in logarithmic time in a com-
munication model, the GOSSZP one, that severely restricts both local memory
and message communication.

In our opinion, two specific open problems “suggested” by our work look
rather interesting. The first one is to provide GOSSZP algorithms for rational
fair consensus in other relevant classes of graphs, while the second one is the
study of this problem in the asynchronous (i.e. sequential) GOSSZP model
where, at every round, only one (possibly random) agent is awake.

References

[1] I. Abraham, D. Dolev, R. Gonen, and J.Y. Halpern. Distributed com-
puting meets game theory: robust mechanisms for rational secret sharing
and multiparty computation. In Eric Ruppert and Dahlia Malkhi, editors,
Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of
Distributed Computing, PODC 2006, Denver, CO, USA, July 23-26, 2000,
pages 53-62. ACM, 2006.

15

2]

[10]

[11]

[12]

I. Abraham, D. Dolev, and J.Y. Halpern. Distributed protocols for leader
election: A game-theoretic perspective. In Yehuda Afek, editor, Distributed
Computing - 27th International Symposium, DISC 20183, Jerusalem, Israel,
October 14-18, 2013. Proceedings, volume 8205 of Lecture Notes in Com-
puter Science, pages 61-75. Springer, 2013.

Y. Afek, Y. Ginzberg, S.L. Feibish, and M. Sulamy. Distributed computing
building blocks for rational agents. In Magnis M. Halldorsson and Shlomi
Dolev, editors, ACM Symposium on Principles of Distributed Computing,
PODC 14, Paris, France, July 15-18, 2014, pages 406-415. ACM, 2014.

Nir Andelman, Michal Feldman, and Yishay Mansour. Strong price of
anarchy. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 07, pages 189-198, Philadelphia, PA, USA,
2007. Society for Industrial and Applied Mathematics.

Dana Angluin, James Aspnes, and David Eisenstat. A Simple Population
Protocol for Fast Robust Approximate Majority. Distributed Computing,
21(2):87-102, 2008. (Preliminary version in DISC’07).

L. Becchetti, A. Clementi, E. Natale, F. Pasquale, and R. Silvestri. Plural-
ity Consensus in the Gossip Model. In Proc. of the 26th Ann. ACM-SIAM
Symp. on Discrete Algorithms (SODA’15), pages 371-390. STAM, 2015.

X. Bei, W. Chen, and J. Zhang. Distributed consensus resilient to both
crash failures and strategic. In http://arziv.org/abs/1203.4324; version 3,
2012.

Keren Censor-Hillel, Bernhard Haeupler, Jonathan Kelner, and Petar May-
mounkov. Global computation in a poorly connected world: Fast rumor
spreading with no dependence on conductance. In Proceedings of the Forty-
fourth Annual ACM Symposium on Theory of Computing, STOC ’12, pages
961-970, New York, NY, USA, 2012. ACM.

Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott
Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic algo-
rithms for replicated database maintenance. In Proc. of the 6th Ann. ACM
Symposium on Principles of Distributed Computing (PODC’12), pages 1—
12. ACM, 1987.

B. Doerr, L. A. Goldberg, L. Minder, T. Sauerwald, and C. Scheideler. Sta-
bilizing consensus with the power of two choices. In Proc. of the 23rd Ann.
ACM Symp. on Parallelism in Algorithms and Architectures (SPAA’11),
pages 149-158. ACM, 2011.

Andrew V. Goldberg and Jason D. Hartline. Collusion-resistant mecha-
nisms for single-parameter agents. In Proceedings of the Sixteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, pages 620-629,
Philadelphia, PA, USA, 2005. Society for Industrial and Applied Mathe-

matics.

A. Groce, J. Katz, Thiruvengadam, and V. Zikas. Byzantine agreement
with a rational adversary. In Proc. 89th ICALP, LNCS, pages 561-572,
2012.

16

[13]

[14]

[15]

[16]

[17]

[18]

Joseph Halpern and Vanessa Teague. Rational secret sharing and multi-
party computation. In Proceedings of the thirty-sixth annual ACM sympo-
sium on Theory of computing, pages 623-632. ACM, 2004.

J.Y. Halpern and X. Vilaca. Rational consensus: Extended abstract. In
Proc. ACM PODC"’16, pages 561-572, 2016.

Yehuda Hassin and David Peleg. Distributed probabilistic polling and appli-
cations to proportionate agreement. Inf. Comput., 171(2):248-268, January
2002.

Richard Karp, Christian Schindelhauer, Scott Shenker, and Berthold Vock-
ing. Randomized rumor spreading. In Proc. of the 41th Ann. IEEE Symp.
on Foundations of Computer Science (FOCS’00), pages 565-574. IEEE,
2000.

David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-Based Compu-
tation of Aggregate Information. In Proc. of 43rd Ann. IEEE Symp. on
Foundations of Computer Science (FOCS’03), pages 482-491. IEEE, 2003.

Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and
Steven Goldfeder. Bitcoin and Cryptocurrency Technologies. Princeton
University Press, 2015.

Devavrat Shah. Gossip algorithms. Found. Trends Netw., 3(1):1-125, Jan-
uary 2009.

17

	1 Introduction
	2 Preliminares
	3 An Efficient Protocol for Rational Fair Consensus
	3.1 Analysis of the protocol in the cooperative setting
	3.2 Analysis of the protocol in the presence of rational agents
	3.3 Useful probability bounds

	4 Conclusions

