
Performance Studies of a WebSphere Application, Trade, in Scale-out and
Scale-up Environments

Hao Yu José E. Moreira Parijat Dube I-hsin Chung Li Zhang

IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598-0218
{yuh,jmoreira,pdube,ihchung,zhangli}@us.ibm.com

Abstract

Scale-out approach, in contrast to scale-up approach
(exploring increasing performance by utilizing more pow-
erful shared-memory servers), refers to deployment of ap-
plications on a large number of small, inexpensive, but
tightly packaged and tightly interconnected servers. Re-
cently, there has been an increasing interest in scale-out
approach. The purpose of this study is to discover advan-
tages or disadvantages of scale-out systems with a typical
enterprise workload, IBM Trade Performance Benchmark
Sample for WebSphere Application Server (a.k.a. Trade6).
In this work, through cross system performance compari-
son, we show that for such workload, scale-out approach
has better performance/cost effect. In term of scalability,
we show that WebSphere Application Server packages for
distributed environment scale well while the possible bot-
tleneck of the application deployment is the database tier.
We present preliminary results to show that both database
partitioning feature (DPF) and federated database server
approaches are not exactly suitable for providing scale-out
solution for the database tier of workloads similar to Trade
(small tables and short transactions). In addition, we dis-
cuss our on-going effort on further performance study: (1)
studies of performance/scalability for larger deployments
by adopting the IBM AMBIENCE queuing network model-
ing tool, (2) performance breakdowns utilizing IBM ACTC
hardware counter library.

1 Introduction

The computing approaches used by today’s commercial
applications can be classified into two large groups. Scale-
up refers to running applications on large shared-memory
servers, whose costs usually increase faster than corre-
sponding performance improvements. Scale-out refers to

1-4244-0910-1/07/$20.00 c©2007 IEEE.

deploying applications on a massive number of small, inex-
pensive, but tightly packaged and/or tightly interconnected
servers.

In the past, there has be a large number of studies on run-
ning commercial workloads on large shared-memory server
systems [21, 12, 10]. Recently, many of the large-scale
web-based enterprises (e.g., Google, Yahoo, eBay, Ama-
zon) have successfully scaled their business by exploring
computing systems integrated from large numbers of small,
inexpensive computers [17, 16]. In addition, due to cost-
performance consideration, traditional commercial compa-
nies have shown trend to shift their computing infrastruc-
tures from big servers to small-server based systems [19].
Despite the tremendous increase of interest on scale-out ap-
proach, we found relevant less in-depth performance study
of realistic workloads on such platforms.

The purpose of our study is to gain better understand-
ing of performance impacts of running a typical commercial
workload in a scale-out environment. The workload is IBM
Trade Performance Benchmark Sample for WebSphere Ap-
plication Server (a.k.a. Trade), which exercises all three
tiers (i.e. client, middle and data storage tiers) of today’s
enterprise application architecture.

We have deployed the application on both scale-up and
scale-out environments to establish comparison. For scale-
up system, we used a 16-CPU POWER5 575 system. For
scale-out environment, we used a cluster based on IBM
BladeCenter solution [4]. In this paper, we report perfor-
mance results in term of web service throughput and sys-
tem usages of above systems. Through cross system per-
formance comparison, we show that for such representative
commercial workload, scale-out approach has much better
performance/cost effect. In term of scalability, we show that
WebSphere Application Server packages for distributed en-
vironment scale well while the possible bottleneck of the
application deployment is the data storage tier. Based on
obtained results, we are exploring possibility of scaling out
the database tier of the application. In this paper, we present
preliminary results on adopting technologies such as DB2

data partitioning feature and database federation feature.
The early results suggest that these techniques are not ex-
actly suitable for scaling the database tier that running on
light-weight servers, which makes running the database tier
on more powerful scale-up systems a more natural solution.

In the time of writing, we are actively expanding our
study. In this paper, we discuss our initial efforts toward
modeling the scalability of larger deployments of Trade us-
ing an IBM AMBIENCE modeling tool set. In addition,
we briefly discuss utilizing Hardware Performance Monitor
(HPM) tool of IBM High Performance Computing Toolkit
(HPCT) for in-depth performance analysis.

The rest of the paper is organized as following: Sec-
tion 2 talks about the Trade application and how we have
deployed it. Section 3 presents the performance results
of running Trade on scale-up and scale-out environments,
which show the advantage of scale-out approach in term of
performance-cost factor. Section 4 shows preliminary re-
sults on the course of exploring natural ways of scale-out
the database tier of Trade. Section 5 discusses our efforts on
performance modeling and hardware-counter related per-
formance study of Trade. Section 6 concludes the paper
and discusses future work.

2 Experiment Setup

Trade [7, 8, 5] is the short name of Trade Perfor-
mance Benchmark Sample for WebSphere Application
Server (WAS). WAS is a family of IBM software products,
which provides development and deployment environment
for modern multi-tier web applications [7]. The latest WAS
products align to J2EE 1.4.

The Trade benchmark is designed and developed to
cover the significantly expanding programming model and
performance technologies associated with WAS. Trade is a
stock trading application and allows a registered user to buy
and sell stock, to check his portfolio, and so on. It pro-
vides a real-world workload that enabling performance re-
search and verification test of the J2EE 1.4 implementation
in WAS. Since Trade version 6 (a.k.a. Trade6), all Trade
versions are WebSphere-version dependent. Here we used
Trade v6.1 together with WAS v6.1 packages. Fig. 1 shows
a sample screen-shot illustrates a user’s home page after lo-
gin. The page has account information, current market sum-
mary information, recommendations for buy or sell, etc.

In this study, we have used 3 of various WAS packages.
(1) WebSphere Application Server (WAS) is the base product
package of WebSphere family. It is configured and managed
on a single machine. (2) WebSphere Application Server
Network Deployment (WAS ND) adds the ability to manage
multiple application servers and handle clustered environ-
ments. WAS ND provides the same programming model
support as the base WebSphere Application Server. In addi-

Figure 1. Client Homepage of Trade

tion, it adds support for a variety of topologies and architec-
tures consisting of multiple machines and multiple applica-
tion servers managed under a single umbrella. Specifically,
WAS ND provides deployment optimizations mainly in the
form of clustering, workload management, and administra-
tion. These features allow larger scale deployments. (3)
WebSphere Application Server Extended Deployment (WAS
XD) is an edition of WebSphere that extends the WAS ND,
with additional features for scalability and manageability.
We used the latest WAS XD, version 6.1 for most of the ex-
periments on the scale-out environment and the base WAS
for the experiments on the scale-up environment.

The scale-up system in our study is a POWER5 575
system with 16 physical CPUs (32 SMT threads). Due to
limited resource, we do not have an additional node for
database server. We run a single WAS application server
and the database server in one LPAR (logical partition) [3]
on the system. Fig. 2 shows the deployment of Trade on
the scale-up system. The driver node in the figure is a sep-
arate Linux node running IBM WebShere Studio Workload
Simulator [6], a light-weight workload simulator for web
applications, to mimic web requests.

The scale-out environment is a cluster of Linux PC based
on the IBM BladeCenter family of products. The building
block of the cluster is a BladeCenter-H (BC-H) chassis. The
chassis are connected through a 1-Gbit/s Ethernet network.
Two different kinds of blades are used in our study: JS21
and HS21, among which, JS21 blades are the focus of our
study. JS21 blades are quad-processor (dual-socket, dual-
core) PowerPC 970 blades, running at 2.5 GHz. Each blade
has 8 GiB of memory. The HS21 blades are quad-processor

Figure 2. Trade on the p575 system

Intel Woodcrest blades, running at 3.0 GHz. Each blade has
16 GiB of memory.

The architecture of the Trade (version 6 and 6.1) deploy-
ment on scale-out environment is representative of most
WebSphere applications. Fig. 3 shows one possible deploy-
ment topology. In this topology, the driver, which mimics
the activities of a collection of traders, initiates transactions
through an HTTP request. In the end, a web page, as a re-
ply to the web request, is sent to the driver. Some requests
are purely lookup on accounts, portfolios, and stock prices.
Other requests actually perform buy or sell operations on
stocks. In Fig. 3 the HTTP requests from the driver are
sent to a Load Balancer (LB), which then forwards the re-
quests to one or more HTTP servers. The purpose of the
load balancer, as the name indicates, is to spread the load
between the (potentially) multiple HTTP servers. If there
is only one HTTP server, then the load balancer is super-
fluous. Once an HTTP server receives a request, it passes
it to one of application servers for processing. Each ap-
plication server executes the business logic of the transac-
tion, i.e. it performs the actions implied by the transaction
and generates the return response to the driver. Typically, a
transaction requires operate on a database. Sometimes the
application server does a single query on the database for a
transaction (e.g., check the balance in an account). In other
cases, a single transaction can generate multiple database
operations (e.g., buying a stock requires changing entries in
multiple accounts, creating buying and selling records, up-
dating portfolios). Although multiple transactions can be in
operation across multiple application server instances at the
same time, the operations on the database have consistency
requirements. In general, to obtain optimal performance for
trade, proper tuning of both DB2 server and WAS is needed.
In particular, we set the run-time parameter of Trade to uti-
lize the Dynamic Caching feature supported by WAS, which
usually speedup the application by a factor of 3.

In term of workload, to stress the application-side sys-
tems to their peak capacities, we choose the workload for
driving the application with following characteristics. First,
for a given session, we specify a fixed number of concur-
rently active clients. Secondly, we inject 0% thinking delay
between contiguous requests of a given active clients.

The data presented in this paper contains two sets of per-
formance information. In term of application performance,
we collect average response time and average page-element
throughput (also referred to as page throughput in this writ-

Figure 3. Trade on distributed environment

ing), which are provided by the workload simulator run-
ning on the driver node. In term of system resource us-
age, we have collected usage information of CPU, memory,
disk, and network on each participating computer. We used
nmon [14] for collecting the usage information. nmon is a
free performance monitoring tool for AIX and Linux sys-
tems, which provides a large amount of information on one
screen and can save data to a text file for post-process.

3 Performance Results

3.1 POWER5 Results

A summary of results for Trade v6 on the p5 575 is
shown in Fig. 4 (a). We observe that the average through-
put (measured in pages/second) depends on both the num-
ber of simultaneous clients performing transactions and the
database size (measured in number of users, from 2,000 to
128,000). The throughput first increases with the number
of clients, as more clients can better tolerate the latency of
transactions, until 200 clients. After that, the system sat-
urates and performance actually starts to decrease. For a
given number of active clients, the throughput decreases
with an increase in database size. Transaction throughput
achieves almost 8000 pages/second for a small database size
of 2,000 users and a little over 7000 pages/second for the
commonly reported size of 8,000 users.

Fig. 4 (b) shows the CPU utilization of the p5 575 system
for various experiment configurations. We show the break-
down of CPU utilization between the WAS (java) process
and DB2 server processes and within each type of server the
breakdown between user and system time. We observe that
for the high-utilization cases (200 or more clients), com-
bined user-mode CPU utilization for the WAS and DB2
servers is approximately 80%. Furthermore, the WAS uti-
lizes about three times more CPU than the DB2 server.
Here, we aggregated the CPU usages of all db2sysc pro-
cesses to get the CPU usage of the DB2 instance. This way,
we might missed some less active DB2 processes. Thus,

(a) Page throughput

(b) POWER5 CPU usage

(c) Driver network traffic

Figure 4. POWER5 results

the actual CPU usage of the DB2 server instance should be
higher than reported.

We report the network utilization in Fig. 4 (c), which
presents the measured network traffic between the p5 575
and the driver. Not surprisingly, the profile of network uti-
lization as a function of number of clients and database size
is very similar to the profiles for throughput and CPU uti-
lization. Network traffic reaches between 60 and 70 MB/s
for the high throughput cases, which is about half of the
peak performance of a Gigabit Ethernet link (125 MB/s).
Here, the packet sizes associated to the page sent from the
HTTP server to the driver, as reported by nmon, is in the
average of 800 bytes per packet. With an experiment us-
ing Netperf sending messages (800 bytes/message) from
the p5 system to the driver node with TCP NODELAY op-
tion, the observed network bandwidth is about 75 MB/s.
The high network traffic suggests that additional scaling of
trade on similar scale-up systems would require a faster net-
work, either through channel bonding or through a 10 Gi-
gabit/second Ethernet.

Figure 5. JS21 scaling results

3.2 Scaling Results with WAS on JS21

Our scalability experiment with Trade uses JS21 blades
for WAS nodes (and HTTP node). We experimented with
two variants for the DB2 server: in one case we used a JS21
blade for that role, and in the other case we used an HS21
blade. Results for throughput (pages/second) as a function
of the number of WAS nodes is summarized in Fig. 5.

We observe that the configuration with a JS21 blade as
the DB2 server reaches saturation at 4 WAS nodes, while
the configuration with an HS21 blade as the DB2 server
keeps scaling essentially linearly up to 10 WAS nodes. In
fact, with 9 WAS nodes, the scale-out configuration matches
the performance of the POWER5 575. The cause for the
behavior in Fig. 5 can be observed in Fig. 6(a). The CPU
utilization of the DB2 server increases with the number of
WAS nodes. The JS21 CPUs (PowerPC 970) are not as fast
as the CPUs of the HS21 blade (Intel Woodcrest) and there-
fore they saturate with less work. 4 WAS nodes are enough
to bring CPU utilization of the JS21 DB2 server close to
100%. In comparison, CPU utilization of the HS21 DB2
server is under 90% even with 10 WAS nodes. Fig. 6(b)
shows that the CPU usages of the WAS nodes are fairly
close to capacity. The result also shows that when the num-
ber of WAS nodes increases, the average CPU usage of
all WAS nodes slightly dropped. At the current stage, we
do not have a solution to stablize the CPU usages to the
full capacity. The reason is likely to be a mismatch of the
HTTP server’s policy for distributing the in-come web re-
quests and the dynamic caching optimization of the WAS
processes. We plan to look into the two components further
for the regard.

Fig. 6(c) shows that the network traffic of the HTTP
server increases linearly with the number of WAS nodes
(the figure is for an HS21 DB2 server). That is not sur-
prising since more servers imply more traffic. Similar to the
experiment on the SMP system, because the packet sizes of
the traffic from the HTTP server to the driver are relatively
small (800 bytes per packet), the actual peak bandwidth re-
alizable is only 88 MiB/s (based on experiments using Net-
perf). Therefore, the network usage is still far from satura-
tion and thus not the bottleneck.

(a) DB2 node CPU usage (b) WAS nodes CPU usages

(c) HTTP server network traffic (d) DB2 node disk usage

Figure 6. System usages

Fig. 6(d) is to show the disk access pattern of Trade’s
database server. The chart shows significant seeking activi-
ties (disk controller being busy all the time), and not much
data written to the disk. However, we found that the signifi-
cant disk seeking does not hurt the response of the database
server. This effect is because the large amount of write oper-
ations are for database logging and they are asynchronousg.
In the case of Trade, the database size of Trade is relative
small and so as the logging files. We allocated large enough
buffer pool to hold the database and observed above 99%
buffer pool hit rate.

3.3 Discussion

The above results show that using JS21 blades as WAS
nodes and a relatively powerful HS21 node as database
server, with 9 JS21 blades, the scale-out deployment of
Trade out-performs the scale-up deployment. Here the
listed price for JS21 and HS21 blades is about $9,000
each. The price for a fully configured BladeCenter chas-
sis is $51,422. In our scale-out deployment, we have used
1 HTTP server, 9 WAS node, and 1 database node. Includ-
ing the share for the price for the chassis, the final price for
the 11 blades is roughly $139,403, which is lower than the
list price for a p5 575 system with 16 processors, $166,988.
The results of scale-out deployment show that the middle-
tier (WebSphere Application Servers) can deliver quite scal-
able performance and the bottleneck of the scaling is the
database tier that contains single database node.

4 On Scaling the Database Tier

In this section, we describe two preliminary experiments
in the effort of scaling out the database tier.

4.1 Partitioned Database Experiment

IBM DB2 Universal Database (UDB) has a Database
Partitioning Feature (DPF) [11] since its version 8.1. With
DPF, a database can be scalable to available computing re-
sources (CPUs, memory, disks). However, the scalability
depends on applications. Because the DPF is distributed
together with DB2 version 8.2 and 9.1 packages, it was nat-
ural for us to try the feature to scale the database tier of our
Trade scale-out deployment. DB2 DPF automatically par-
titions the database tables onto multiple DB2 servers based
on built-in hash functions (no support for range-based par-
tition of data tables across multiple physical nodes). With
minor changes of the default database schema of Trade, we
distribute relative large tables across the 2 DB2 servers.

Table 1 summarizes a preliminary performance compar-
ison of trade using single-node DB2 server, and dual-node
DB2 servers utilizing the DB2 PDF feature. This experi-
ment was done before the release of DB2 version 9.1 and
we used DB2 UDB v8.2. In addition, this experiment was
run on WAS ND v6.0 (based on IBM Java2-1.4.2), which
has lower performance compared to that using version 6.1
(based on IBM Java5-2.0). We used one WAS node for
both experiments and we drove the node to its full capac-
ity (100% CPU utilization).

The table shows that the system utilization of the WAS
node and DB2 server nodes for both configurations. The
column NET traffic is for in-coming and out-going net-
work traffic of a node. With both experiments returning the
best performance for the application when running on WAS
version 6.0: obtaining 750 pages/second page throughput,
the results show that the system utilization (CPU usage,
network traffic) for the dual-node DB2 servers are much
higher. The high utilization of the DB2 servers shows that
DB2 PDF has introduced non-trivial overhead. In particu-
lar, the DB server 1, as the instance owning server that talks
to the WAS nodes directly, has 3 times CPU usage of that
single server configuration. This indicates that the server
will be saturated faster than the database server of the single
server configuration will. Therefore, for Trade, it is hard for
DB2 DPF to provide scalable support. Nevertheless, this is
not a surprise. As indicated by previously published techni-
cal papers [20, 9], DB2 DPF is beneficial for databases con-
taining very large tables, and individual transactions taking
relative long time. Trade does not fall in the category.

Table 1. Partitioned DB2 server result
setups Nodes CPU usage NET traffic

user / sys (%) read / write (MiB/s)

2-nodes WAS 89 / 7 1.5 / 7.4
DB2 servers DB server 1 29 / 6 3.6 / 3.3

DB server 2 14 / 4 2.5 / 1.7
1-node WAS 90 / 7 1.4 / 7.3

DB2 server DB server 10 / 2 0.9 / 0.8

4.2 Federated DB server Experiment

Database federation is intended for data integration to
provide uniform access to heterogeneous data sources [15,
2]. In term of implementation, DB2 federation provides
such data integration by adding a layer to process the SQL
operations that touches multiple tables hosted on different
physical servers. In addition, it provides the routing func-
tion to send the actual processing of each table to the appro-
priate database. Database federation can be used to spread a
centralized database server hosting multiple tables to mul-
tiple backend data sources. Then the data can be served
through one or more federated servers, each of which pro-
vides a logical view of the original centralized database. In
some sense, database federation is a scale-out approach for
database management.

We have carried out preliminary study of overhead for
scaling Trade database tier utilizing DB2 federation fea-
ture. In this study, we used WAS ND v6.1. The deployment
topology has 1 WAS node and 1 DB2 node. For the con-
figuration utilizing DB2 federation feature, the role of the
DB2 node is a physical data source. On the WAS node, we
ran 1 application server instance and a DB2 federated server
(providing logical view of the actual database hosted on the
DB2 node). In this configuration, the WAS process run-
ning on the WAS node sends JDBC requests to federated
database server running on the same node. The federated
database server serves the requests by communicating with
the physical data source running on the DB2 node.

Table 2 gives a performance comparison between the
configuration using federated database server and the de-
fault configuration, where the WAS node only runs the WAS
process that communicates directly to the remote DB2 node.
The result suggests that the federation approach not only
introduced much overhead to the WAS node and decreased
the application performance, but also introduced extra CPU
usage on the DB2 node hosting the actual data source.
The overhead we witnessed mainly because of two reasons.
First, we configured the federated server with DB2 two-
phase commit feature which introduces non-trivial overhead
to ensure transaction integrity for multi-site update database
accesses [13]. The second reason is again because Trade has
small tables and short transactions. Therefore, the signifi-
cant overhead we witnessed here may not necessarily pro-

Table 2. Federated DB2 server result
Entries With federation W/o federation

Avg page throughput 448.3 1117.4

WAS node CPU usage 99.6% 99.8%
App server CPU usage 48% 99%
Federation server CPU 51% N/A

DB2 node CPU usage 12% 19%

hibit the scaling out of the database tier and further investi-
gation is needed.

5 On Going Studies

5.1 Performance Modeling

Previously, we have show that Trade scales well with
the number of WebSphere Application Server nodes, pro-
vided having a powerful database server. While our study
approach presented previously is empirical, we would like
to match the study with a more analytical approach. This
should enable us to study the performance and scalability
of Trade with both approach and better justify the study via
mutual validation, correction, etc. For above purpose, we
adopt a queuing network performance modeling toolset de-
veloped for IBM AMBIENCE (Automatic Model Building
using InferENCE) project [18]. Since AMBIENCE toolset
includes comprehensive performance modeling, prediction,
and optimization functionalities targeting today’s IT infras-
tructure, it is natural to use it to complement our perfor-
mance study of Trade. As the first step, we want to use the
toolset to identify possible system bottlenecks and to gain
better knowledge of the scalability of the scale-out deploy-
ment.

From a queuing network modeling perspective, we count
following factors for the model abstractions. Naturally, we
abstract the Trade scale-out deployment topology as a three-
tier web service: HTTP server as the front tier, WAS nodes
as the middle tier, and the DB2 node as the third tier. Since
a single Trade experiment session has a fixed population
of clients, we model the whole system with closed queu-
ing model. Specifically, each client submits a request to the
system and waits for the completion of the request to send
a new request. In effect, there are always a fixed number
of requests in the system. In this abstracted system, differ-
ent components handle the requests differently. While the
front-end and the application Servers process requests from
different clients in parallel, the back-end processes the re-
quests in a sequential manner. To count for this, we model
the HTTP servers and WAS servers as a Processor Sharing
(PS) system. In a PS system, all requests being processed by
the server get equal share of the processing capacity of the
server. The back-end is modeled as a First Come First Serve

Figure 7. Closed queuing model for Trade

(FCFS) system. Finally, all WAS nodes are homogeneous
and we assume that each WAS node handles same fraction
of the total requests coming to the HTTP server.

Fig. 7 shows the closed queuing network model for the
experiment scenario. The queuing network is symmetric as
the delay-centers (think-time, network delay) are modeled
as Infinite Server (IS) stations, the HTTP and WAS servers
are modeled as PS stations, the back-end is modeled as a
FCFS station with infinite waiting room with service times
exponentially distributed at the back-end. The distribution
of service times at the front-end and WAS nodes can be any
arbitrary distribution. As a result, the stationary distribu-
tion of the queuing network has a product-form solution.
The Mean Value Analysis (MVA) for closed queuing net-
works with product-form solution gives a recursive relation
between performance metrics for the system with the in-
crease of population sizes.

The first step of the model building uses experimental
performance data for one experiment configuration (e.g. 20
active clients) to infer the unknown parameters (the service
time) of each physical node. The inference involves Mean
Value Analysis to obtain an iterative expression for the end-
to-end response time and the utilization at each node in
terms of the unknown service times at different nodes. Sec-
ond, the derived response time is compared with measured
end-to-end response time and an optimization problem is
formulated with constraints on the measured and model
predicted utilization of different nodes. The result of this
constrained optimization is the mean service time of each
node. Finally, the derived mean service times of all nodes
are used to predict the performance metrics, end-to-end re-
sponse time and CPU usage, at all nodes for scenarios with
increasing client populations (40,80,160,..).

So far, we have validated above approach on a set of per-
formance data obtained earlier on a cluster of JS20 blades
running WAS ND v6.0. Fig. 8 shows the comparison of the
predicted performance data and actual data obtained from
experiments. The X axes represent the different configura-
tions, identified as the total number of active clients. The
Y axes represent the response time in second. Note that for
both charts, we use the data point associated to 20 active
clients for deriving the model. The charts show that the

Figure 8. Model validation results

predicted response times match the actual value very well,
with error only up to 9%. With this set of early results, we
show that we can predict the scaling of the number of active
clients for a fixed deployment. We have enhanced the model
building process to predict the scaling of the deployed WAS
nodes and expect to obtain corresponding results shortly.

5.2 Performance Breakdowns

In order to understand the application from a low level
hardware point of view, we use the Hardware Performance
Monitor (HPM) tool in the IBM High Performance Com-
puting Toolkit [1] to collect hardware level performance in-
formation. Concurrently, we are concentrating on the WAS
nodes. We collect the counter information while the WAS
process running at the system’s full capacity and delivering
steady high request throughput. Since a newly started WAS
process takes certain time to warm up, we use the hpmstat
command of the HPM tool to collect the hardware counters
of the whole system for a short interval while the WAS pro-
cess is running. Specifically, because there is very limited
support for fine-grain multiplexing of counter-groups in the
HPM library, we invoke hpmstat multiple times to collect
for all the counter groups. Then we collect the derived met-
rics provided by the tool from the basic counters. At the
time of this writing, the study is still undergoing for 3 dif-
ferent platforms (the p5 575 system, JS20 blades, and JS21
blades).

6 Summary and Future Work

To explore the advantages and disadvantages of increas-
ingly popular scale-out computation approach on contem-
porary commercial applications, we carried out extensive
performance studies of a commercial application Trade in
both scale-out and scale-up environments. This paper re-
ports some of our preliminary results. Through cross system
performance comparison, we show that for such workload,
scale-out approach has clear advantage over scale-up ap-
proach when considering performance/cost factor. In term
of scalability of such workload, we show that WebSphere
Application Server packages for distributed environment
scale well while the possible bottleneck of the application
deployment is the database tier. We have explored straight-
forward approaches with the effort to scale-out the database
tier. The preliminary results suggest that both database par-
titioning feature (DPF) and federated database server ap-
proaches are not exactly suitable for Trade, which has small
tables and short transactions. In addition, we have dis-
cussed our on-going effort on further performance studies:
(1) study of performance/scalability for larger deployments
by adopting the IBM AMBIENCE queuing network model-
ing tool, (2) performance breakdowns utilizing IBM ACTC
hardware counter library.

In term of future work, we plan to do similar study for
the more popular SPECjAppServer2004 benchmark. In ad-
dition, we want to engage study of the TPC benchmarks on
the course of exploring scale-out solutions for the database
tier of web-based transaction workload. This will by-pass
the middle-tier of such workload and thus exposes insights
that are more relevant.

7 Acknowledgement

We thank following people from IBM for their helpful
discussions, comments, and resource-related helps: Mo-
hammad Banikazemi, Bulent Abali, Trey Cain, Dilma M.
Da Dilva, Harold Hall, Joefon Jann, Jack Kouloheris,
Robert Krull, Daniel A. Prener, Kyung D. Ryu, Mauricio
J. Serrano, Xiaowei Shen, Yefim Shuf, and Garret Swart.

References

[1] IBM Advanced Computing Technology Center Hard-
ware Performance Monitor Users Guide. URL:
http://domino.research.ibm.com/comm/research projects.nsf
/pages/actc.hardwareperf2.html.

[2] IBM DB2 Database for Linux, UNIX,
and Windows Information Center. URL:
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp.

[3] IBM System p and AIX Information Center. URL:
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp.

[4] IBM Systems: BladeCenter. URL: http://www-
03.ibm.com/systems/bladecenter/.

[5] IBM Trade Performance Benchmark. URL:
https://www14.software.ibm.com/webapp/iwm/web
/preLogin.do?source=trade6.

[6] WebSphere Studio Workload Simulator Programming Ref-
erence. URL: http://publibfp.boulder.ibm.com/epubs/pdf
/c3163082.pdf, October 2003.

[7] WebSphere Application Server V6 Scalability and Perfor-
mance Handbook. IBM Redbook number: SG246392, at
URL: http://www.redbooks.ibm.com, May 2005.

[8] Using WebSphere Extended Deployment V6.0 To Build an
On Demand Production Environment. IBM Redbook num-
ber: SG247153, at URL: http://www.redbooks.ibm.com,
June 2006.

[9] R. Ahuja. Introduction to DB2 for Linux in En-
terprise and Cluster Environments. IBM DB2 White
Papers for Linux, at http://www-306.ibm.com /soft-
ware/data/db2/linux/papers.html, June 2003.

[10] A. R. Alameldeen et al. Evaluating Non-deterministic Multi-
threaded Commercial Workloads. In 5th Workshop on Com-
puter Architecture Evaluation using Commercial Workloads
(CAECW-02), Cambridge, MA, Feb 2002.

[11] R. Chong. Overview of the Database Partitioning Fea-
ture. IBM developerWorks technical notes, at http://www-
128.ibm.com/developerworks, March 2004.

[12] X. Du, X. Zhang, Y. Dong, and L. Zhang. Architectural Ef-
fects of Symmetric Multiprocessors on TPC-C Commercial
Workload. Journal of Parallel and Distributed Computing,
61(5):609–640, May 2001.

[13] S. Englert, S. Harris, and H. Kache. Performance char-
acteristics of new functionality in WebSphere Federation
Server. IBM developerWorks technical notes, at http://www-
128.ibm.com/developerworks, Dec 2006.

[14] N. Griffiths. nmon Manual. URL: http://www-941.ibm.com/
collaboration/wiki/display/WikiPtype/nmon+Manual, 2006.

[15] L. Hass, E. Lin, and M. Roth. Data Integration Through
Database Federation. IBM Systems Journal, 41(4), 2002.

[16] J. Layton. How Amazon Works.
http://computer.howstuffworks.com/amazon1.htm, 2005.

[17] J. Layton. How eBay Works.
http://computer.howstuffworks.com/ebay2.htm, 2005.

[18] Z. Liu, C. H. Xia, P. Momcilovic, and L. Zhang. AM-
BIENCE: Automatic Model Building using InferEnce. In
Congress MSR03, Metz, France, Oct 2003.

[19] S. Marlin. Wall Street Firms Embrace Cutting-Edge IT. in
InformationWeek, March 2005.

[20] F. McArchur. Best Practices for Tuning DB2 UDB v8.1
and its Databases. IBM developerWorks technical notes, at
http://www-128.ibm.com/developerworks, Apr 2004.

[21] I. M. Steiner and Y. Shuf. A Characterization of a Java-
based Commercial Workload on a High-end Enterprise
Server. ACM SIGMETRICS Performance Evaluation Re-
view, 34(1):379–380, June 2006.

