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Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA)

Av. Carl Friedrich Gauss 7, 08860 Castelldefels, Spain
email: {rpereira, xmestre}@cttc.es

Abstract—This work explores the clustering of wireless users
by examining the distances between their channel covariance
matrices, which reside on the Riemannian manifold of positive
definite matrices. Specifically, we consider an estimator of the
Log-Euclidean distance between multiple sample covariance
matrices (SCMs) consistent when the number of samples and
the observation size grow unbounded at the same rate. Within
the context of multi-user MIMO (MU-MIMO) wireless communi-
cation systems, we develop a statistical framework that allows to
accurate predictions of the clustering algorithm’s performance
under realistic conditions. Specifically, we present a central
limit theorem that establishes the asymptotic Gaussianity of the
consistent estimator of the log-Euclidean distance computed over
two sample covariance matrices.

Index Terms—Clustering, Wireless Communication, Multiple-
Antenna Systems, Central Limit Theory.

I. INTRODUCTION

Modern wireless communication systems rely on multiple-
antenna radio access technologies to enhance the overall
connectivity and spectral efficiency of the network. The use of
multi-antenna technology allows to introduce an additional or-
thogonality dimension that can be combined with time and/or
frequency multiplexing to enhance the total achievable rates in
a wireless setting. When the total number of user equipments
(UE) is larger than the number of antennas at the base station
(BS), spatial multiplexing alone is not able to completely
cancel out interference among transmissions. In this type of
setting, several advanced non-orthogonal techniques have been
proposed in the literature, which try to manage this residual
interference. Examples of this type of approach are non-
orthogonal multiple access (NOMA) [1], joint spatial division
multiplexing (JSDM) [2] and rate splitting (RSMA) [3] to
name a few. All these methods need an effective partitioning
of receivers into clusters according to spatial proximity, so
that specific signal processing is applied to separately treat
inter-cluster and intra-cluster interference.

Typically, one may use spatial precoding to separate clusters
of users in the angle domain. In this case, the similarity among
principal channel subspaces can be taken as a relevant measure
of angle proximity [4]–[6]. One may therefore use orthogonal
multiplexing to separate users in the same angular cluster.
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However, this is not enough in heavily loaded systems, where
one may additionally exploit the power domain to separate
users within the same angular characteristics. The idea here is
that simultaneous transmission of signals with very different
power may be possible with the use of sequential interference
cancellation [2], [7] so that one may cluster users according
to their spatial proximity (both in terms of their angles of
arrival and distance to the BS). Inter-cluster separability can
be attempted by spatial multiplexing and sequential interfer-
ence cancellation, whereas intra-cluster separability can be
achieved by orthogonal techniques. This previously requires
clustering the channels of the different UEs according to their
spatial proximity. Since wireless channels experiment rapid
fluctuations while multiplexing schemes need to be fixed for
long periods of time, it seems convenient to carry out this
clustering by relying on the second order statistics of the
channels, rather than the channel realizations themselves. In
order to perform this clustering, it seems convenient to rely
on distances between spatial covariance matrices.

Recent approaches have shifted focus from the traditional
Euclidean distance [8], [9] to the study of distances that exploit
the fact that covariance matrices belong to the Riemmannian
manifold of positive definite matrices [10]–[14]. This is the
case of the (square) log-Euclidean distance [15] which, given
two covariance matrices R1, R2, is defined as

dM (1, 2) =
1

M
tr
[
(logR1 − logR2)

2
]

(1)

where the logarithm is applied matrix-wise (i.e. to the eigen-
values). The log-Euclidean metric was originally derived by
endowing the manifold of positive definite matrices with an
appropriate Lie group structure, together with a logarithmic
scalar multiplication that gives the essential properties of a
vector space [16]. Contrary to other alternatives, e.g., affine-
invariant metric [12], [17], the log-Euclidean distance is more
amenable from the computational complexity, has a closed
form solution for its (Fréchet) mean and always yields a
positive definite Gaussian kernel [18]. Hence, it is often the
choice when comparing covariance matrices [17]–[20].

Unfortunately, in practical scenarios, the BS only has access
to the instantaneous channel of each transmitter and has
to estimate the distance between spatial covariance matrices
using raw channel data. The idea here is that the BS can
periodically estimate the channel of each UE (e.g. by the
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use of training symbols), and then process this information
to obtain the distance between covariance matrices. The sim-
plest way to carry out this task would be to estimate the
distance between covariance matrices as the distance between
sample covariance matrices (SCM). Unfortunately, SCMs are
not reliable estimates of the true ones when the number of
channels realizations is not sufficiently large compared to the
number of antennas at the BS. This introduces variability
and uncertainty into the obtained distances, affecting the
accuracy of transmitter grouping and the subsequent network
communication performance. In these situations, it becomes
crucial to ensure that the distance estimators are consistent
when the number of samples per transmitter is finite and
comparable to the number of antennas at the BS. In [9], we
derive a consistent estimator of the log-Euclidean metric in
(1) which provably improves the comparison of two SCMs.

This paper tries to quantify the performance of the pro-
posed distance estimators when attempting to cluster UEs
in a practical wireless communications setting. This can be
done by carrying out a statistical analysis of the different
distances to quantify how effective they are in a certain
scenario. Given the mathematical complexity of the proposed
distances, this analysis may typically involve some sort of
Monte Carlo or bootstrap simulation mechanism [21], [22]
which are often computationally expensive and require large
samples sizes to obtain accurate results. Motivated by the need
for an efficient statistical framework, we present here a Central
Limit Theorem (CLT) for the consistent estimator of the log-
Euclidean which, in turn, allows us to characterize and predict
the quality of clustering of multiple transmitter devices under
realistic wireless communication settings.

II. PRELIMINARIES

Let us consider a wireless scenario where a base station
(BS) equipped with M antennas simultaneously communicates
to K single-antenna user equipments (UEs) over an uplink
channel. We assume that the BS has access to Nj independent
realizations of the jth user’s channel matrix and denote as
Yj ∈ CM×Nj the matrix containing these Nj realizations
as columns, for j = 1, . . . ,K. Moreover, we consider a
correlated a Rayleigh Fading channel model such that the
channel matrix of the jth user is generated as

Yj = R
1
2
j Xj (2)

where Xj is an M × Nj matrix of i.i.d. entries with zero
mean and unit variance associated to the small-scale fading
whereas Rj ∈ CM×M is the channel covariance matrix
at the BS related to the jth user. Specifically, Rj models
the channel’s spatial correlation and large-scale fading βj =
M−1tr(Rj), j = 1, . . . ,K, which depend on the angular
position and distance between the UE and the BS, respectively.

A. Estimators of log-Euclidean Distance

Following the discussion above, we are interested in clus-
tering the different transmitters such that UEs with similar
covariance matrices belong to the same cluster. Unfortunately,

the BS only has access to an estimator of these covariance
matrices, namely the SCM

R̂j =
1

Nj
YjY

H
j , j = 1, . . . ,K

associated to each of the UEs. In this context, for a pair of UEs
(r, s), r ̸= s, r, s = 1, . . . ,K, the BS may attempt to estimate
dM (r, s) by plugging the SCMs R̂r, R̂s into (1) resulting in
the traditional plug-in estimator, hereafter, defined as

d̃M (r, s) =
1

M
tr

[(
log R̂r − log R̂s

)2]
.

For clarity, in this section, we will assume K = 2 and therefore
r = 1, s = 2. In the next section, we will explore the more
general case where K > 2. Furthermore, we will omit the
indices (1, 2) whenever it is clear from the context and write,
for instance, dM = dM (1, 2).

As discussed above, in the wireless communications con-
text, where the number of channel samples N1, N2 is compa-
rable to the number of antennas at the BS, the plug-in estimator
often fails to correctly approximate dM . In this setting, it
is more reliable to use another form of distance estimator,
which turns out to be consistent even if N1, N2 increase
with M , see further [9]. Let us now introduce some formal
mathematical assumptions that will guarantee the consistency
of the proposed estimator.

We make the following assumptions on the covariance
matrices Rj , j = 1, . . . ,K:
(As1) The different eigenvalues of Rj are denoted 0 <

γ
(j)
1 < . . . < γ

(j)

M̄j
, for j = 1, . . . ,K, and have multiplicity

K
(j)
1 , . . . ,K

(j)

M̄j
, where M̄j is the total number of distinct

eigenvalues. All these quantities may vary with M but we
always have infM γ

(j)
1 > 0 and supM γ

(j)

M̄j
< ∞.

(As2) The quantities Nj , j = 1, . . . ,K depend on M , that
is Nj = Nj(M). Furthermore, when M → ∞ we have, for
j = 1, . . . ,K, Nj(M) → ∞ in a way that N ̸= M and
M/Nj → cj for some constant 0 < cj < 1.

Under the above conditions, it follows from [9], that
dM − d̂M → 0 with probability one, where the consistent
estimator d̂M can be expressed as follows. Let us denote the
eigenvalues and the associated eigenvectors of the SCM R̂j

as λ̂
(j)
1 < . . . < λ̂

(j)
M and ê

(j)
1 , . . . , ê

(j)
M , respectively. The

consistent estimator d̂M can be expressed as

d̂M = α(1) + α(2) − 2

M

M∑
k=1

M∑
m=1

β
(1)
k β(2)

m

∣∣∣∣(ê(1)k

)H
ê(2)m

∣∣∣∣2
where (for j = 1, . . . ,K) the coefficients β

(j)
k and α

(j)
k , k =

1, . . . ,M , are defined as

β
(j)
k =

1 +

M∑
m=1
m̸=k

λ̂
(j)
k

λ̂
(j)
m − λ̂

(j)
k

−
M∑

m=1

µ̂
(j)
k

λ̂
(j)
m − µ̂

(j)
k

 log λ̂
(j)
k

M∑
r=1
r ̸=k

λ̂
(j)
r

λ̂
(j)
r − λ̂

(j)
k

log λ̂(j)
r −

M∑
r=1

µ̂
(j)
r

µ̂
(j)
r − λ̂

(j)
k

log µ̂(j)
r + 1



and

α(j) =

(
Nj

M
− 1

) M∑
r=1

(
1 + log µ̂(j)

r

)2
−
(
1 + log λ̂(j)

r

)2
+

1

M

M∑
k=1

(
1 + log λ̂

(j)
k

)2
−
(
Nj

M
− 1

)
log2

(
1− M

Nj

)
+ 1

+
2

M

M∑
k=1

M∑
r=1

[
Φ2

(
µ̂
(j)
r

λ̂
(j)
k

)
− Φ2

(
λ̂
(j)
r

λ̂
(j)
k

)]

+
2

M

M∑
k=1

(
M∑
r=1
r ̸=k

log
λ̂
(j)
r

λ̂
(j)
k

log
λ̂
(j)
k∣∣∣λ̂(j)

k − λ̂
(j)
r

∣∣∣
−

M∑
r=1

log
µ̂
(j)
r

λ̂
(j)
k

log
λ̂
(j)
k∣∣∣λ̂(j)

k − µ̂
(j)
r

∣∣∣
)

(3)

respectively. In the above equation, we have denoted by µ̂
(j)
1 <

. . . < µ̂
(j)
M the M̄j solutions to 1 = Nj

−1tr[R̂jQ̂j(µ̂
(j))] and

we have introduced the function

Φ2(x) =

{
Li2 (x) x < 1

π2

3 − 1
2 log

2 x− Li2
(
x−1

)
x ≥ 1

(4)

where Li2 (x) = −
∫ x

0
y−1 log(1− y)dy is the di-logarithm.

III. ASYMPTOTIC FLUCTUATION OF d̂M

The results in the previous section were derived for the
comparison of two SCMs. In practical scenarios, however, one
is usually interested in considering multiple distances among
several covariances and how they relate to each other. In this
context, let d̂M denote an R-dimensional column vector con-
taining the consistent estimator of the log-Euclidean distances
between R different pairs from a total of K transmitters, that
is

d̂M =
[
d̂M (i1, j1), . . . d̂M (iR, jR)

]T
(5)

where 1 ≤ ir, jr ≤ K, ir ̸= jr, r = 1, . . . , R is the distance
between two different UEs (indexed by ir and jr) among
the R considered pairs. Likewise, we will denote by dM the
R-dimensional column vector containing the actual distances
between these covariances, so that (by the above discussion),
|d̂M−dM | → 0M almost surely. In this section, we will show
that the random vector ζM = M(d̂M − dM ) of size R × 1
asymptotically fluctuates according to a multivariate Gaussian
distribution with zero mean and certain covariance.

Let us introduce the expression of the asymptotic covariance
matrix here. To that effect, let us consider the resolvent matrix
Qj(ω) = (Rj − ωIM )−1. The asymptotic covariance matrix
Σ̄M is defined as an R × R matrix with (r, s)th entry given
by [

Σ̄M

]
r,s

=
1

(2πj)4

∮
Cωir

∮
Cωjr

∮
Cωis

∮
Cωjs(

log(ωir )− log(ωjr )
)2(

log(ω̃is)− log(ω̃js)
)2×

× σ̄2
ir,jr,is,js(ωir , ωjr , ω̃is , ω̃js)dωirdωjrdω̃isdω̃js (6)

where Cωj is a simple contour enclosing all the eigenvalues of
Rj and not {0}, and where σ̄2

i,j,m,n(ωi, ωj , ω̃m, ω̃n) is defined
as

σ̄2
i,j,m,n (ωi, ωj , ω̃m, ω̃n) = ϱi,j(ωi, ωj , ω̃m, ω̃n)δi=mδj=n

+ ϱi,j(ωi, ωj , ω̃n, ω̃m)δi=nδj=m

+ σ̄2
i (ωi, ω̃m;Qj (ωj) ,Qn(ω̃n)) δi=m

+ σ̄2
j (ωj , ω̃n;Qi (ωi) ,Qm(ω̃m)) δj=n

+ σ̄2
i (ωi, ω̃n;Qj (ωj) ,Qm(ω̃m)) δi=n

+ σ̄2
j (ωj , ω̃m;Qi (ωi) ,Qn(ω̃n)) δj=m

with the following additional definitions. The functions
σ̄2
j (ω, ω̃;A,B) for j = 1, . . . ,K are defined as

σ̄2
j (ω, ω̃;A,B) =

tr
[
Γ̃j(ω, ω̃)AΓ̃j(ω, ω̃)B

]
Nj (1− Γj(ω, ω̃))

+
tr
[
RjQj (ω) Γ̃j(ω, ω̃)B

]
tr
[
RjQj (ω) Γ̃j(ω, ω̃)A

]
N2

j (1− Γj (ω, ω̃))
2

and where we have introduced the quantities

Γj(ω, ω̃) =
1

Nj
tr
[
R2

jQj (ω)Qj (ω̃)
]

Γ̃j(ω, ω̃) = RjQj (ω)Qj (ω̃) .

Finally, the functions ϱi,j(ωi, ωj , ω̃i, ω̃j) are defined as

ϱi,j(ωi, ωj , ω̃i, ω̃j) =

tr2 [RiQi (ωi)Qi (ω̃i)RjQj (ωj)Qj (ω̃j)]

NiNj (1− Γi(ωi, ω̃i)) (1− Γj(ωj , ω̃j))
. (7)

Having introduced the terms above, we are now in the
position to formulate a central limit theorem.

Theorem 3.1: In addition to (As1)-(As2), assume that the
observations are complex circularly symmetric Gaussian dis-
tributed and that the minimum eigenvalue of Σ̄M is bounded
away from zero. Then, the random vector

Σ̄
−1/2
M

[
M(d̂M − dM )

]
converges in law to a multivariate standard Gaussian.

Proof: See [23].
Even if the expression obtained above appears to be difficult to
evaluate due to the presence of the contour integrals, one can
typically simplify these expressions using conventional residue
calculus (more details are given in [23]).

More importantly, the above theorem describes the asymp-
totic behavior of the R−dimensional vector d̂M . This, in
turn, allows to infer important statistical insights regarding
the quality of the clustering of different SCMs. In what
follows, we will explore its practical application to the wireless
communications context described above.



IV. NUMERICAL VALIDATION

In order to validate the results presented above, we con-
sider the scenario where K distinct transmitters are each
uniquely assigned to one of three groups (g = 1, 2, 3) based
on their spatial locations. More specifically, we fix three
cluster centroids with coordinates (in meters) at (x, y) =
(20, 60)τ, (70, 70)τ, (80, 30)τ , where τ > 0 is a certain
scaling parameter that effectively controls how close these
clusters are. Each transmitter within a group is randomly
placed within a 15 meter radius from its group’s centroid
location, while ensuring that no two transmitters are placed
at the same location. Figure 1 illustrates the general setup
considered in this work. for two different values of τ . Notice
that, from the BS perspective, small values of τ result in
the different groups being close to each other, whereas larger
values lead to groups being further away from each other.

We follow a similar model as the one detailed in [24] used
to model 3GPP channels, e.g. the Urban Microcell model.
Hence, we model the large-scale fading coefficient, measured
in decibels dB for each transmitter, as

βj = −30.5− 36.7 log10(dj) + ςj

where dj , j = 1, . . . ,K is the three-dimensional physical
distance (in meters) between the jth transmitter to the BS. The
shadowing is designed as a random variable with zero mean
and is correlated among different users by E[ςjςj ] = 422−1δjk ,
where δjk is the distance between the jth and kth UE (see [24,
Chapter 5] for details on the fading modeling). Additionally,
we consider an uplink communication scenario utilizing a
20MHz bandwidth, with the total receiver noise power of
−94dBm. We assume the BS to be located at (0, 0) and
to be elevated 12 meters above the ground, whereas all the
transmitters are placed 2 meters above from the ground.

Finally, we consider non-line-of-sight communication only
and model the channel’s covariance matrices Rj , j = 1 . . . ,K
as the contribution of multi-path signals impinging over a M
dimensional uniform linear array, namely

Rj = βj

∫ π

−π

a(θ)aH(θ)gj(θ)dθ

Fig. 1: Illustrative example of the simulation scenario with
G = 3 groups (blue, red, and green), K = 21 UEs and two
different values of τ = 1, 2 (represented by the circles and the
cross). From the BS perspective (located at the origin), the
parameter τ controls the cluster separability.
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Fig. 2: Comparison between empirical distribution of d̂M
and its asymptotic according to Theorem 3.1 under different
scenarios and N1 = N2 = 24.

where a(θ) is the array response at the base station’s an-
tenna array at angle θ and gj(θ) represents the probabil-
ity density function of a Gaussian distribution with mean
θ̄j = arctan(yj/xj) (i.e., depending on the user’s location)
and variance 30◦ (fixed for all transmitters). We assume for
simplicity of exposition that the number of channel samples
N (g), g = 1, 2, 3 are the same among all the UEs associ-
ated to the same cluster centroid, so that we will denote
c(1) = M/N (1), c(2) = M/N (2), c(3) = M/N (3) to represent
the ratio between the number of antennas at the BS and the
number of samples at groups g = 1, 2, 3.

We start by comparing the asymptotic distribution described
in Theorem 3.1 with the empirical distribution of the esti-
mated distances with finite dimensions. In order to simplify
exposition, Figure 1 compares the histogram (in blue) and the
asymptotic distributions (in orange) of these metrics for a pair
of UEs (i.e., R = 1) with β1 = β2 = 1 and N1 = N2 = 24
for some specific choices of M, θ1, θ2. Observe that there
is a very good match between the asymptotic and empiri-
cal distributions over the different scenarios, which further
highlights the accuracy of our result. Specifically, a good
match between the asymptotic mean and empirical expectation
suggests that the consistent estimator accurately approximates
the true distance (i.e., dM − d̂M → 0), while a good alignment
between asymptotic and empirical variance corroborates for
the results presented in Theorem 3.1. Additionally, we observe
that despite Theorem 3.1 being designed considering the large
regime assumptions, results seems to be consistent even for
relatively low system dimensions.

Finally, note in the cases where θ̄1 = θ̄2 (i.e., implying
identical covariance matrices), the consistent estimator closely



approximates zero. Conversely, when θ̄1 ̸= θ̄2, the values of
d̂M become significantly greater than zero. This distinction
becomes particularly useful when clustering several sample
covariance matrices (SCMs), enabling more accurate differen-
tiation between distinct groups.

A. Clustering of Multiple UEs

We now consider the clustering of multiple SCMs in the
wireless communications context. Specifically, we explore the
advantages of using the consistent estimate over the traditional
plug-in estimator to cluster multiple UEs based on their SCMs.
In this context, we examine the wireless simulation scenario
outlined above and illustrated in Figure 1, with three groups
(G = 3) and different values of K. For clarity, in the figures,
the traditional plug-in estimator is denoted as “TRAD”, while
the consistent estimator is labeled as “IMP”.

We consider that the clustering using a specific distance is
successful for a specific set of channel realizations when the
inter-cluster distance is always higher than the largest intra-
cluster distance. We can therefore evaluate the probability
of clustering success by conditioning on each of the three
clusters achieving the maximum intra-cluster distance. Let
Jinter denote the set of pairs of indexes of UEs belonging
to different clusters and Jintra(g) the set of pairs of indexes
of UEs belonging to the g cluster. The probability of success
can be mathematically expressed as

Psucc =

3∑
g=1

P

[ ⋂
(i,j)∈Jinter

{
d̂M (i, j) >

> max
(k,l)∈Jintra(g)

d̂M (k, l)

}∣∣∣∣∣Ag

]
P [Ag]

where we have denoted as Ag the event that the gth cluster
achieves the maximum intra-cluster distance.

Each of these probabilities can in turn be written as
P
(
Ad̂M < 0

)
where dM is a column vector that contains

all the distances as in (5) and A is a selection matrix with
all the entries equal to zero except for one +1 and one −1
for each row, corresponding to the selection of distances to
conform the different events that come into play into each
argument of the above expression. Since d̂M is asymptotically
Gaussian distributed, so is the resulting column vector Ad̂M .
In fact, the transformed vector will also be asymptotically
approximated as Gaussian distributed, with mean AdM and
covariance A(Σ̄M/M2)AT. Hence, each of the probabilities
above can be evaluated by a multivariate Gaussian cumulative
distribution function evaluated at zero. To evaluate the empir-
ical probability of accurate clustering (referred to as “Prob.
Clustering” in the figures), we will utilize 103 simulations.
This clustering success rate is then defined as the percentage
of realizations where the all estimated intra-cluster distances
are lower than the smallest estimated inter-cluster distance.

The discussion above allow us to asymptotically study the
behavior of the log-Euclidean metric when employed to the
clustering of SCMs of different UEs. Note that this is only

Trad. Imp. Asymptotic

c(1) = c(2) = c(3) = 1/2

c(1) = c(2) = c(3) = 4/5

c(1) = 1/2, c(2) = 2/3, c(3) = 2/3

1 2 3 4 5
0

0.5

1

Growing distance (τ )
(a) M = 8,K = 9

Pr
ob

.C
lu

st
er

in
g

1 2 3 4 5
0

0.5

1

Growing distance (τ )
(b) M = 16,K = 18

Pr
ob

.C
lu

st
er

in
g

Fig. 3: Probability of correct clustering (y-axis) K UEs into
three groups, different ratios M/N (g), g = 1, 2, 3 and growing
τ (x-axis).

possible due to Theorem 3.1 which, as shown above, allows
us to properly approximate the asymptotic behavior of the
log-Euclidean metric. Figure 3 portrays the probability of
correct clustering for the traditional log-Euclidean estimator
(dashed lines), the consistent estimator (solid lines) and its
asymptotic equivalent (solid lines with square marker) for
different regimes M/N (1),M/N (2),M/N (3) and growing τ .
Note that there exists a very good alignment between the
empirical and theoretical probabilities of correctly clustering
the different SCMs, indicating the correctness of our analytical
results and their efficacy as prediction mechanisms. This align-
ment happens regardless of the scenario (different values of
c(g), g = 1, 2, 3) and number of UEs considered. Additionally,
as illustrated above, larger values of τ reflects in easier to
cluster scenarios. Nonetheless, the consistent estimator consis-
tently outperforms the tradition plug-in and produces a high
probability of clustering even for relatively small values of
τ and in scenarios where the plug-in underperforms. This
indicates the robustness of the consistent estimator under
varying system conditions.

Our results also allow us to predict the necessary number
of samples to reach a certain accuracy level. Moreover, in the
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Fig. 4: Probability of correct clustering (y-axis) K UEs into
three groups for fixed M = 8, τ = 1.5 and growing N (g).

context of wireless communications, the number of samples
strongly affect the quality of the clustering solution. However,
performing a large number of channel estimations can be
prohibitively expensive or even impractical, depending on the
scenario. Consequently, it is often advantageous, from both
energy efficiency and system design perspectives, to decide
a priori the number of channel estimations required by the
system to reach a certain clustering quality. Therefore, in
Figure 4, we relax the assumption (As2) and consider the
scenario where M is fixed and N (g), g = 1, 2, 3 grows
unbounded. Notice that, despite relaxing this assumption, our
asymptotic prediction mechanism remains closely aligned with
the empirical results, demonstrating the robustness of our
approach.

V. CONCLUSION

In this work, we have proposed a statistical framework to
estimate the probability of correct clustering multiple UEs via
their channels’ sample covariance matrices using a consistent
estimator of the log-Euclidean distance of two SCMs. Nu-
merical simulations confirm that the consistent estimator can
increase the quality of clustering solutions even for relative low
number of channel samples. Finally, we show that the proposed
framework not only enhances the clustering accuracy but also
provides a reliable predictive methodology for assessing the
performance of these clustering algorithms in realistic MU-
MIMO settings.
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