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Abstract—Power consumption has become one of the most
important concern in the embedded systems’ community and
being able to accurately and quickly estimate power consumption
constitutes a challenging task. In this paper, an innovative and
efficient technique for modelling signal activities and power
consumption of FPGA-based hardware IP blocks is presented. We
use two neural networks to model both the power consumption
and the output signal activities of hardware IPs that compose
a global system. These models are built according to estimated
timing activities, which can be performed by a dedicated low-level
tool. Our approach has the same objective as this type of tool
while achieving a significant speed-up factor and enabling high-
level power estimations. Moreover, we aim at directly estimating
an IP-cascaded system’s power consumption, at high-level. The
effectiveness of the proposed approach is demonstrated through
several case studies on specific hardware blocks for FPGA
devices.

I. INTRODUCTION

Power consumption constitutes a main issue in system de-

sign. Although obtaining the highest level of performance still

remains the main purpose of designers, the reduction of the

energy consumption has also become a critical problem. The

fact is that such systems are usually embedded and often rely

on batteries as unique power supply source. This is especially

true for Field Programmable Gate Array (FPGAs) devices that

have a flexible architecture enabling to implement a myriad

of designs. Nowadays, these circuits have become an efficient

solution for developing low-cost and high-performance embed-

ded systems. Due to their technology, they constitute a viable

alternative to their Application Specific Integrated Circuit

(ASIC) counterparts or to processors such as Digital Signal

Processors (DSP) and General Purpose Processors (GPP).

FPGA designs processes usually follows a top-down ap-

proach from System-level to bitstream generation. From a

power consumption point of view, it is clear that decisions

taken at system level will have the most important impact on

the overall performance. Unfortunately, at this level, accurate

implementation details are generally absent and may lead to

poor estimation results. It is then difficult to conjugate both

accurate power estimations and early decisions at high level.

Today, most tools proposed by FPGA vendors are based

on power estimations performed at low abstraction levels e.g.

XPower Analyzer from Xilinx. Although these tools are quite

accurate, they still require a significant amount of simulation

time, especially for large and complex designs. Furthermore,

this type of tools is generally used by hardware engineers

with a strong experience in hardware design. At this level,

expensive re-design costs can occur if the power budget is not

met.

In this paper, we focus our study on SRAM-based FPGAs

that consist of a matrix of configurable logic cells. In these

devices, sources of power consumption may be either static

and dynamic. Static power refers to the power consumed in

the circuit when it is powered on but without any signal

activity (there is no clock activity in hardware). This power is

directly related to the leakage currents and then depends on

the technology of a specific device, the temperature and the

voltage. For this reason, we have decided to only focus our

study on dynamic power, since this power may be optimized

all along the design process. The dynamic part of the power

consumption for a circuit can be expressed as:

Pdyn =
1

2
V 2 f Ceff α (1)

where V is the power supply voltage, f the operating fre-

quency, Ceff the effective circuit capacitance and α represents

the average number of signal switches per clock period.

The most difficult metric to evaluate is the switching activity

α as it is a pattern-dependent problem [1]. It is clear that the

switching activities of control signals and data have a direct

impact on the power consumption. Two input patterns may

lead to different switching activities and power consumption.

This paper is organized as follows: Section II describes the

previous works that deal with power modelling using neural

networks. Section III presents the proposed approach. Section

IV details some results that have been obtained on several

hardware IP, using our approach. Finally, a conclusion and

future works are provided.

II. RELATED WORKS

Neural networks have proved to be very efficient classifiers

and estimators in a lot of domains. They enable to model

complex non-linear problems into a simple structure that can

be computed very fast compared with other algorithms.

From our point of view, related works can be categorized

regarding the level of accuracy of the data that are used to feed

the neural networks. First, there exist high-level approaches

that feed neural networks based on general quantities such

as an approximated number of gates or a clock frequency,

without any knowledge on how the system is implemented.

Second, low-level approaches require most of the design

implementation steps to be completed. In this context, a lot



of hardware details are then provided which enables accurate

power and switching activity estimations. Both approaches are

described in the following sections.

A. High-level approaches

A common high-level approach is the use of spreadsheets

that have been developed by FPGA vendors. This approach

allows designers to obtain a first global estimation of the

power consumption. These high-level estimators are based on

approximated numbers that are provided by the designers prior

to any implementation steps. Designers provide parameters

values such as the clock frequency, the amount of hardware

resources or thermal information. An average power consump-

tion value is then obtained. XPower Estimation (XPE) is an

example of spreadsheet for Xilinx FPGA devices [2].

In [3], a neural network is used to model the power

consumption from sample data that are provided by XPE,

based on Xilinx’s spreadsheet. An improved back-propagation

algorithm is used to train the network. An average error

of 0.12% is shown in comparison to the XPE spreadsheet

approach. Analytical power models can also be created to the

estimate the IP power consumption in function of parameters

of interest [4]. However, such models are usually less accurate

but increase the flexibility.

B. Low-level approaches

At low-level, FPGA vendors have also contributed to the

development of dedicated tools such as XPower Analyzer

(XPA) from Xilinx or PowerPlay (PP) from Altera. Figure

1 illustrates how to obtain accurate power estimation at low

level by using XPA or PP. First, it can be noticed that XPA

is used after the place and route step where a low-level

VHDL model that includes timing information is generated.

A timing simulation of this model is then performed. From

this simulation, the internal signal activities of the IP is

recorded in a dedicated file (.saif or .vcd). These files include

specific switching information that will lead to the most

accurate power estimation. Finally, XPA estimates the power

consumption from the analysis of the activity file, the design

netlist (.ncd) and a physical constraint file (.pcf). If activity

rates are not provided (by a simulation file), a vector-less

estimation algorithm is used. It assigns default activity rates

at the inputs of the design (usually 12.5%) and propagates

them into the entire design until the outputs are reached.

In other words, activity rates of the inputs are propagated

throughout the circuit until the outputs are reached in order

to obtain an efficient estimation. Under XPA, designers have

the possibility to modify the activity values for a specific input

signal. The switching activity of a signal is defined by a couple

of values: the first is the signal rate (ranging from 0 to 100)

that corresponds to the number of switches during a clock

period. It is also necessary to provide a specific value that

indicates the time during which the signal is at a high logic

level (% High).

A lot of techniques have been developed to address this

switching activity estimation. Most are based on statistics and

Fig. 1. XPower in a FPGA design flow

require simulations to be performed [5]. Other approaches

are based on probabilities [6]. Transition probability of input

vectors, spatial correlation of bits within an input pattern [7]

represent the information that can be exploited to propose new

estimation models. However, such techniques cannot be easily

applied to complex IPs and systems. An approach of macro-

modelling for digital non-sequential IP has been proposed in

[8]. This approach consists in building tables (LUT) that link

power to input/output signal statistics. An average error of

1.94% is achieved.

From our knowledge, there are currently no other works

making use of neural networks to simultaneously model power

consumption and switching activities of large and complex

FPGA hardware elements such as IP (Intellectual Property).

Moreover, switching activity estimation using macro-models

or power models has only been applied to fine-grain compo-

nents such as adders or multipliers.

III. PROPOSED APPROACH

In our work, we aim at proposing a high level tool that

takes into consideration results that have been obtained at low

level (after the place and route steps). This makes it possible

to perform simulations of high level models in a very fast way

while obtaining a good level of accuracy in terms of power

estimation. The model that is proposed in this paper is based

on a neural network whose role is to determine the dynamic

power consumption of a specific hardware block based on

the activity of its input signals. Furthermore, an additional

network is proposed to predict the signal activity of the outputs

directly from its inputs. This is mainly used to propagate the

activities throughout all the models that are representative of

the different elements of a circuit.

Our contributions can be summarized as follows:

• coarse grain modelling of entire hardware IP using neural

networks,



Fig. 2. IP models for dynamic power and signal activity estimation

• propagation of signal activities from model to model

to refine power estimation by considering the pattern-

dependent problem.

• fast and accurate power and signal activity estimations at

high level

In this work, we assume that the considered architectures

may be seen as a set of interconnected IPs modules that are

implemented in a FPGA. These IPs may be custom built or

directly taken from a vendor’s library but share the same

generic interface allowing them to be easily interchangeable.

This interface is fully compatible with the AXI interface (Ad-

vanced eXtensible Interface) that enables to share information

among several IPs according to a specific protocol. Note that

the AXI interface is spread among the main FPGA vendors

and compatible with most devices.

The proposed approach described in this paper first aims at

providing very fast and accurate power and activities estima-

tions of each hardware IP that constitutes the system. Second,

this estimation is exploited at higher level in order to evaluate

the overall power of the architecture by taking into account

the activity of internal signals. Finally, we aim at directly

estimating an IP-cascaded system’s power consumption by

executing these neural network estimator at high-level.

Our approach is described in Figure 2. Dynamic power

consumption and output signal activities are modelled using

two distinct neural networks. The first neural network de-

termines the average dynamic power consumption according

to the signal rates as well as the percentage of time of its

inputs during which they are at a high logic level. The second

network estimates the average signal rates of its outputs when

applying the same inputs. In a typical data flow architecture,

this is mainly used to cascade results to subsequent IPs models

while guaranteeing realistic values of the switching activities

throughout the circuit.

In our approach, we assume that a dedicated library is

made available to designers. This library contains RTL-code

of the hardware IPs as well as their power estimates. The

neural networks model are also included in the library. This

allows designers to built their system very fast and to speed-up

modelling and design re-use.

The proposed approach is based on two major stages: an

IP characterisation phase and a high-level system modelling

phase.

A. IP characterisation

In the characterisation phase, each IP is fully implemented

in the targeted FPGA family. Design implementation is per-

formed following the synthesis, mapping and place and route

steps. After implementation, a low level power analyzer (XPA

or PP), is used to record the average dynamic power consumed

by the IP. The results obtained by the tool not only take into

account the nature of the circuit (number of LUTs, power

supply, type of FPGA, etc.) but also the activity of the IP

input signals and their probability of occurrence. Basically, if

no timing simulation is performed to record the IP internal ac-

tivity, a vector-less estimation algorithm is used, as described

in section II.

Under XPA, it is possible to directly define the switching

activity of the inputs signals using a setting file (.xpa).

Consequently, we automatically generated a set of 10000 files

in which input signal rates of the IP have been randomly

defined. Then, a vector-less estimation algorithm has been

run and results have been stored in dedicated files. This is

automatically performed to determine 1) the average activity

rates of the IP outputs, 2) the average dynamic power. The

obtained results are then used to build representative examples

to elaborate our models.

At the end of this phase, we obtained the power consump-

tion and activity rates related to the outputs of the considered

IP, with respect to the randomly-defined activity rates of the

inputs. Note that this characterisation phase is only performed

once for each IP and for each device of a FPGA family. A

complete library of IPs is made available that may be used to

build global systems very rapidly.

B. Neural Architecture

The two neural networks that have been described in Figure

2 consist of two independent multi-layer perceptron (MLP)

neural networks.

The structure of these networks is depicted in Figure 3. In

the forward phase, the hidden layer weight matrix is multiplied

by the input vector X = (x1, x2, x3, . . . , xn)
T

to compute the

hidden layer output:

yh,j = f(

Ni∑

i=1

wh,jixi − θ)

where wh,ji is the weight connecting input i to unit j in

the hidden neuron layer. θ is an offset termed bias that is

also connected to each neuron. The function f is a non linear

activation function. In this work, the classic S-shaped sigmoid

function is used for neurons in the hidden layer:

f(α) =
1

1 + e−α

For the output layer neurons, classic linear activation func-

tions are used. The inputs of both models represent the activity

rates of the IP inputs, which are the same inputs as in XPA.



Fig. 3. Structure of a Multi-Layer Perceptron

Fig. 4. Comparison of our approach against XPA

Several structures of MLPs have been studied but a simple

network with one hidden layer has been retained (for both

networks) since it provides a good level of performance (fast

convergence) and reduces the computing time. In the power

model, only one output has been considered which represents

the estimate of the IP dynamic power. In the activity model,

the number of outputs corresponds to the switching activity

rates of each IP output signal and then differs for each model.

C. Training, tests and validation

In order to build the different bases that are required to

train, test and validate the network, we have used the 10000

random activity patterns representing the activity rates of all

inputs bits. Classically, 70 % of these patterns were used to

train the networks. 15 % were used to test the network and 15

% were used to constitute the validation set. A simple back-

propagation algorithm has been used to train the network and

determine the optimal values of the weights. As in [3], we used

Matlab to easily train, test and validate the neural networks.

As described in Figure 4, a comparison between the results

that are provided in XPA and our approach is realised. This

comparison is performed on the 10000 random activity pat-

terns.

IV. RESULTS

We have applied the characterisation process on several

hardware IPs. In this paper, we mainly focus on IPs that

constitute the baseband processing of wireless communication

applications. To illustrate the validity of our approach, we

have modelled several configurations of an Inverse Fast Fourier

Transform (IFFT) hardware block. This block is widely used to

TABLE I
IFFT CONFIGURATIONS

Parameter Value

Transform size 256 pts

Architecture Pipelined streaming

Data quantization
[8,10,12,14,16,18]bits

(input data and phase factor widths)

Scaling / Rounding Scaled / Truncation

Output ordering Natural / Cyclic Prefix insertion

realize OFDM modulation in current wireless systems. IFFT

configurations that were implemented are detailed in Table

I. We have implemented the xfft v7 1 core from Xilinx on

a Virtex-6 LX240T FPGA using ISE 14.4. It can be noted

that data quantization is changed from 8 bits to 18 bits. As a

consequence, the complexity in terms of the number of used

resources for the considered design evolves as a function of

the data quantization.

For each characterisation phase, the number of neurons that

constitutes the hidden layer was arbitrary set to 20.

A. Model Accuracy

Table II shows the accuracy of the models that have been

obtained using both neural networks. The model accuracy has

been evaluated by computing the Mean Square Error (MSE)

and the average absolute error between the target outputs

and the actual outputs. According to this table, it may be

noticed that the power estimation error is very low (in the mW

range) for IPs that generally consume from few to hundreds

of milliwatts. In fact, the range of power consumption values

directly depends on the choice of the FPGA target and the IP

complexity.

The MSE (that has been computed for the activity rates) is

also very low (it ranges from 3.1e-2 to 0.15) which leads to

very accurate estimations of the signals’ activity. This means

that our approach achieves nearly the same accuracy that

the low-level XPA tool. From this consideration, it makes it

possible to propagate these results to subsequent IP modules

without degrading the overall estimation. Regarding the power

estimations that have been obtained, the MSE goes from 5.7e-

2 up to 0.46. The average absolute error is also very low as it

is lower than 0.46 mW and 0.17 for the power and the activity

respectively.

B. Simulation Acceleration Factor

The main interest of the proposed approach is to consid-

erably accelerate the simulation time as compared to classic

approaches. In fact, the objective is to allow designers to built

a complete system simply by interconnecting several neural

networks at high level. This point underlines our choice of

interface and the need for the signal activities propagation

through all models. Moreover, the use of models based on

neural networks avoid the development of the entire system

and saves time.

To clarify the interest of our approach, let us imagine that

a designer wants to replace the first block with a custom



TABLE II
MODEL ACCURACY AGAINST XPOWER ANALYZER

Configuration Mean Square Mean Absolute Range

Error Error

8 bits
Power* 5.07e-2 0.14 [24-82] mW
Activity 3.1e-2 0.1 [0-100]

10 bits
Power* 0.109 0.201 [26-95] mW
Activity 7.76e-2 0.14 [0-100]

12 bits
Power* 0.34 0.39 [28-123] mW
Activity 4.9e-2 0.13 [0-100]

14 bits
Power* 0.15 0.25 [29-145] mW
Activity 5e-2 1.3e-3 [0-100]

16 bits
Power* 0.38 0.4 [40-185] mW
Activity 0.14 0.16 [0-100]

18 bits
Power* 0.46 0.46 [35-203] mW
Activity 0.15 0.17 [0-100]

* Dynamic power without inputs/outputs (IOs) power

hardware IP in a system that is made of 4 consecutive blocks.

Consequently, activity rates are going to be modified due to

the change of the first hardware IP. Moreover, the 3 subsequent

blocks also have to be re-evaluated separately in order to con-

sider the modification of the activity rates at the output of the

first block (the power consumption as well). Using the classic

XPA approach, a complete evaluation has to be performed

for every subsequent IP (inputs activity has to be provided in

XPA and a simulation has to be run to generate new output

activities). Once all the input/output activity rates of every IPs

are known, global power consumption can be evaluated. This

requires several steps and an additional simulation time that

is often prohibitive.

In our approach, input and output activity rates are directly

propagated from one neural network to the subsequent ones

thanks to a common interface. Only one computation is

required to evaluate both output activity rates and the related

power consumption of the overall system. Designers only have

to know the switching activity rates of the input pattern. This

makes it possible to obtain much faster results.

These results are even more significant when designers

want to test several configurations of a complete scheme (for

example, when different FFT sizes are explored or several data

quantizations need to be tested). In this case, our approach

only consists in replacing the corresponding IPs models and

running a full simulation.

It can also be noticed in Table III that the time that is re-

quired to estimate power or activity with XPA is increasing as

the complexity of the IP grows. For the different configurations

of the IFFT, XPA requires an estimation time ranging from

23s to 41s. In our approach, since neural networks have a

simple structure, they can easily be computed in software. As

a consequence, the time to estimate the power or the activity

of each IP is nearly constant (around 20 ms), regardless of the

IP complexity. Finally, it can be seen that a speed-up factor

between 11500 and 20500 has been obtained.

V. CONCLUSION

In this paper, a new FPGA-based approach for IP power

consumption and signal activity modelling has been presented.

TABLE III
ESTIMATION SPEED COMPARISON

IFFT XPower Proposed Speed up

config. Results Model factor

8 bits
Power

23s

20ms

11500
Activity

10 bits
Power

24s 12000
Activity

12 bits
Power

28s 14000
Activity

14 bits
Power

32s 16000
Activity

16 bits
Power

35s 17500
Activity

18 bits
Power

41s 20500
Activity

The approach is based on neural networks that aim at mod-

elling the relationship between outputs signal activities (or

power consumption) and input signal activities. Our technique

achieves the same accuracy as a low-level power estimation

tool but with a huge acceleration factor in terms of computa-

tion speed.

We have shown that our approach enables to explore the

design space very efficiently and fast. Designers will only

have to build their own architecture by connecting a set

of predefined models (where each model consists of two

neural networks) and perform a global simulation. A simple

parameter change is almost instantaneous and does not imply

to re-evaluate each IP that builds the systems, as in classic

approaches.Therefore, using our approach makes it possible

to test thousands of configurations in a minimal time.

As future works, we will continue to enrich the existing

library with new IP power estimates and target other applica-

tions domains as well as other architectures (like other FPGA

families or ASICs). We will also try to investigate some more

generic models that can reduce the learning process and thus

facilitate the building of libraries.
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