arxXiv:1509.02633v1 [cs.IT] 9 Sep 2015

Uplink Pilot and Data Power Control for Single
Cell Massive MIMO Systems with MRC

Hei Victor Cheng, Emil Bjornson, and Erik G. Larsson
Department of Electrical Engineering (ISY), Linkdping Mersity, Sweden
Email: {hei.cheng, emil.bjornson, erik.g.larsg@liu.se

Abstract—This paper considers the jointly optimal pilot and with affordable complexity while achieving an acceptable
data power allocation in single cell upllnk massive MIMO performance’ as done for examp|e n [6]
systems. A closed form solution for the optimal length of the * compared to power control in P2P systems, power control
training interval is derived. Using the spectral efficiency(SE) as . ive MIMO networks i lativel topic. A i
performance metric and setting a total energy budget per co- IN Massive NEtWorks IS a relatively new topic. Accurate
herence interval the power control is formulated as optimiation ~channel estimates are needed at the BS for carrying out-coher
problems for two different objective functions: the minimum SE  ent linear processing, e.g. uplink detection and downlirée p
among the users and the sum SE. The optimal power control coding. Due to the large number of antennas in massive MIMO
policy is found for the case of maximizing the minimum SE by the jnstantaneous channel knowledge, which is commonly
converting it to a geometric program (GP)._ Since maximizing d to be k fectly in th trol literat
the sum SE is anNP-hard problem, an efficient algorithm is assumed to be known perfectly in theé power control liteatur
developed for finding KKT (local maximum) points. Simulation 1S hard to be obtained perfectly. Therefore one needs to take
results show the advantage of optimizing the power controlwer into account both the pilot power and payload power, and
both pilot and data power, as compared to heuristic power cotiol  hence optimal power control becomes even harder in massive
policies. MIMO. This brings a new challenge to designing algorithms
for optimal power control to achieve different objectiv€n
the other hand, the channel hardening in massive MIMO

Massive multiple-input-multiple-output (MIMO) have re-makes it possible to do power control based on the largescal
cently attracted a lot of attentionl[1]/[2]. The idea of m@ss fading rather than small-scale fading. Several work tried t
MIMO is to use a large amount of antennas at the base statig@k|e this hard problem. I [7] the authors optimize theadat
(BS) to serve multiple users at the same time and frequengwver for providing every user the same throughput in multi-
resource block. The ability to increase both spectral efiicy  ce|l massive MIMO. In[[8] power control is done to minimize
(SE) and energy efficiency makes it one of the key candidai@g uplink power consumption under target SINR constraints
for the 5G cellular networks. The analySiS of the performnﬂowever we are not aware of any work that jo|nt|y Optimize
of massive MIMO is of vast importance and has been doRge pilot and data power for massive MIMO. The questions
in [3] for uplink single cell systems and inl[4] for multi-del e want to answer in this paper are:
systems. However the analysis is done with the assumption o&) Is power control on the pilots needed for massive MIMO

equal power allocation among the users. Only a few papers systems? If the answer is yes, how much can we gain
has considered power control, however there has not been ¢, jointly optimizing the pilot power and payload

much optimization of the powers. In order to harvest all the power, as compared to always using full power?

benefits brought by the massive ant.enna arrays, power d:ont.ro2 What intuition can be obtained from the optimal power
among the users is necessary. This can be done by varying” .,ntro|2 This includes the pilot length, and how the pilot
the power of different users to either increase the totaksys and payload power depend on the channel quality.

performance or provide services with certain fairness. . . . .
Power control in wireless cellular network has been Irq this paper we provide partial answers to these questions
the case of single cell operation with maximum ratio

important problem for decades, dating back to point to poin mbining (MRC) at the BS. This is done by formulating and

(P2P) vx_nreles; systems. .LOIS of efforts_ hg\{e been put In(5E8Iving the optimization problems and comparing the result
developing efficient algorithms for maximizing the system

o A~ . with simple heuristic power control policies. Two commonl
performance with different objectives. Due to the intezfere P POW P . y
used performance objectives, namely max-min SE and sum

e optimization, are investigated and efficient optimizati
gllgorithms are developed.

I. INTRODUCTION

optimally, in particular NP-hardness was provenlih [5] foe t
objective of maximizing the sum performance. For practic
use a reasonable approach is to develop suboptimal algarith Il. SYSTEM MODEL

. . e We consider uplink single cell massive MIMO systems with
This work was supported by the Strategic Research Centel, ittkoping M he BS ank sinal THe
University Center for Industrial Information Technolog€ENIIT), and the antennas fit the a Smg e-antenna users.
EU FP7 Massive MIMO for Efficient Transmission (MAMMOET) jest. ~ users are assigned orthogonal pilot sequences of length


http://arxiv.org/abs/1509.02633v1

for K < 7, < T, whereT is the length of the coherencep’;;’ = C/ By with a normalization constan. These previous
interval in which the channels are assumed to be unchangedrk can all be included in our framework by setting differen
Denote the Rayleigh fading channels between the BS and tregiables to be constant. Therefore our framework of power
users asG € CM*K where the columns otz have the control is the most general and the algorithms we develop in
distributions this work can be applied to all the above scenarios.

gr ~CN(0,8:I), k=1,2,..., K, (1) I11. ACHIEVABLE SE WITH MRC

Since the exact ergodic capacity of the uplink multiuser
annels with channel uncertainty is unknown, bounds on the
hievable SE are often adopted as the performance metric in

which is a circularly symmetric complex Gaussian randorérh
variable, and the variang®, represents the large-scale fading(;le

including path loss and shadowing. The large-scale fad"t}ge massive MIMO literature. Here we develop a lower bound

coefficients are assumed to be known at the BS as thfeo¥ arbitrary power control with the same methodology using

are varying slowly (in the scale of thousands of coheren(f‘r(]-:‘e Jensen’s inequality as in| [3]. This achievable SE for use
intervals) and can be easily estimated. The schemes pmbpolgt?s given by the following propc;sition

in this paper only depends on the large-scale fading WhIChProposition 1: An achievable SE for usek with power

make it feasible to optimize the power control online. control on the bilot and pavioad bower is aiven b
In each coherence interval, each ukdransmits an orthog- P pay P 9 y

onal pilot sequence with powef for channel estimation. We Ry = (1 _ E) log,(1 + SINRy) (5)
assume that minimum mean squared error (MMSE) channel T

estimation is carried out at the BS to obtain the small-scaiere the SINR of usek is

coefficients. This gives an MMSE estimate of the channel (M — 1)p5p§5§¢p

vector from userk as SINR;, = j7d c .
I+ Zj:l ﬁjpi + T;ﬂkp,’i + Tpp];ﬁk Zj;ﬁk ﬁjpi( )
6

k
\/ TpPp Bk
gL = 1p7pk ( Tppﬁgk + n}’g) (2) .I?roqf: Using a similar approach as in [3_] by trfaating all
+ TpPp O additive interference as a worst-case Gaussian noise and th
wherenk ~ CN(0,I) accounts for the additive noise during®PPlying Jensen’s inequality we can arrive at the resule Th

the training interval. The noise has been normalized to uffi¢t@iled proof is omitted here due to lack of space. ®
variance and the variance is absorbed ipj;o During the This achievable SE is used as the user performance metric

k k H
payload transmission interval, the BS received the signal: throughout the paper, wherg, p; andp; are the variables

to be optimized (fork = 1,..., K). The optimization can
K k be done at the BS, which can then inform the users about
Y= ngpusk +n (3) the number of pilot symbols, the amount of power to be
k=1

spent on training, and the amount of power to be spent
where s, is the unit variance information symbol from useon payload data. The aim is to maximize a given utility
k andn ~ CN(0,I) represents the noise during the payloaflinctionU (R, ..., Rx) whereU(-) can be any function that
transmission interval. The noise has been normalized te has monotonically increasing in every argument. The utility
unit variance and the variance is absorbed into the paylo@mhction characterizes the performance and fairness tleat w
powerpk. The channel estimates are used for MRC detectipnovide to the users. Examples of commonly used utility
of the payload, which corresponds to multiplying thewith  function are the max-min fairness, sum performance, and
g1l to detect the symboal;,.. To make fair comparison with the proportional fairness. The general problem we are trying to
scheme with equal power allocations, we impose the follgwirsolve is:

constraint on the total transmit energy over a coherence maximize U (Ri,...,Rx)
interval: o {pphApl}
: k _ k @)
bk 4 (T =1k < By k= 1,.., K (4) subjectto 7ypy ("= 1) < Eimas, Tk

, o py>0,ph >0,Vk,K <7, <T.
where E,,,..,. is the total energy budget for each user within

one coherence interval. In previous wopk,andp® have been IV. OPTIMAL TRAINING INTERVAL

optimized separately or often not optimized at all in whicb t  In this section we derive the optimal length of the training
benefit of massive MIMO cannot be fully harvested. Therefofeterval in closed form. First we provide the following leram
we consider the scenario where each user can choose freely

how to allocate its energy budget on the pilots and payload.Lemma 1. For any monotonically increasing utility func-
In [9] p’; and p* are set equal for every user. The workion, the energy constraintl(4) is satisfied with equality fo
[7] optimized the payload power to maximize the minimunevery user at the optimal solution, i.e.

throughput, which corresponds to fixing for every user k k _

and optimizing over the®. The work [fll(% adopted inverse Py + (T = 7p)Pu = Emaz, k=1,..., K (8)
power control for the pilot power, which corresponds toiegtt at the optimal point.



Proof: Observe that we use orthogonal pilot sequences forThis problem is non-convex as it is formulated here, how-
each user and therefore the SINRs[ih (6) are monotonicadlyer it is a geometric program (GP). Since the objective func
increasing inpﬁ for every userk. For any power allocation in tion is a monomial and the constraints are valid posynomial,
which some users do not use the full energy budget, they dais can be solved efficiently with any GP solvers, here we use
each increase their pilot power to improve their own SINEhe MOSEK solver[111] with CVXI[[1R]. Alternatively{{10) can
until their energy constraint is satisfied with equalitytivaut be turned into a convex optimization problem by the change

causing interference to any other users. B of variable:y; = logx; for every variablex; (in this case
Then we can state the following theorem which gives the’,p%, X). Then any function in the formn(z) = ¢[],

optimal length of training interval in closed form. with ¢ > 0, which is defined as a monomial, becomes an
Theorem 1: For any monotonically increasing utility func-exponential of an affine function. Sum of monomials, defined

tion U(Ru, ..., Ry), the optimalr, equals toK. as the posynomial, becomes sum of exponentials of affine

Proof: functions. Finally taking logarithm of every objective and

We prove this by applying that the functiop(z) = constraint function we obtained a convex problem.

log g'll + 52 ) Is a strictly monotonic increasing function ing  \1aximize the Sum SE

x. The detailed proof is omitted here due to lack of spame.

fIn this part, we aim at maximizing the sum SE by choosing
(Ry,...,RKg) = Zszl Ry.. By using Theorem]1[17) now

Using the result in Theorefd 1, we can reduce the numberg
0ecomes the following optimization problem:

variables involved in the optimization and this enable us
find the optimal solutions for certain utility functions ihe

next section. Also from Theorefi 1 we know that the optimal maximize Zlog(l + SINRy)

training periodr, is equal to the number of users being served, trg} ot}

and is the same for every user. Therefore there is no need for subject to 7,p" + (T — 7,)pk < E Yk (11)
D w = max

assigning pilot sequences of different length for diffénesers. , ,
gning p q 9 ph>0,pk > 0,Vk.
V. JOINT POWER CONTROL OF PILOTS AND PAYLOAD Power control to maximize sum performance is known to be
In this section we focus on solving the power control proin NP-hard problem, even under perfect channel knowledge.
lem (7) for two different utilities, namely max-min fairrees 1herefore in this paper we aim at finding a local optimal
and the sum performance, while other utilities are left foiolution with affordable computational complexity. Here w
future work. These are the two extreme cases: totally fair aRdOPt @ successive convex optimization approach to coeverg

reformulate the problem using the epigraph form as
A. Maximize the Minimum SE .
maximize H Ak

In the max-min fairness which aim at serving every user {rph{ri}, {A} 7
in the cell with equal SE. This is corresponding to choosing subiect to (T -1k <E vk
) ) J TpPp Tp)Pu = Lmaz; (12)
U(Ry,...,Rk) = ming Rg. By using Theoreni]1[{7) now
. T ] 1+ SINRg > Mg, Vk
becomes the following optimization problem:
py > 0,pl > 0,Vk.

maximize min Ry . o o
{p}, {pk} K In this form it is clear that the only non-convexity lies ineth

subject to 7,pk + (T — 7)pk < Epnas, Vk (9) constraints of the SINRs. To deal with these SINR constsaint
we construct a family of functiong;(p) in each iteration
to approximatef(px) = 1 + SINR;, where we denotg;, =

Sincelog(1+x) is an increasing function af, we can remove (P} 7%, Ar). This has to be done for every uskrand the

the logarithm in the objective and use the epigraph form: functions need to satisfy the conditions given in the follegv
lemma from [13]:

Lemma 2: By constructing a family of functions satisfying
the following conditions:
1) f(px) < fi(pPk), Vpx in the feasible set,
2) fipl V) = £V "), wherep!"™" is the solution
from the previous iteration,
) 3 VYY) = Vhimpy ),
and optimize the problem by replacingpy) with f;(px) in
thei-th iteration, the series of the solution will converge to an
L L KKT point of the original problem.
TPy + (T = 1p)Py < Emaz, Yk The first condition is to ensure that the solution we get is
p’; > 0,pF > 0,Vk. feasible for the original problem. The second conditioruees

py > 0,pk > 0,Vk.

maximize A
{pE}.{pk}, A

subject to (M — 1)plpkpin, >

K
A1+ Bipl + TBrpi+
j=1

Ty Bk Y Bipl), Vk
Jj#k



that the solution from the previous iteration is feasibletfee to a coherence bandwidth 860 kHz and a coherence time of
current iteration. As a result the objective value of thgimidl 1 ms). The users are assumed to be uniformly and randomly
problem increases in every iteration since the solutiomnfrodistributed in a cell with radius? = 500 m and no user is
the previous iteration is a feasible point to the problem icloser to the BS than00 m. The path-loss model is chosen
the current iteration. The second and third conditionsttogre as 8, = 1/r;°;-76 wherer;, is the distance of uset from the
guarantee that the KKT conditions for the original problexm aBS. The constank, .. = 0.1 x R3>7% x T to get a signal-to-
satisfied at convergence. As the objective value is boundesise ratio (SNR) of—10 dB at the cell edge when using
from above and monotonically increasing in every itergtiomqual power allocation. Hence the users that are closer to

convergence is guaranteed. the BS have higher SNR. The algorithms are run 600
To construct the family of functionf(x) we need the Monte-Carlo simulations where in each snapshot the users ar
following lemma from [6]: dropped randomly in the cell so that the large-scale fading
Lemma 3: For any posynomiay(x) = >, m;(x), it holds changes.
for any «; that First we consider the cumulative distribution (CDF) of the
ma(@)\ sum SE. In Figuré]l we plot the CDF of the sum SE for
glx) > g(x) = H (;—) (13) the scenario we described. We observe the optimized power

i control increases the sum SE significantly. The whole CDF
The SINR constraints if{12) are in the forz)/g(z) < 1, is shifted to the right by almoﬁ bit/s/Hz with the proposed
which is not a valid posynomial constraint. We apply LemmBower control_on both the pilot and data_as compared to equal
on the denominator to replacgx) with j(x) make it POWer allocation. For exam_ple at tieed5-likely point, power
a valid posynomial constraint. Moreover with, chosen as control on the data only increases the sum SE by around
a; = my(wo)/g(xo), the three conditions in Lemnid 2 aredd%, power.control over both pilot and data contrlbutes_to
satisfied. Doing this for every SINR constraint we get a canv@nother20% increases as compared to equal power allocation.
approximation of problem[{12). The same procedures apdirprisingly even the max-min formulation, which is design
repeated until convergence. To conclude, we obtain a KK@T providing faimess, increases the sum SE by arossid
point to [12) with the procedure described in Algoritfin 1. comparing to equal power allocation.

In Figure[2 we plot the CDF of the minimum SE over

Algorithm 1 Successive convex optimization for probldmi(12}lifferent snapshots of user locations. We observe thatowith
any power control in half of the cases the user with the lowest

L choosepg)) as the so_Iu_tl_on_ O_f max-min problem satisfyings\g il get less thar.5 bit/s/Hz. This is not acceptable if
the constraints and initialize= 1 we want to provide decent quality of service to every user
2: repeat _ _ being served. With max-min power control for both pilot and
form the i-th approximated problem of (12) by ap-qai5 we resolve this problem by guaranteeing every user a
proximating every SINR constraints using Iemﬁig 3, SE of more thar2 bit/s/Hz. Moreover the.95-likely point
4. solve thei-th approximated problem to 0btap£ for s increased by 9 times with power control on the data only,
every userr, and 10 times with power control on both pilot and data with
5 Lt 1 respect to equal power allocation. The performance of the su
6 until conver(%ence SE formulation is rather surprising. By optimizing the pilo
7: return all p;; and data power for the sum SE also increases the minimum
SE by 6 times in th®.95-likely point and guarantee each user
to have more than bit/s/Hz.
VI. SIMULATION RESULTS Finally in Figure[3 we plot the CDF of the per user SE
In this section we present simulation results to demorestratver different snapshots of user locations. We observe that
the benefits of our algorithms and compare the performaneghout power control the SE of the users varies from almost
with the case of no power control as well as the case of powemit/s/Hz, which is not acceptable, t bit/s/Hz which is
control on the payload power only. There @&echemes we probably wasted in practice due to the limited modulatiae si
are comparing here: 1) the solution to problém] (10) (marké&tiith sum SE power control the problem is less serious as the
as ‘max-min’ in the figures), 2) Algorithinl 1 for probleim {12)SE only ranges from b/s/Hz t03.8 b/s/Hz. With the max-
(marked as ‘sum’ in the figures), 3) equal power allocatiomin power control we provide almost the same SINR in every
pk = p’; = FEma./T (marked as ‘no control’ in the figures),snapshot, since the SE of each user is very concentrates at it
4) optimizing only payload power for problerin {10) by fixingmedian point of2.2 bit/s/Hz.
p’; = Fma/T (marked as ‘max-min (data only)’ in the In all the figures we observe that our joint power control
figures), 5) optimizing payload power only for probleml(12pver both pilots and data behaves similarly to power control
using Algorithm[ by fixingp§ = Fma:/T (marked as ‘sum over only the data. Nevertheless, our joint optimization in
(data only)’ in the figures). We consider a scenario witbhreases the benefits even further. The extra gain can be up to
M = 100 antennas, K = 10 users, and the length of the30% if we look at the max-min formulation. The gain of the
coherence interval i& = 200 (which for example correspondssum SE is smaller, but can still be up 20%. This shows if
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Fig. 1. CDF of the sum SE withi/ = 100, K = 10, T' = 200, R = 500m

and cell edge SNR of-10 dB. Fig. 2. CDF of the minimum SE wittiM = 100, K = 10 andT = 200,

R = 500m and cell edge SNR of10 dB.

we need to optimize the power allocation, power control ow !

both pilots and data is the right approach. 0.9
Some additional insights on how the optimal power alloc:
tion is can be obtained from the solutions. For the max-min £
formulation, users that are closer to the BS spend more pov 0.7
on the pilots and users that are further away spend more po\
on the payload. This is due to the fairness property of tt
max-min formulation, which reduces the interference cdus«é 05
from the users that are closer to the BS in order to reduce 1
near-far effect. For the sum SE formulation, both users th
are very close and further than certain distance threstgld 0.3
spend more power on pilots. This is because we require a mi
accurate channel estimate from the users that are very far i
reduce the interference from the users that are very close 0.1
the others. This threshold depends on&lland E,,,,... More
in depth characterization afy;, is left for future work.
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. . . . Fig. 3. CDF of the per user SE with/ = 100, K = 10 andT" = 200,
We considered the optimal joint pilot and data power allog = 500m and cell edge SNR of 10 dB.

cation problems in single cell uplink massive MIMO systems

with MRC detection. A closed form solution for the optimal

length of training interval was first derived. Using the SE REFERENCES

as performance metric and setting a total energy budget, th? o N o Ed § _
P . 1] E. G. Larsson, F. Tufvesson, O. Edfors, and T. L. Marzetidassive

pOWGI’_ control W_as _formulatgd as optlm_lz_atlon problems fOF MIMO for next generation wireless systemdEEE Communication

two different objective functions: the minimum SE and the mag, vol. 52, no. 2, pp. 186-195, Mar. 2014.

sum SE. The optimal power control policy was found for thel2] T. L. Marzetta, “Noncooperative cellular wireless witimlimited num-

case of maximizing the minimum SE by converting it to a Sce)lrsg"fnzasﬁ SEE’S'OQSSE)‘E;EBSEEEVT;%”&Wre'&‘s Communications,

GP. S_in_ce maximiz_ing the sum SE is aP-hard problgm,_ [3] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy anecsl

an efficient suboptimal algorithm was developed for finding efficiency of very large multiuser MIMO systemdEEE Trans. Com+

; i R ; munications, vol.61, no.4, pp.1436-1449, April 2013.

KKT (Iocal miax.lmum). p_omt_s. Simulation r.eSUItS showed the[4] J. Hoydis, S. ten Brink, and M. Debbah, “Massive MIMO iretb)L/DL

advantf%ge of joint optimization over both pilot and data pow of cellular networks: How many antennas do we neetREE J. Sd.

The gain over power control on data only can be ua® Areas Communication, vol. 31, no. 2, pp. 160-171, Feb. 2013.

for the minimum SE an for th m SE. Future work [l Z.-Q.Luoand S. Zhang, “Dynamic spectrum managementnglexity

.0 the u . SE and0% O. the sum S utu e. 0 . and duality,”|EEE J. Sel. Areas Sgnal Processing, vol. 2, no. 1, pp. 57-

includes extension to the multi-cell systems and taking int 73 5qps.

account other detection methods. [6] M. Chiang, C. wei Tan, D. Palomar, D. O'Neill, and D. Julja@Power



(7]
(8]

El

[20]

[11]
[12]

[13]

control by geometric programming,EEE Trans. Wireless Communica-
tions, vol. 6, no. 7, pp. 2640C2651, July 2007.

H. Yang and T. Marzetta, “A macro cellular wireless netlwawith
uniformly high user throughputs,” ifroc. |IEEE VTC-Fall, 2014.

K. Guo, Y. Guo, G. Fodor, and G. Ascheid, “Uplink power tah with
MMSE receiver in multi-cell MU-massive-MIMO systems,” iRroc.
IEEE ICC, 2014

H. Q. Ngo, M. Matthaiou, and E. G. Larsson, “Massive MIMQtlw
Optimal Power and Training Duration AllocationEEE Wireless Com-
munications Letters, vol. 3, no. 6, pp. 605-608, Dec. 2014.

E. Bjornson, E. G. Larsson, and M. Debbah, “Massive NlIMor
Maximal Spectral Efficiency: How Many Users and Pilots SkoBle
Allocated?” IEEE Trans. Wireless Communications, Submitted.

E. D. Andersen, B. Jensen, J. Jensen, R. Sandvik, and dsg#,
“MOSEK Version 6,” Technical Report TRC2009C3, MOSEK, 2009
M. Grant and S. Boyd, “CVX: Matlab software for discipdid convex
programming, version 2.0 beta,” http://cvxr.com/cvx, ®ember 2013.
B. R. Marks and G. P. Wright, “A general inner approximatalgorithm
for nonconvex mathematical program§jperations Research, vol. 26,
no. 4, pp. 681C683, 1978.


http://cvxr.com/cvx

	I Introduction
	II System Model
	III Achievable SE With MRC
	IV Optimal Training Interval
	V Joint Power Control of Pilots and Payload
	V-A Maximize the Minimum SE
	V-B Maximize the Sum SE

	VI Simulation Results
	VII Conclusion and Future Work
	References

