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Abstract—This paper considers the jointly optimal pilot and
data power allocation in single cell uplink massive MIMO
systems. A closed form solution for the optimal length of the
training interval is derived. Using the spectral efficiency(SE) as
performance metric and setting a total energy budget per co-
herence interval the power control is formulated as optimization
problems for two different objective functions: the minimum SE
among the users and the sum SE. The optimal power control
policy is found for the case of maximizing the minimum SE by
converting it to a geometric program (GP). Since maximizing
the sum SE is anNP-hard problem, an efficient algorithm is
developed for finding KKT (local maximum) points. Simulation
results show the advantage of optimizing the power control over
both pilot and data power, as compared to heuristic power control
policies.

I. I NTRODUCTION

Massive multiple-input-multiple-output (MIMO) have re-
cently attracted a lot of attention [1], [2]. The idea of massive
MIMO is to use a large amount of antennas at the base station
(BS) to serve multiple users at the same time and frequency
resource block. The ability to increase both spectral efficiency
(SE) and energy efficiency makes it one of the key candidates
for the 5G cellular networks. The analysis of the performance
of massive MIMO is of vast importance and has been done
in [3] for uplink single cell systems and in [4] for multi-cell
systems. However the analysis is done with the assumption of
equal power allocation among the users. Only a few papers
has considered power control, however there has not been
much optimization of the powers. In order to harvest all the
benefits brought by the massive antenna arrays, power control
among the users is necessary. This can be done by varying
the power of different users to either increase the total system
performance or provide services with certain fairness.

Power control in wireless cellular network has been an
important problem for decades, dating back to point to point
(P2P) wireless systems. Lots of efforts have been put into
developing efficient algorithms for maximizing the system
performance with different objectives. Due to the interference
from other users the power control is usually hard to solve
optimally, in particular NP-hardness was proven in [5] for the
objective of maximizing the sum performance. For practical
use a reasonable approach is to develop suboptimal algorithms

This work was supported by the Strategic Research Center, the Linköping
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with affordable complexity while achieving an acceptable
performance, as done for example in [6].

Compared to power control in P2P systems, power control
in massive MIMO networks is a relatively new topic. Accurate
channel estimates are needed at the BS for carrying out coher-
ent linear processing, e.g. uplink detection and downlink pre-
coding. Due to the large number of antennas in massive MIMO
the instantaneous channel knowledge, which is commonly
assumed to be known perfectly in the power control literature,
is hard to be obtained perfectly. Therefore one needs to take
into account both the pilot power and payload power, and
hence optimal power control becomes even harder in massive
MIMO. This brings a new challenge to designing algorithms
for optimal power control to achieve different objectives.On
the other hand, the channel hardening in massive MIMO
makes it possible to do power control based on the large-scale
fading rather than small-scale fading. Several work tried to
tackle this hard problem. In [7] the authors optimize the data
power for providing every user the same throughput in multi-
cell massive MIMO. In [8] power control is done to minimize
the uplink power consumption under target SINR constraints.
However we are not aware of any work that jointly optimize
the pilot and data power for massive MIMO. The questions
we want to answer in this paper are:

1) Is power control on the pilots needed for massive MIMO
systems? If the answer is yes, how much can we gain
from jointly optimizing the pilot power and payload
power, as compared to always using full power?

2) What intuition can be obtained from the optimal power
control? This includes the pilot length, and how the pilot
and payload power depend on the channel quality.

In this paper we provide partial answers to these questions
in the case of single cell operation with maximum ratio
combining (MRC) at the BS. This is done by formulating and
solving the optimization problems and comparing the results
with simple heuristic power control policies. Two commonly
used performance objectives, namely max-min SE and sum
SE optimization, are investigated and efficient optimization
algorithms are developed.

II. SYSTEM MODEL

We consider uplink single cell massive MIMO systems with
M antennas at the BS andK single-antenna users. TheK
users are assignedK orthogonal pilot sequences of lengthτp
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for K ≤ τp ≤ T , whereT is the length of the coherence
interval in which the channels are assumed to be unchanged.
Denote the Rayleigh fading channels between the BS and the
users asG ∈ C

M×K , where the columns ofG have the
distributions

gk ∼ CN(0, βkI), k = 1, 2, . . . ,K, (1)

which is a circularly symmetric complex Gaussian random
variable, and the varianceβk represents the large-scale fading
including path loss and shadowing. The large-scale fading
coefficients are assumed to be known at the BS as they
are varying slowly (in the scale of thousands of coherence
intervals) and can be easily estimated. The schemes proposed
in this paper only depends on the large-scale fading which
make it feasible to optimize the power control online.

In each coherence interval, each userk transmits an orthog-
onal pilot sequence with powerpkp for channel estimation. We
assume that minimum mean squared error (MMSE) channel
estimation is carried out at the BS to obtain the small-scale
coefficients. This gives an MMSE estimate of the channel
vector from userk as

ĝk =

√

τppkpβk

1 + τppkpβk

(√

τppkpgk + nk
p

)

(2)

wherenk
p ∼ CN(0, I) accounts for the additive noise during

the training interval. The noise has been normalized to unit
variance and the variance is absorbed intopkp. During the
payload transmission interval, the BS received the signal:

y =

K
∑

k=1

gkp
k
usk + n (3)

wheresk is the unit variance information symbol from user
k andn ∼ CN(0, I) represents the noise during the payload
transmission interval. The noise has been normalized to have
unit variance and the variance is absorbed into the payload
powerpku. The channel estimates are used for MRC detection
of the payload, which corresponds to multiplying they with
ĝH
k to detect the symbolsk. To make fair comparison with the

scheme with equal power allocations, we impose the following
constraint on the total transmit energy over a coherence
interval:

τpp
k
p + (T − τp)p

k
u ≤ Emax, k = 1, . . . ,K (4)

whereEmax is the total energy budget for each user within
one coherence interval. In previous work,pkp andpku have been
optimized separately or often not optimized at all in which the
benefit of massive MIMO cannot be fully harvested. Therefore
we consider the scenario where each user can choose freely
how to allocate its energy budget on the pilots and payload.
In [9] pkp and pku are set equal for every user. The work
[7] optimized the payload power to maximize the minimum
throughput, which corresponds to fixingpkp for every user
and optimizing over thepku. The work [10] adopted inverse
power control for the pilot power, which corresponds to setting

pkp = C/βk with a normalization constantC. These previous
work can all be included in our framework by setting different
variables to be constant. Therefore our framework of power
control is the most general and the algorithms we develop in
this work can be applied to all the above scenarios.

III. A CHIEVABLE SE WITH MRC

Since the exact ergodic capacity of the uplink multiuser
channels with channel uncertainty is unknown, bounds on the
achievable SE are often adopted as the performance metric in
the massive MIMO literature. Here we develop a lower bound
for arbitrary power control with the same methodology using
the Jensen’s inequality as in [3]. This achievable SE for user
k is given by the following proposition.

Proposition 1: An achievable SE for userk with power
control on the pilot and payload power is given by

Rk =
(

1−
τp
T

)

log2(1 + SINRk) (5)

where the SINR of userk is

SINRk =
(M − 1)pkup

k
pβ

2
kτp

1 +
∑K

j=1 βjp
j
u + τpβkpkp + τppkpβk

∑

j 6=k βjp
j
u

.

(6)
Proof: Using a similar approach as in [3] by treating all

additive interference as a worst-case Gaussian noise and then
applying Jensen’s inequality we can arrive at the result. The
detailed proof is omitted here due to lack of space.
This achievable SE is used as the user performance metric
throughout the paper, whereτp, pkp and pku are the variables
to be optimized (fork = 1, . . . ,K). The optimization can
be done at the BS, which can then inform the users about
the number of pilot symbols, the amount of power to be
spent on training, and the amount of power to be spent
on payload data. The aim is to maximize a given utility
functionU(R1, . . . , RK) whereU(·) can be any function that
is monotonically increasing in every argument. The utility
function characterizes the performance and fairness that we
provide to the users. Examples of commonly used utility
function are the max-min fairness, sum performance, and
proportional fairness. The general problem we are trying to
solve is:

maximize
τp,{pk

p},{p
k
u}

U (R1, . . . , RK)

subject to τpp
k
p + (T − τp)p

k
u ≤ Emax, ∀k

pkp ≥ 0, pku ≥ 0, ∀k,K ≤ τp ≤ T.

(7)

IV. OPTIMAL TRAINING INTERVAL

In this section we derive the optimal length of the training
interval in closed form. First we provide the following lemma:

Lemma 1: For any monotonically increasing utility func-
tion, the energy constraint (4) is satisfied with equality for
every user at the optimal solution, i.e.

τpp
k
p + (T − τp)p

k
u = Emax, k = 1, . . . ,K (8)

at the optimal point.



Proof: Observe that we use orthogonal pilot sequences for
each user and therefore the SINRs in (6) are monotonically
increasing inpkp for every userk. For any power allocation in
which some users do not use the full energy budget, they can
each increase their pilot power to improve their own SINR
until their energy constraint is satisfied with equality, without
causing interference to any other users.

Then we can state the following theorem which gives the
optimal length of training interval in closed form.

Theorem 1: For any monotonically increasing utility func-
tion U(R1, . . . , Rk), the optimalτp equals toK.

Proof:
We prove this by applying that the functiong(x) =

log
(

1 + a
bx+c

)

is a strictly monotonic increasing function in
x. The detailed proof is omitted here due to lack of space.
Using the result in Theorem 1, we can reduce the number of
variables involved in the optimization and this enable us to
find the optimal solutions for certain utility functions in the
next section. Also from Theorem 1 we know that the optimal
training periodτp is equal to the number of users being served,
and is the same for every user. Therefore there is no need for
assigning pilot sequences of different length for different users.

V. JOINT POWER CONTROL OFPILOTS AND PAYLOAD

In this section we focus on solving the power control prob-
lem (7) for two different utilities, namely max-min fairness
and the sum performance, while other utilities are left for
future work. These are the two extreme cases: totally fair and
ignoring fairness to achieve high total throughput.

A. Maximize the Minimum SE

In the max-min fairness which aim at serving every user
in the cell with equal SE. This is corresponding to choosing
U(R1, . . . , RK) = mink Rk. By using Theorem 1, (7) now
becomes the following optimization problem:

maximize
{pk

p}, {pk
u}

min
k

Rk

subject to τpp
k
p + (T − τp)p

k
u ≤ Emax, ∀k

pkp ≥ 0, pku ≥ 0, ∀k.

(9)

Sincelog(1+x) is an increasing function ofx, we can remove
the logarithm in the objective and use the epigraph form:

maximize
{pk

p},{p
k
u}, λ

λ

subject to (M − 1)pkup
k
pβ

2
kτp ≥

λ(1 +
K
∑

j=1

βjp
j
u + τpβkp

k
p+

τpp
k
pβk

∑

j 6=k

βjp
j
u), ∀k

τpp
k
p + (T − τp)p

k
u ≤ Emax, ∀k

pkp ≥ 0, pku ≥ 0, ∀k.

(10)

This problem is non-convex as it is formulated here, how-
ever it is a geometric program (GP). Since the objective func-
tion is a monomial and the constraints are valid posynomial,
this can be solved efficiently with any GP solvers, here we use
the MOSEK solver [11] with CVX [12]. Alternatively, (10) can
be turned into a convex optimization problem by the change
of variable: yi = log xi for every variablexi (in this case
pkp, p

k
u, λ). Then any function in the formm(x) = c

∏

i x
ai

i

with c > 0, which is defined as a monomial, becomes an
exponential of an affine function. Sum of monomials, defined
as the posynomial, becomes sum of exponentials of affine
functions. Finally taking logarithm of every objective and
constraint function we obtained a convex problem.

B. Maximize the Sum SE

In this part, we aim at maximizing the sum SE by choosing
U(R1, . . . , RK) =

∑K

k=1 Rk. By using Theorem 1, (7) now
becomes the following optimization problem:

maximize
{pk

p}, {pk
u}

∑

k

log(1 + SINRk)

subject to τpp
k
p + (T − τp)p

k
u ≤ Emax, ∀k

pkp ≥ 0, pku ≥ 0, ∀k.

(11)

Power control to maximize sum performance is known to be
anNP-hard problem, even under perfect channel knowledge.
Therefore in this paper we aim at finding a local optimal
solution with affordable computational complexity. Here we
adopt a successive convex optimization approach to converge
to a Karush-Kuhn-Tucker (KKT) point of (11) [13]. We first
reformulate the problem using the epigraph form as

maximize
{pk

p},{p
k
u}, {λk}

∏

k

λk

subject to τpp
k
p + (T − τp)p

k
u ≤ Emax, ∀k

1 + SINRk ≥ λk, ∀k

pkp ≥ 0, pku ≥ 0, ∀k.

(12)

In this form it is clear that the only non-convexity lies in the
constraints of the SINRs. To deal with these SINR constraints,
we construct a family of functionsfi(p) in each iterationi
to approximatef(pk) = 1 + SINRk where we denotepk =
(pkp, p

k
u, λk). This has to be done for every userk and the

functions need to satisfy the conditions given in the following
lemma from [13]:

Lemma 2: By constructing a family of functions satisfying
the following conditions:

1) f(pk) ≤ fi(pk), ∀pk in the feasible set,
2) f(p

(i−1)
k ) = fi(p

(i−1)
k ), wherep

(i−1)
k is the solution

from the previous iteration,
3) ∇f(p(i−1)

k ) = ∇fi(p
(i−1)
k ),

and optimize the problem by replacingf(pk) with fi(pk) in
the i-th iteration, the series of the solution will converge to an
KKT point of the original problem.
The first condition is to ensure that the solution we get is
feasible for the original problem. The second condition ensures



that the solution from the previous iteration is feasible for the
current iteration. As a result the objective value of the original
problem increases in every iteration since the solution from
the previous iteration is a feasible point to the problem in
the current iteration. The second and third conditions together
guarantee that the KKT conditions for the original problem are
satisfied at convergence. As the objective value is bounded
from above and monotonically increasing in every iteration,
convergence is guaranteed.

To construct the family of functionf(x) we need the
following lemma from [6]:

Lemma 3: For any posynomialg(x) =
∑

imi(x), it holds
for anyαi that

g(x) ≥ g̃(x) =
∏

i

(

mi(x)

αi

)αi

(13)

The SINR constraints in (12) are in the formh(x)/g(x) ≤ 1,
which is not a valid posynomial constraint. We apply Lemma
3 on the denominator to replaceg(x) with g̃(x) make it
a valid posynomial constraint. Moreover withαi chosen as
αi = mi(x0)/g(x0), the three conditions in Lemma 2 are
satisfied. Doing this for every SINR constraint we get a convex
approximation of problem (12). The same procedures are
repeated until convergence. To conclude, we obtain a KKT
point to (12) with the procedure described in Algorithm 1.

Algorithm 1 Successive convex optimization for problem (12)

1: choosep(0)
k as the solution of max-min problem satisfying

the constraints and initializei = 1
2: repeat
3: form the i-th approximated problem of (12) by ap-

proximating every SINR constraints using lemma 3,
4: solve thei-th approximated problem to obtainp(i)

k for
every userk,

5: i← i+ 1
6: until convergence
7: return all p(i)

k

VI. SIMULATION RESULTS

In this section we present simulation results to demonstrate
the benefits of our algorithms and compare the performance
with the case of no power control as well as the case of power
control on the payload power only. There are5 schemes we
are comparing here: 1) the solution to problem (10) (marked
as ‘max-min’ in the figures), 2) Algorithm 1 for problem (12)
(marked as ‘sum’ in the figures), 3) equal power allocation
pku = pkp = Emax/T (marked as ‘no control’ in the figures),
4) optimizing only payload power for problem (10) by fixing
pkp = Emax/T (marked as ‘max-min (data only)’ in the
figures), 5) optimizing payload power only for problem (12)
using Algorithm 1 by fixingpkp = Emax/T (marked as ‘sum
(data only)’ in the figures). We consider a scenario with
M = 100 antennas,K = 10 users, and the length of the
coherence interval isT = 200 (which for example corresponds

to a coherence bandwidth of200 kHz and a coherence time of
1 ms). The users are assumed to be uniformly and randomly
distributed in a cell with radiusR = 500 m and no user is
closer to the BS than100 m. The path-loss model is chosen
asβk = 1/r3.76k whererk is the distance of userk from the
BS. The constantEmax = 0.1×R3.76× T to get a signal-to-
noise ratio (SNR) of−10 dB at the cell edge when using
equal power allocation. Hence the users that are closer to
the BS have higher SNR. The algorithms are run for1000
Monte-Carlo simulations where in each snapshot the users are
dropped randomly in the cell so that the large-scale fadingβk

changes.
First we consider the cumulative distribution (CDF) of the

sum SE. In Figure 1 we plot the CDF of the sum SE for
the scenario we described. We observe the optimized power
control increases the sum SE significantly. The whole CDF
is shifted to the right by almost8 bit/s/Hz with the proposed
power control on both the pilot and data as compared to equal
power allocation. For example at the0.95-likely point, power
control on the data only increases the sum SE by around
45%, power control over both pilot and data contributes to
another20% increases as compared to equal power allocation.
Surprisingly even the max-min formulation, which is designed
for providing fairness, increases the sum SE by around35%
comparing to equal power allocation.

In Figure 2 we plot the CDF of the minimum SE over
different snapshots of user locations. We observe that without
any power control in half of the cases the user with the lowest
SNR will get less than0.5 bit/s/Hz. This is not acceptable if
we want to provide decent quality of service to every user
being served. With max-min power control for both pilot and
data we resolve this problem by guaranteeing every user a
SE of more than2 bit/s/Hz. Moreover the0.95-likely point
is increased by 9 times with power control on the data only,
and 10 times with power control on both pilot and data with
respect to equal power allocation. The performance of the sum
SE formulation is rather surprising. By optimizing the pilot
and data power for the sum SE also increases the minimum
SE by 6 times in the0.95-likely point and guarantee each user
to have more than1 bit/s/Hz.

Finally in Figure 3 we plot the CDF of the per user SE
over different snapshots of user locations. We observe that
without power control the SE of the users varies from almost
0 bit/s/Hz, which is not acceptable, to10 bit/s/Hz which is
probably wasted in practice due to the limited modulation size.
With sum SE power control the problem is less serious as the
SE only ranges from1 b/s/Hz to3.8 b/s/Hz. With the max-
min power control we provide almost the same SINR in every
snapshot, since the SE of each user is very concentrated at its
median point of2.2 bit/s/Hz.

In all the figures we observe that our joint power control
over both pilots and data behaves similarly to power control
over only the data. Nevertheless, our joint optimization in-
creases the benefits even further. The extra gain can be up to
30% if we look at the max-min formulation. The gain of the
sum SE is smaller, but can still be up to20%. This shows if
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Fig. 1. CDF of the sum SE withM = 100, K = 10, T = 200, R = 500m
and cell edge SNR of−10 dB.

we need to optimize the power allocation, power control over
both pilots and data is the right approach.

Some additional insights on how the optimal power alloca-
tion is can be obtained from the solutions. For the max-min SE
formulation, users that are closer to the BS spend more power
on the pilots and users that are further away spend more power
on the payload. This is due to the fairness property of the
max-min formulation, which reduces the interference caused
from the users that are closer to the BS in order to reduce the
near-far effect. For the sum SE formulation, both users that
are very close and further than certain distance thresholddth
spend more power on pilots. This is because we require a more
accurate channel estimate from the users that are very far and
reduce the interference from the users that are very close to
the others. This threshold depends on allβk andEmax. More
in depth characterization ofdth is left for future work.

VII. C ONCLUSION AND FUTURE WORK

We considered the optimal joint pilot and data power allo-
cation problems in single cell uplink massive MIMO systems
with MRC detection. A closed form solution for the optimal
length of training interval was first derived. Using the SE
as performance metric and setting a total energy budget, the
power control was formulated as optimization problems for
two different objective functions: the minimum SE and the
sum SE. The optimal power control policy was found for the
case of maximizing the minimum SE by converting it to a
GP. Since maximizing the sum SE is anNP-hard problem,
an efficient suboptimal algorithm was developed for finding
KKT (local maximum) points. Simulation results showed the
advantage of joint optimization over both pilot and data power.
The gain over power control on data only can be up to30%
for the minimum SE and20% for the sum SE. Future work
includes extension to the multi-cell systems and taking into
account other detection methods.
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