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Abstract—In this paper, the problem of content-aware user
clustering and content caching in wireless small cell networks is
studied. In particular, a service delay minimization problem is
formulated, aiming at optimally caching contents at the small
cell base stations (SCBSs). To solve the optimization problem, we
decouple it into two interrelated subproblems. First, a clustering
algorithm is proposed grouping users with similar content
popularity to associate similar users to the same SCBS, when
possible. Second, a reinforcement learning algorithm is proposed
to enable each SCBS to learn the popularity distribution of
contents requested by its group of users and optimize its caching
strategy accordingly. Simulation results show that by correlating
the different popularity patterns of different users, the proposed
scheme is able to minimize the service delay by 42% and 27%,
while achieving a higher offloading gain of up to 280% and
90%, respectively, compared to random caching and unclustered
learning schemes.

Keywords- small cell networks; clustering; caching; offloading;
reinforcement learning

I. INTRODUCTION

A tremendous increase in the demand for spectrum is
expected over the next years, driven by the increasing need
for mobile video streaming. Currently, 50% of the mobile
video traffic pertains to video streaming applications [1]. Such
an increase in data traffic will require significant changes to
today’s cellular networks. One such change, the introduction of
small cell base stations, is viewed as a key paradigm to handle
the increase of video traffic and improve the wireless capacity
by bringing contents closer to the users. However, reaping the
benefits of small cell deployments requires meeting several key
challenges such as resource allocation and network modeling
[2]. Small cells also present new opportunities for network
operators. For instance, owing to the cheap storage/memory
prices and the fact that mobile video accounts for most of the
total internet traffic, one can leverage the use of storage at the
small cell level to bring popular contents closer to the network
edge (i.e., BS and UE). Indeed, one promising approach to
improve the quality-of-service (QoS) of video transmission is
through caching popular contents locally at the small cell base
stations to alleviate peak traffic demands and minimize service
delays.

This research is supported by the SHARING project under Finland grant
128010 and the U.S. National Science Foundation (NSF) under Grants CNS-
1253731 and CNS-1406947.

The use of caching in a backhaul-constrained small cell
network is studied in [3] using optimization algorithms. Lever-
aging device-to-device (D2D) communications for caching is
studied in [4]. In [5], the disruptive role of caching content
in 5G cellular networks is discussed. The authors in [6] study
the benefits of both spatial and social caching as a means of
enhanced traffic offloading in small cell networks. However,
most of these existing works assume similar popularity pat-
terns for all users in the system and do not consider the case
in which users might have different interests over contents.

The main contribution of this paper is to study the prob-
lem of content-caching in wireless small cell networks. In
particular, we consider a network in which small-cell users
have different preferences over different content types. Conse-
quently, there is a need to develop a novel scheme that allows
to minimize the service delay by bringing popular contents
close to the end users. To this end, we propose a spectral
clustering approach, analogous to [8], in order to group
users into judiciously selected clusters based on the content
similarity, which allows the small cell base stations (SCBSs) to
effectively cache the most popular contents, and thus maximize
the cache hit rates. Following the clustering phase, each cluster
is associated to a different SCBS. By allowing each SCBS to
service users that have similar content popularity distribution,
the proposed caching policy enables SCBSs to prefetch users’
popular contents to minimize the service delay. To dynamically
update the SCBS caching strategy, a regret minimization
learning algorithm is proposed allowing each SCBS to decide
which content to cache. Simulation results show that by using
the proposed scheme, the SCBSs are able to efficiently group
users into clusters based on their content requests similarity.
Given this clustering, SCBSs are able to adopt the proposed
learning approach to minimize the delay for delivering users’
content. Numerical results show that offloading gains can be
achieved by caching more popular contents in the SCBS as
compared to classical unclustered approaches.

The rest of this paper is organized as follows. Section II
introduces the system model. The proposed caching scheme
is presented in Section III. In Section IV, we evaluate the
performance of the proposed scheme, while conclusions are
drawn in Section V.

II. SYSTEM MODEL

Consider a wireless heterogeneous network which consists
of a macro base station (MBS) and a set B = {1, . . . , B}978-1-4799-5863-4/14/$31.00 c© 2014 IEEE
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Fig. 1. Illustration of the considered network layout.

of SCBSs each serving a subset of user equipments (UEs).
There are two types of UEs, macro UEs (MUEs), which are
connected to the MBS, and small cell UEs (SUEs). Each SCBS
b ∈ B is equipped with a data storage of capacity fb that
contains Cb ⊆ C from the available contents C in the system,
i.e., a set of cached data. A SUE u requests a certain content
(file) c ∈ C with a request arrival rate that follows a Poisson
distribution with mean λu,c where a higher mean arrival rate
reflects a higher content popularity. If a SUE requests a file
that is available in the cache of its serving SCBS, it will be
delivered directly, otherwise the MBS will handle the request,
which can incur higher delay and higher costs. An illustration
of the network layout is depicted in Fig. 1.

We assume that the content c consists of a file of size lc.
We further define D

(b)
u,c as the service delay experienced by

UE u to retrieve the requested content c from BS b, expressed
as follows:

D(b)
u,c =

lc
ru,b

, (1)

where ru,b is the downlink (DL) transmission rate to user u
from base station b ∈ {0} ∪ B. Here, the index 0 denotes the
MBS, and ru,b is given by:

ru,b = wu,b log2(1 + ΓDL
u,b), (2)

where wu,b is the bandwidth allocated to user u being the total
bandwidth for base station b divided by the number of requests
it serves, and ΓDL

u,b is the DL signal-to-interference-plus-noise-
ratio (SINR).

Due to the storage capacity limits as well as the possible
overhead for caching, it is not possible to cache all contents at
all SCBSs. Therefore, there is a need for a cache replacement
policy using which some of the cached contents are discarded
while new contents are replaced. The main objective for each
SCBS is to find the optimal caching strategy that minimizes
the total delay

∑
u∈U

∑
c∈C D

(b)
u,c, where U is the set of SUEs.

Here, a caching policy is defined as the probability distribution
πb = [πb,1, . . . , πb,C ] where each element πb,k represents the
probability with which an SCBS will request content (or file)
type k. We assume that there is a total of C file types.

Given that the popularity of a certain content can vary
between different UEs, there is a need to cluster the UEs
based on their content request similarities. In other words,
each SCBS should serve a group of users with similar interests
in certain contents so as to optimize its caching strategy
accordingly. Consequently, we define Q as the vector of UE-
SCBS associations such that qu ∈ Q represents the SCBS b

which is servicing UE u. Consequently, the joint clustering
and caching optimization problem is formulated as follows:

minimize
Q,πb

J(Q,πb) =
∑
b∈B

∑
u:qu=b

∑
c∈C

D(b)
u,c, (3)

subject to 0 ≤ πb,c ≤ 1, ∀c ∈ C,∀b ∈ B, (4)
qu ∈ [1, . . . , B], ∀u ∈ U , (5)∑
c∈Cb

lc ≤ fb, ∀b ∈ B, (6)

where (4) is the probability constraint, (5) is the UE associ-
ation constraint and (6) is the storage capacity constraint of
SCBS b.

III. REGRET-BASED CACHING SCHEME

In this section, we propose a joint clustering and caching
scheme to solve the optimization problem described in (3).
To solve the problem in a decentralized manner, we decouple
the problem into two subproblems. First, we group UEs into
clusters based on their file requests during a training period.
Then, each cluster of UEs is associated with a specific SCBS
where the caching learning procedure is done locally.

A. Content-Based User Clustering

Contrary to traditional location-based proximity clustering
methods, we use the notion of content proximity to develop a
clustering algorithm that groups users based on their content-
based similarities. In particular, we use a spectral clustering
[7] algorithm to discover similarities between users requesting
similar contents. Here, we consider a training period during
which UEs submit their content requests to the network. Then,
we build a similarity matrix between UEs either at the level of
the MBS or SCBSs, assuming that the SCBSs communicate
during the training period. After a training period of tt time
instants, for each UE u, we build a content frequency vector
nu = [nu,1, . . . , nu,C ] where nu,c means that content c was
requested by user u, nu,c times. This frequency of requests
can be seen as an approximation to the content mean arrival
rate λu,c during the training period. Subsequently, we use
the cosine similarity metric to measure the similarity between
users i and j requesting similar contents as follows:

s(i, j) =
ni.nj
‖ni‖‖nj‖

(7)

Algorithm 1 describes the proposed UE clustering method.
After the clustering, each group of users is associated to a spe-
cific SCBS. It is worth noting that with this user association, a
user might not be associated to the SCBS with higher SINR.
However, by grouping similar users together, more popular
content will be cached closer to users. This results in less
requests being served from the macrocell, minimizing the total
service delay.

B. Distributed Caching Strategy

Given the UE clustering, our next step is to propose a
decentralized caching scheme to minimize the delay incurred
to deliver requests to users, where the utility of SCBS b is
vb(πb) = 1/Jb(πb) where Jb(πb) =

∑
u:qu=b

∑
c∈C D

(b)
u,c.



Algorithm 1 Clustering Algorithm
1: Initialization: pick a sequence of time instants, calculate

the vector of requests occurrence nu for each user, cal-
culate the similarity matrix S = [s(i, j)] as in (7), choose
kmin = 2 and kmax = U/2.

2: Calculate the diagonal degree matrix D with diagonal
element di =

∑U
j=1 si,j .

3: Calculate L = D −G.
4: Calculate Lnorm = D−1/2LD−1/2.
5: Pick a number of kmax eigenvalues of Lnorm such that λ1 ≤
· · · ≤ λkmax .

6: Choose K = maxi=kmin,...,kmax
∆i where ∆i = λi+1 − λi.

7: Calculate the k smallest eigenvectors x1, . . . , xk
8: Let the Y matrix has the eigenvectors x1, . . . , xk as

columns.
9: Use the k-means clustering to cluster the rows of the

matrix Y .

Here, each SCBS is interested in following a caching policy
that minimizes the service delay for its associated group of
UEs. The proposed caching scheme is decentralized and is
performed in each SCBS using local information. In particular,
SCBSs are able to learn the probability distribution of their
caching strategies by minimizing their regret over caching the
content in the past and using this information to optimize the
caching decisions in the next time instants.

The proposed scheme is based on the distributed regret
learning approach inspired from [9]. That is at each time
instant t, each SCBS b picks up an action a

(nb)
b , that is a

binary value that determines whether to cache the content c
or not, from the action space Ab = {a(1)b , a

(2)
b , . . . , a

(Nb)
b }

where Nb is the total number of actions which is equal to the
total number of available content. This content is then cached
replacing another existing content in the storage. Each SCBS
chooses an action a(nb)

b following the probability distribution
of all actions πb(t) = [π

b,a
(1)
b

(t), π
b,a

(2)
b

(t), . . . , π
b,a

(Nb)

b

(t)],
where π

b,a
(nb)

b

(t) is the probability that SCBS b plays the

action a(nb)
b at time instant t, i.e.,

π
b,a

(nb)

b

(t) = Pr(ab(t) = a
(nb)
b ). (8)

In the proposed approach, each SCBS keeps updating its
actions following a specific strategy vector πb, which is
the probability distribution of choosing an action. Then, it
compares its time-average observation of the utility function
with the case in which it plays this same action in all
previous time instants. In this regard, each SCBS will be
interested in choosing a probability distribution that min-
imizes its regret of playing/not playing each action. This
balances the tradeoff between caching the most popular con-
tents and having a non-zero probability of caching the less
popular files. Therefore, each SCBS b estimates its utility
vector v̂b(t) = [v̂

b,a
(1)
b

(t), . . . , v̂
b,a

(Nb)

b

(t)] and regret vector
r̂b(t) = [r̂

b,a
(1)
b

(t), . . . , r̂
b,a

(Nb)

b

(t)] for each action assuming it
has played the same action during all previous time instants

{1, . . . , t − 1}. In this scheme, SCBSs aim at minimizing
their regret while estimating their time-average utility from
playing a particular action at time instant t. The objective is
to minimize the regret of caching or not caching a specific
file, e.g. a file is cached but not requested. Hence, a non-zero
probability of caching a less popular file is needed. To balance
this tradeoff, each SCBS will choose the actions that yield
higher regrets more likely than those yielding lower regrets,
keeping a non-zero probability for playing any actions. This
behavior is captured by the Gibbs Sampling-based probability
distribution, in which the probability of playing an action a(nb)

b

by an SCBS b can be expressed as follows:

Λ
b,a

(nb)

b

(a−b) =
exp

(
βbr

+
b (a

(nb)
b ,a−b)

)
∑Nb

m=1 exp
(
βbr

+
b (a

(m)
b ,a−b)

) , (9)

where βb is a Boltzmann temperature coefficient that controls
the above-mentioned tradeoff, and r+b (t) denotes the vector of
positive regrets r+b (t) = max(0, rb(t)).However, maximizing
the SCBS utility function (i.e., minimizing the service delay)
depends not only on its own choice of action but also on
remaining BSs due to the interference and the throughput from
the macrocell. Therefore, at each time instant t, a SCBS b ∈ B
estimates v̂b(t),r̂b(t) and πb(t) using a regret learning process
as follows:

v̂
b,a

(nb)

b

(t) = v̂
b,a

(nb)

b

(t− 1)+

αb(t).1{ab(t−1)=a
(nb)

b }

(
ṽ(t− 1)− v̂

b,a
(nb)

b

(t− 1)
)
,

r̂
b,a

(nb)

b

(t) = r̂
b,a

(nb)

b

(t− 1)+

γb(t).
(
v̂
b,a

(nb)

b

(t− 1)− ṽ(t− 1)− r̂
b,a

(nb)

b

(t− 1)
)
,

π
b,a

(nb)

b

(t) = π
b,a

(nb)

b

(t− 1)+

ζb(t).
(

Λ
b,a

(nb)

b

(
r̂b(t− 1)

)
− π

b,a
(nb)

b

(t− 1)
)
,

(10)

where ṽ(t − 1) is the instantaneous observed utility function
at time t− 1, Λ

b,a
(nb)

b

is given by (9), αb(t), γb(t) and ζb(t)
are the learning parameters, and should satisfy the following
constraints [9]:

(i) lim
T→∞

T∑
t=1

αb(t) = +∞, lim
T→∞

T∑
t=1

αb(t)
2 < +∞,

(ii) lim
T→∞

T∑
t=1

γb(t) = +∞, lim
T→∞

T∑
t=1

γb(t)
2 < +∞,

(iii) lim
T→∞

T∑
t=1

ζb(t) = +∞, lim
T→∞

T∑
t=1

ζb(t)
2 < +∞,

(iv) lim
t→∞

ζb(t)
γb(t)

= 0, lim
t→∞

γb(t)
αb(t)

= 0.

(11)

This process guarantees the convergence of the algorithm to
an ε-coarse correlated equilibrium [9].

C. Cache removal scheme

We consider a cache removal mechanism to select which
existing file should be replaced by the cached file. At each
time instant t, an SCBS chooses to cache a new content that



is not in its storage. If the storage of the SCBS is already
full, then it has to remove one of the existing contents. To be
able to remove an appropriate content, each SCBS builds a
content popularity vector based on the frequencies of requests
nb = [nb,1, . . . , nb,C ]. Consequently, contents with lower
frequencies of being requested are a better candidate for being
removed. The Gibbs-Sampling probability distribution is used
to remove the content from the cache:

Gb,c(nb) =
exp (−βremove.nb,c)∑C

m=1 exp (−βremove.nb,m)
(12)

where βremove is the Boltzmann’s temperature coefficient, and
the negative sign is to give higher probabilities to the contents
having a lower frequency of being requested. The use of
the Gibbs-Sampling probability distribution allows to use the
βremove parameter to update the cache removal policy. While
using βremove = 0 gives all contents equal probability to
be removed, higher values of βremove means that contents
with lower request frequencies will be removed with higher
probabilities.

IV. SIMULATION RESULTS

In this section, we analyze the performance of the proposed
content caching scheme. We assume that the popularity of
different contents (files) in the system follows a Zipf distribu-
tion [10]. Following a Zipf popularity model, the popularity
of content i is given by:

λi =
i−αz∑
j≤C j

−αz
λ̄ (13)

where λ̄ is the average content popularity and αz is the Zipf
parameter. This means that the request rate for the ith most
popular content is proportional to 1/iαz . To be able to assess
the performance of the UE clustering scheme, we assume that
we have three types of UEs in the system. For each type,
the order of content popularity is different, i.e., UEs have
different preference over different contents. We are interested
in the performance of the SUEs, for different values of the
Zipf parameter αz . We assume that the macro cell divides
the bandwidth equally between the requests of the MUEs and
the SUEs that request content from the MBS if not cached in
the SCBS. For the path loss model, we use the 3GPP baseline
parameters [11]. We compare the proposed scheme against two
baseline schemes. The first one is a random caching scheme in
which at each time instant, a SCBS picks a random content to
cache, and if the storage is full, it removes a random content
chosen uniformly. UEs are associated to the SCBS with the
higher received signal strength indicator (RSSI). The second
baseline scheme is based on the proposed regret learning
caching scheme but without clustering. Simulation parameters
are summarized in Table I.

In the beginning of each simulation, we allow a training
period of 500 time instants (0.5 seconds) for carrying out
the clustering procedure. In the beginning, we assume that
the SUEs are associated to the SCBSs with the highest RSSI.
The clustering algorithm is able to accurately group users into
different clusters based on the received requests. Hence, users

TABLE I
SIMULATION PARAMETERS

Parameter Value/description

Number of macro cells 1

Number of SCBSs 3

System bandwidth 5 MHz

Small cell radius 40 m

Number of MUEs 50

Number of SUEs 15

MBS transmission power 46 dBm

SCBS transmission power 30 dBm

Thermal noise -174 dBm/Hz

Number of contents 30

Average content popularity (λ̄) 10

Learning parameters
Strategy learning rate (ζb) 1/(t)0.7

Regret learning rate (γb) 1/(t)0.6

Utility learning rate (αb) 1/(t)0.5

Regret temperature coefficient (βb) 20

Cache removal coefficient (βremove) 10/t
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Fig. 2. Average service delay for different values of the Zipf parameter,
3 SCBSs and a storage capacity of 10.

are grouped into clusters and each cluster is associated to a
different SCBS.

We evaluate the performance of the proposed caching
scheme. In Fig. 2, we show the average service delay for the
proposed scheme against the baseline schemes for different
values of the Zipf parameter αz . In this figure, we can see
that the proposed algorithm achieves significant gains in terms
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Fig. 3. Offloading gain for different values of the Zipf parameter, 3 SCBSs
and a storage capacity of 10.



of lower service delay (i.e., 42% and 27%) as compared
to random caching and learning without clustering schemes,
respectively. For all schemes, the delay decreases as the Zipf
parameter increases. This is due to the fact that having higher
Zipf parameter with the same mean popularity λ̄ leads to lower
average request rates, which can be inferred from (13). The
results also show that the gain of the proposed scheme over
the random scheme increases as the Zipf parameter increases.
This is because the random caching treats all files equally,
so having files with higher popularity variance decreases the
probability of serving these files from the small cells, hence
degrading the performance. For the learning without clustering
scheme, since users are not clustered, an SCBS has users
with different interests for contents. Therefore, it is unable
to learn the optimal strategy from few observations (i.e., cold-
start problem). Instead, since the proposed scheme is able to
cluster users with similar interest in one SCBS, the SCBS
will be able to more efficiently learn the popular contents of
its users and hence cache the most popular files accordingly.

Fig. 3 shows the offloading gain for different caching
schemes, defined as the ratio between the SCBS throughput to
the throughput obtained from the MBS. The results show that
the proposed scheme achieves significant offloading gain by
caching popular contents in the SCBSs. The gain increases as
the Zipf parameter increases, since the file popularities become
more diverse. Fig. 3 shows that this performance advantage
reaches up to 280% and 90% relative to the random caching
and learning without clustering schemes, respectively.

In Fig. 4 and Fig. 5, we show the average service delay
and offload gain as the storage capacity varies. These figures
show that, for all schemes, the service delay decreases and
the offloading gain increases with increasing the storage size.
This is due to the fact that the base stations will be able
to provide more contents close to the end users. Moreover,
the proposed scheme achieves much lower service delay and
higher offloading gain compared to the baseline schemes. The
gain increases as the storage capacity increases, since higher
capacity allows the SCBSs to cache more popular contents
following their caching strategies. Fig. 4 and 5 show that this
performance advantage reaches up to 24% and 15% lower
delay and 65% and 33% higher offloading gain relative to
the random caching and learning without clustering schemes,
respectively.

V. CONCLUSIONS

In this paper, we have proposed a joint user clustering
and caching scheme for wireless small cell networks. The
proposed approach allows to exploit the social similarities
to group users into different clusters. Each cluster is then
associated with a suitable SCBS. In this way, SCBSs are
able to effectively cache the most popular contents and reduce
service delays. Simulation results show that by bringing the
popular contents close to the small cell UEs, the proposed
algorithm outperforms random caching and learning without
clustering schemes in terms of lower service delay and higher
offloading gain.
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Fig. 4. Average service delay for different storage capacities, with a Zipf
parameter λz of 0.6 and 3 SCBSs.

5 10 15 20
0

5

10

15

20

25

30

35

40

Storage capacity

O
ffl

oa
di

ng
 g

ai
n

 

 

Random caching scheme
Learning without clustering
Proposed algorithm

Fig. 5. Offloading gain for different storage capacities, with a Zipf parameter
λz of 0.6 and 3 SCBSs.

REFERENCES

[1] Cisco, “Cisco visual networking index: Global mobile data traffic forecast
update, 2012-2017,” White Paper, [Online] http://goo.gl/uQ0DJQ, 2013.

[2] T. Q. S. Quek, G. de la Roche, I. Guvenc, and M. Kountouris, Small
Cell Networks: Deployment, PHY Techniques, and Resource Allocation.
Cambridge University Press, 2013.

[3] K. Shanmugam, N. Golrezaei, A.G. Dimakis, A.F. Molisch and G. Caire,
“FemtoCaching: Wireless Content Delivery through Distributed Caching
Helpers,” IEEE Trans. Inf. Theory, vol. 59, no. 12, pp. 8402-8413, Dec.
2013.

[4] N. Golrezaei, A.F. Molisch, A.G. Dimakis and G. Caire, “Femtocaching
and Device-to-Device Collaboration: A New Architecture for Wireless
Video Distribution,” IEEE Commun. Mag., vol. 51, no. 4, pp. 142-149,
Apr. 2013.

[5] F. Boccardi, R. Heath, A. Lozano, T. Marzetta, and P. Popovski, “Five
Disruptive Technology Directions for 5G,” IEEE Commun. Mag., vol. 52,
no. 2, pp. 74-80, Feb. 2014.

[6] E. Bastug, M. Bennis and M. Debbah, “Social and Spatial Proactive
Caching for Mobile Data Offloading,” in Proc. IEEE International Con-
ference on Communications (ICC) 2014, Sydney, Australia, June 2014.

[7] J. Shi and J. Malik, “Normalized Cuts and Image Segmentation,” in IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888-905, Aug. 2000.

[8] J. Cranshaw, R. Schwartz, J. I. Hong and N. Sadeh, “The Livehoods
Project: Utilizing Social Media to Understand the Dynamics of a City,”
in Proc. 6th International Conference on Weblogs and Social Media
(ICWSN11), Barcelona, Spain, May 2012.

[9] M. Bennis, S. M. Perlaza and M. Debbah, “Learning coarse correlated
equilibrium in two-tier wireless networks,” in Proc. IEEE International
Conference on Communications (ICC) 2012, Ottawa, Canada, June 2012.

[10] L. Breslau, C. Pei, F. Li and G. Phillips, “Web caching and zipf-like
distributions: evidence and implications,” in Proc. Eighteenth Annual
Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM’99), New York, USA, Mar. 1999.

[11] 3GPP, “Evolved universal terrestrial radio access (E-UTRA); Further
advancements for E-UTRA physical layer aspects,” 3rd Generation Part-
nership Project (3GPP), TR 36.814-900, Mar. 2010.

http://goo.gl/uQ0DJQ

	I Introduction
	II System Model
	III Regret-Based Caching Scheme
	III-A Content-Based User Clustering
	III-B Distributed Caching Strategy
	III-C Cache removal scheme

	IV Simulation Results
	V Conclusions
	References

