
HAL Id: ujm-01570080
https://ujm.hal.science/ujm-01570080v1

Submitted on 28 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Centrality Indicators for Efficient and Scalable Logic
Masking

Brice Colombier, Lilian Bossuet, David Hely

To cite this version:
Brice Colombier, Lilian Bossuet, David Hely. Centrality Indicators for Efficient and Scalable Logic
Masking. IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2017), IEEE, Jul 2017,
Bochum, Germany. pp.98-103, �10.1109/ISVLSI.2017.26�. �ujm-01570080�

https://ujm.hal.science/ujm-01570080v1
https://hal.archives-ouvertes.fr

Centrality Indicators For Efficient And
Scalable Logic Masking

Brice Colombier, Lilian Bossuet
Univ Lyon, UJM-Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516

F-42023 Saint-Étienne - France
{b.colombier,lilian.bossuet}@univ-st-etienne.fr

David Hély
LCIS, Grenoble Institute of Technology

F-26000 Valence - France
david.hely@lcis.grenoble-inp.fr

Abstract—Modifying the logic at register transfer level can help
to protect a circuit against counterfeiting or illegal copying. By
adding extra gates, the outputs can be controllably corrupted.
Then the circuit operates correctly only if the right value is
applied to the extra gates. The main challenge is to select the best
position for these gates, to alter the circuit’s behaviour as much
as possible. However, another major point is the computational
efficiency of the selection process, which should be as good as
possible for integration in EDA tools. State-of-the art methods,
based on fault analysis, are very demanding and cannot cope
with large netlists in a reasonable runtime. We propose to use
centrality indicators instead. Centrality is used to identify the
most significant vertices of a graph. We show that, when used to
select the nodes to modify, they lead to low correlation between
original and altered outputs while being computationally efficient.
We give experimental results on combinational benchmarks and
compare to other previously proposed heuristics. We show that
this method is the only efficient selection heuristic which is able
to handle large netlists and integrate smoothly into EDA tools.

Keywords-centrality; logic masking;

I. INTRODUCTION

Integrated circuits (IC) are increasingly complex, leading
to outsourcing of manufacturing to overseas foundries and
adoption of a design-and-reuse paradigm. Therefore, multiple
actors take part in the realisation of an IC, from Intellectual
Property (IP) core providers to system integrators and foundries.
The designer must fully disclose the design for it to be further
used, leading to the rise of counterfeiting [1].

Intellectual property protection means were proposed to
thwart this threat [2] and some are based on RTL modifications
[3]. We add our voice to authors of [4] to explicitly define
the terms used for gate level modifications of netlists to
achieve intellectual property protection. We use the terminology
recently defined in [3], and focus on logic masking.

Logic masking aims at disrupting the outputs of the IC if
the wrong masking key is applied. In order to disrupt the
outputs as much as possible, some internal nodes of the netlist
are modified to be controllably invertible. This is achieved by
inserting XOR or XNOR gates on these nodes and connecting
the other input of the added gates to the masking key bit inputs.
Therefore, the IC operates correctly only if the correct masking
key is applied. Otherwise, the added gates act as inverters and
disrupt the circuit behaviour.

Two research directions can essentially be observed in logic
masking. The first trend aims at making the logic masking
scheme resistant to various key-recovery attacks such as hill-
climbing [5] or SAT [6]. It can be achieved by inserting an
extra module before the key inputs of the masking scheme.
Such module can either be an AES core [7] or a “hardware
point function” which output is 1 only when the correct key is
applied [8], [9]. The second research direction consist in finding
the best location for the extra gates so that the outputs of the
netlist are maximally corrupted when the wrong key is applied.
Initially, their positions were randomly selected [10]. However,
this led to very small drop in correlation, hence inefficient
masking. More advanced heuristics were proposed later, based
on fan-in/out [11], interference graphs [12], corruptibility [13]
or fault-analysis [14]. Such methods improve the masking
quality with an increasing computational effort. The latest
heuristic to date [14] strongly disrupts the circuit outputs but
becomes impractical to compute for netlist including more than
a few thousand gates nodes. However, the masking scheme
insertion method is meant to be integrated into the standard
EDA design flow, where performance is crucial. Moreover,
designs which are worth protecting are usually large. There
is therefore a strong practical requirement for heuristics that
offer a better trade-off between computational complexity and
masking efficiency.

In this article, we propose to use centrality indicators from
graph theory to select the nodes to mask. They leverage graph
algorithms for efficiency and allow to reach low correlation
between the normal and masked outputs, hence efficient
masking. We start with a comparison of centrality indicators.
We then compare with existing heuristics in two ways. First,
by measuring the masking efficiency using correlation. Second,
by comparing computation times required.

This article is organised as follows. Section II describes the
use case, including the attacker model. Section III presents
existing heuristics to select the nodes to modify for logic
masking. Section IV discusses centrality indicators, and how
they could be used in the considered context. Section V gives
experimental results and compares with existing heuristics.
Section VI discusses implementation issues. Section VII
concludes the article. Our source code is fully available online1

1https://gitlab.univ-st-etienne.fr/b.colombier/
centrality-based-logic-masking978-1-5090-6762-6/17/$31.00 c©2017 IEEE

https://gitlab.univ-st-etienne.fr/b.colombier/centrality-based-logic-masking
https://gitlab.univ-st-etienne.fr/b.colombier/centrality-based-logic-masking

for reproducibility.

II. PRELIMINARIES

A. Use-case

Counterfeiting can be fought by protection means based
on logic modification and meant to be integrated in EDA
tools. Their intended users are fabless designers who wish to
protect the intellectual property of their designs by modifying
them prior to sending them to the foundry for manufacturing.
Therefore, the proposed modification methods should have the
following properties:
• Efficiency: the modifications should alter the outputs as

much as possible when activated, leading to the lowest
possible correlation between normal and modified outputs.

• Complexity: the modification process should be as com-
putationally efficient as possible, in order to integrate
smoothly in the design flow of EDA tools and be capable
of handling large netlists which are worth being protected.

B. Attacker model

Since the aim of these protection method is to prevent
counterfeiting, the attacker model we use is the following.
An attacker owns two copies of the same circuit. One is fully
functional, and seen as a black box. We then use the black
box model for the circuit: the attacker can choose the inputs
and observe the outputs. On the other hand, the attacker also
owns a locked circuit, and wants to obtain the correct key for
it. This occurs typically when a customer purchases circuits
from regular and black market, and hopes to activate the ones
obtained on the black market with the help of the legitimate
circuits.

We assume the attacker cannot micro-probe the functional
circuit to get the key. This requires a broader model, and is
also much more costly from an attacker point of view.

III. STATE-OF-THE-ART

A. Logic masking

As stated in [3], “Logic masking consists in inserting XOR or
XNOR gates in the data path of the logic circuit of a Boolean
function in order to change the logic behaviour of the circuit
if the wrong masking key is applied”.

First, the designer choses how many gates are to be modified
in the netlist. To this end, an n-bit masking word is randomly
generated. Next, a masking gate is inserted according to every
bit of the masking word. If the bit is 0, then an XOR gate is
inserted. If the bit is 1, then an XNOR gate is inserted. This
is shown in Fig. 1.

G1
K1

G1
G1'

K1

G1
G1'

(a) (b) (c)
Original node Modified node Modified node

if Ki = 0 if Ki = 1

Fig. 1. Modification of a node by logic masking.

If the correct masking word is applied the extra gates behave
as buffers and the design operates normally. However, if a
wrong masking word is applied, some of the extra gates will
behave as inverters, effectively disrupting the circuit behaviour
and corrupting the outputs.

B. Nodes selection heuristics

The following nodes selection heuristics select n nodes in the
netlist, on which additional masking gates are to be inserted.

1) Random: The most basic way to select the nodes is
random selection. This was the first proposed method, in EPIC
[10]. This is fast, since no computation is required.

2) Fan-in/Fan-out cones: In 2009, authors of [11] proposed
the first heuristic which improves the selection. It is based on
the number of netlist nodes that are in the fan-in and fan-out
cones of every other node in the netlist. The exact metric is
given in Equation (1): FI and FO are the number of nodes
in the fan-in and fan-out cones for every node. FImax and
FOmax are the maximum values of FI and FO observed in
the netlist. w1 and w2 are normalisation weights which are set
to 0.5. The nodes that maximise this metric are modified.

Mnode =

(
w1.FO

FOmax
+
w2.F I

FImax

)
× FO.FI

FImax.FOmax
(1)

According to this metric, the nodes with the greatest number
of nodes in their fan-in/out cones are the most significant.

3) Interference graph: In [12], the random method has been
improved. Initially, 10% of the masking gates are inserted
randomly, to initiate the procedure. An interference graph
is then built from the relative positions of the gates. The
interference graph represents how the inserted gates interact
with one another. For example, two masking gates placed in a
row or two gates that converge to the same node are represented
differently in the interference graph. Then, for every node of
the netlist a metric is computed with respect to the existing
masking gates, from the interference graph. The node that
maximises this metric is selected, added to the interference
graph and a masking gate is inserted on it. The process is then
repeated again until all the masking gates are inserted.

4) Corruptibility: The authors of [12] improved their
interference graph-based heuristic in [13] by adding a so-called
corruptibility metric. This ensures that non-resolvable gates
which are selected after analysing the interference graph corrupt
the outputs as much as possible. Corruptibility is computed
as the ratio of output patterns that differ between the normal
and masked behaviour of the circuit. A node then has a high
corruptibility if modifying it for logic masking changes the
outputs most of the time. Computing the corruptibility requires
to simulate the netlist using a dedicated tool. In [13], the authors
used a fault-simulation tool, and computed corruptibility by
observing one thousand input/output patterns. Such tools are
usually computationally heavy.

5) Fault analysis: This is the latest proposed heuristic to
date [14]. Based on fault simulation, it acts by computing the
Fault Impact for every node of the netlist, given in Equation (2).
NoP0 is the number of patterns that can detect that the node is

stuck-at-0. NoO0 is the number of output bits affected by this
stuck-at-0 fault. NoP1 and NoO1 are similar but for stuck-at-1
faults.

Fault Impact = NoP0.NoO0 +NoP1.NoO1 (2)

By considering both stuck-at-0 and stuck-at-1 faults, authors
select the node with the greatest impact on the outputs.
However, this selection heuristic is based on fault simulation,
hence it remains computationally heavy. Moreover, it is
recomputed every time a gate is added.

C. Netlist to graph conversion

We chose to convert the netlists to directed acyclic graphs
using the same method as in [3]. Vertices are the netlist nodes
and edges are logic functions connecting the nodes. A toy
example is shown in Fig. 2.

G1

G2

G3

G4

G9

G8

G5

G6

G11

G14

G13

G1

G2

G3

G4

G5

G6

G8

AND

AND

G9

G10

G11

G13

G14

OR

OR

NAND

NAND

AND

AND
NOR

NOR

NAND

NAND

G10
G12

G12
NOT

G7
G7

Fig. 2. A netlist and the equivalent directed acyclic graph. Netlist nodes are
converted to vertices and logic functions to edges.

IV. CENTRALITY INDICATORS

Centrality indicators determine which vertices are the most
significant in a graph. This “significant” term is very broad,
and different centrality indicators perform better at identifying
the “significant” vertices in different contexts. From a logic
masking point of view, significant nodes are the ones for which
a modification alters the most the circuit operation. Intuitively,
those nodes are the ones through which a lot of information
transits, from the inputs to the outputs of the circuit. Among
centrality indicators, there are local and global ones. Local
centrality indicators are computed according to the vertices
found in the direct neighbourhood of the considered vertex.
On the other hand, global indicators take the whole graph into
consideration and thus they are more suited in our use case.
We start by examining common global centrality indicators,
before considering more sophisticated ones that are well suited
to identify significant nodes in terms of “information transit”.

Normalised centrality indicators: In the literature, some
indicators are normalised according to the number of vertices
in the network. Depending on how vertices are considered,
the final indicator value can be divided by the total number
of vertices. Since we are interested in the relative value of
centrality for the vertices, this normalisation is not necessary.
We then use only the non-normalised versions of the following
indicators.

A. Closeness centrality

Closeness centrality is defined as the inverse of farness [15].
For a given vertex v, the farness is the sum of the distances
from v to the other graph vertices (see Equation (3), where
d(v, y) stands for the distance between vertices v and y).

CC(v) =
1∑

y:y∈V
d(v, y)

(3)

Therefore, a vertex is significant in the sense of closeness
centrality if it is the closest to all the other vertices in the
graph. Practically, the vertices that have the highest closeness
centrality are “in the middle” of the netlist.

It is more interesting in the case of logic masking than degree
centrality because it is a global centrality indicator. Therefore,
it is influenced by the graph structure.

B. Betweenness centrality

Betweenness centrality [16] of node v is given by the ratio
of shortest paths between all other vertices in the graph that
traverse v. This is given in Equation (4), in which σst stands
for the number of shortest paths that go from s to t, and σsvt
stands for the total number of shortest paths that go from s to
t through v.

CB(v) =
∑

s6=t6=v:{s,t,v}∈V

σsvt
σst

(4)

Intuitively, for a netlist, betweenness centrality will be the
highest for nodes that are on the shortest paths from inputs
to outputs. This is interesting for logic masking, since those
nodes are typically the ones for which masking will have the
greatest impact on information transiting from inputs to outputs.
The main drawback of this indicator, however, is that it only
accounts for shortest paths. As pointed out in [17], this is quite
a restrictive constraint. Indeed, it assumes that information only
flows along shortest paths, which is certainly not always true.

Alternative centrality indicators based on current flow have
been proposed. By assuming that information behaves in the
same way as electrical current, the authors of [17], [18] account
for the fact that it can split and spread in the network. This is
discussed in the next subsections.

C. Current-flow betweenness centrality

Current-flow betweenness centrality [18] considers the graph
as an electrical network. Vertices are converted to nodes, and
the edges connecting them are replaced by unit resistors. Pairs
of vertices are successively picked as current input and output.
The sum of current that flows through node v for all the pairs
of vertices picked gives the current-flow betweenness centrality
for this node. This is shown in Equation (5), where I(st)v is
the current flowing through node v when s is the input and t
is the output.

CCFB(v) =
∑

s 6=t:{s,t}∈V

I(st)v (5)

This measure of centrality is more subtle than betweenness
centrality. Indeed, instead of considering only shortest paths

between vertices, the current is inversely proportional to the
path length. This is a more precise assumption about the way
information spreads in a network.

1) Approximate current-flow betweenness centrality: For
current-flow betweenness centrality, running time and space
requirements rapidly become prohibitive for large graphs. An
approximate version has been proposed in [17]. Instead of using
all the s and t pairs in the graph as current inputs and outputs,
they show that using a smaller number of randomly selected
pairs leads to a good approximation. This is an interesting
point in the considered use-case. Large netlists can then be
analysed, by relaxing precision.

D. Current-flow closeness centrality/Information centrality

Current-flow closeness centrality was proposed in [17], and
is equivalent to information centrality [19]. Instead of using
distance between nodes as a measure of closeness, it proceeds
similarly to current-flow betweenness centrality. First, the graph
is converted to an equivalent electrical network with edges
replaced by unit resistors. Afterwards, farness is the difference
of potential (voltage) between the two nodes. It is the equivalent
resistance between the two nodes (see Equation (6)). Thus it
also accounts for paths which are not the shortest ones. All
the paths between two nodes are considered, contributing to
the overall equivalent resistance depending on their length.

CCFC(v) =
1∑

y:y∈V
p(v)− p(y)

=
1∑

y:y∈V
Req(v, y)

(6)

V. EXPERIMENTAL RESULTS

The centrality indicators were computed using Python igraph
[20] and NetworkX [21] libraries. Our workstation embeds an
Intel Core i5-4570 operating at 3.20GHz and 16GB of RAM.
Experimental results were obtained with ITC’99 [22] and EPFL
[23] combinational benchmarks. We restrict the size of the
benchmarks from 1k to 100k gates. Note that this is the only
method demonstrated on large benchmarks, up to 100k gates,
when [10], [11], [14] do not exceed a few thousand gates.
For large benchmarks, come centrality indicator computations
ran out of memory and are not presented. Moreover, we fix a
timeout limit for computation of 1h.

A. Masking efficiency evaluation

The Hamming distance criterion used in previous articles to
evaluate the masking efficiency is not suited as detailed in [3].
As stated in [13], “We need maximum corruption, and thus
minimum correlation at the outputs”. Therefore, the masking
efficiency Em is evaluated by computing the quadratic mean
of the Pearson’s correlation coefficient (see Eq. (7)) obtained
between the normal and masked mode for every output bit
(see Eq. (8)).

r(x, y) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(7)

Em =

√
1

n

∑
o∈outputs

r2(onormal, omasked) (8)

The output values are obtained by applying 10k random
vectors at the key and primary inputs of the netlist. For each
benchmark and area overhead, the most efficient centrality
indicator is in bold face.

TABLE I
Em VALUES FOR SELECTION HEURISTICS BASED ON CENTRALITY

INDICATORS AND DIFFERENT LOGIC RESOURCES OVERHEADS

Benchmark #gates Centrality Logic resources overhead
indicator 1% 5% 10%

adder ∼1k B 0.97 0.86 0.70
C 0.98 0.94 0.91
C-FB 0.94 0.73 0.58
C-FC 0.96 0.95 0.93
AC-FB 0.91 0.75 0.68

i2c controller ∼1k B 0.97 0.91 0.85
C 0.98 0.93 0.90
C-FB 0.28 0.19 0.17
C-FC 0.27 0.20 0.37
AC-FB 0.29 0.28 0.23

sine ∼5k B 0.23 0.26 0.22
C 0.26 0.20 0.23
C-FC 0.21 0.01 0.01
AC-FB 0.10 0.11 0.01

b14 1 C ∼5k B 0.92 0.61 0.50
C 0.74 0.65 0.48
AC-FB 0.73 0.36 0.34

b15 1 C ∼10k B 0.82 0.57 0.45
C 0.81 0.61 0.48
AC-FB 0.77 0.64 0.85

round-robin ∼10k B 0.96 0.84 0.69
arbiter C 0.94 0.86 0.83

AC-FB 0.94 0.88 0.83

memory ∼50k B 0.98 0.94 0.88
controller C 0.98 0.91 0.83

divisor ∼50k B 0.65 0.64 0.64
C 0.65 0.64 0.64

b18 1 C ∼100k B 0.95 0.80 0.63
C 0.95 0.80 0.65

B: betweenness
C: closeness

C-FB: current-flow betweenness
C-FC: current-flow closeness

AC-FB: approximated current-flow betweenness

The masking efficiency values Em obtained are shown
in Table I, in which three logic resources overheads are
considered, 1%, 5% and 10%. The overhead is computed as the
percentage of extra gates added to the design. Em values differ
greatly depending on the benchmark. For some of them, the
correlation drops very fast, even at low overhead. This occurs
for benchmarks in which outputs are strongly correlated, such
as sine. On the other hand, some benchmarks make it very
hard to reduce the correlation coefficient, even with a 10%
overhead.

The centrality indicators differ in effectiveness. However,
the ones based on current-flow are the most efficient is the
majority of cases. For the largest benchmark, b18 1 C, which
comprises 100k gates, the correlation drops to 0.63 for 10%
area overhead. This shows that the masking is efficient, even

on very large netlists.
Increasing the overhead obviously reduces correlation since

inserting more masking gates increases the masking efficiency.
Additionally, we estimated by simulation the corruptibility

of the outputs when centrality indicators are used to select
the nodes to modify. For all the circuits and all centrality
indicators, when an incorrect key is applied, the normal and
masked outputs were systematically different.

B. Computation time

Fig. 3 shows on a log-log scale how computation time varies
with respect to the number of nodes in the netlist. The dark grey
line is the baseline for computation time. It is the time required
to only build the graph as described in Subsection III-C.

Centrality indicators are efficient to compute in general,
although the centrality indicators based on current-flow require
more time. However, even for a very large benchmark of
100k gates, computing betweenness and closeness centrality is
possible in less than an hour on our desktop workstation. Surely
this could be improved with a dedicated server. Moreover,
recent research [24] shows that centrality indicators can be
computed faster in a distributed manner. Computation time
does not depend on the chosen overhead, since the chosen
centrality indicator must be computed for all the nodes of the
graph in all the cases.

103 104 105

#gates

1

10

102

103

104

Co
m

pu
ta

tio
n

tim
e

(s
)

Centrality indicator

Betweenness
Current flow
betweenness

Approximated
current flow
betweenness
Closeness

Current flow
closeness
Baseline

1s

1min

1h

Fig. 3. Computation time required using different heuristics for selection
with a 5% logic resources overhead. The baseline is random selection.

C. Comparison with existing heuristics

Fig. 4 illustrates the trade-off between correlation reduction
and computation time. The baseline for computation time is
random selection as it is the simplest method, thus the fastest to
compute. The most efficient heuristics are closer to the origin,
since they are the fastest to compute and the most efficient at
reducing correlation.

Other heuristics can be broadly classified into two cate-
gories. First, fault-analysis based selection [14] can reduce
correlation significantly, down to 0.2. However, this selection

0.0 0.2 0.4 0.6 0.8 1.0
Correlation

1

10

102

103

104

105

Co
m

pu
ta

tio
n

tim
e

(s
)

Other heuristics
Random [10]
Fan-in/Fan-out cones [11]
Fault-analysis [14]

Centrality indicator
Betweenness
Current-flow
betweenness
Approximated
current-flow
betweenness

Closeness
Current-flow
closeness

Fig. 4. Trade-off between computation time and correlation reduction. The
logic resources overhead is 5-6%. The correlation and computation time values
are obtained after averaging over all benchmarks, except for [14] for which
only three small benchmarks from the original article are considered.

heuristic is very computationally expensive. Authors report that
“This method took two hours to encrypt the C7552 circuit”.
This circuit only has 3,500 nodes. Therefore, fault-analysis
based selection is highly impractical and cannot cope with
large netlists, which are typically the ones worth protecting
against counterfeiting. Emulation has been proposed in [25]
to speed-up the process but it requires a very large FPGA for
implementation since it increases the size of the original a lot.
Moreover, the correlation value of 0.2 is obtained from only
three combinational benchmarks, which are relatively small.
Nothing shows that this low correlation would be observed
on larger benchmarks such as the ones we used. On the other
hand, random [10] and fan-in/fan-out cones [11] methods are
rapidly computed. However, as visible in Fig. 4, the correlation
remains very high. Therefore, they do not achieve efficient
masking.

Overall, existing heuristics are either efficient at reducing
correlation, but complex to compute, or easy to compute
but inefficient at reducing correlation. In contrast, centrality
indicators can reduce correlation down to 0.4 on average.
Moreover, they are much more computationally efficient than
fault-analysis based selection, since they run 1,000 times faster
on average. Among centrality indicators, the most efficient are
the ones based on current flow. They are the closest to the origin,
and reduce correlation efficiently while being computationally
practical. Therefore, centrality indicators offer a better trade-off
than state-of-the-art heuristics between masking efficiency and
computational complexity.

VI. DISCUSSION

A. Impact on maximum operating frequency

When choosing the nodes to modify, critical paths can
be excluded. This way, the impact of logic masking on the
operating frequency is minimised. Masking efficiency would
not be affected much since critical paths are marginal.

B. Sequential circuits

When masking sequential circuits, combinational parts must
be isolated. Flip-flop inputs are converted to graph output nodes,
and the flip-flop outputs to graph input nodes [4].

C. Scalability

The results we provide here for computation time are
obtained on a standard desktop workstation. In order to improve
performances, a dedicated server with more memory could
be used to provide more computing power and analyse larger
netlists. Another option to improve scalability is to compute the
centrality indicator in parallel. Recent research [24] highlight
the fact that current flow-based centrality indicators, which
are usually the most efficient for logic masking, could be
computed faster. Other heuristics based on interference graph
[12] or fault analysis [14] are intrinsically sequential since
they require the masking metric to be recomputed every time
a node is modified.

D. Controllability and distance to inputs and outputs

For most of the modified benchmarks, inspection shows that
the inserted gates are as close to the inputs as they are to
the outputs. They are then approximately in the middle of the
netlist. This is a good point against reverse-engineering. Indeed,
if the extra gates are embedded deeper in the netlist, they are
harder to uniquely identify and disable.

The distance to inputs and outputs is closely related to the
controllability of the nodes. In order to make sure that the
modified nodes are hard to control, one can set a threshold on
their controllability. The controllability value can be computed
very fast. By ensuring that the controllability of the selected
nodes is high enough, the key value is much harder to reveal
on the outputs of the circuit by sensitisation attack [13].

VII. CONCLUSION

We proposed to use centrality indicators to select the nodes
modified by logic masking. On the one hand, it reduces
correlation effectively and is faster to compute than state-of-
the-art effective heuristics. On the other hand, compared to
other computationally-efficient heuristics, it reduces correlation
significantly more. Overall, it provides a better trade-off
between masking efficiency and computational complexity,
and is the only realistic candidate for integration in EDA tools
dealing with large and complex netlists.

ACKNOWLEDGEMENTS

The work presented in this paper was realised in the frame of the
SALWARE project number ANR-13-JS03-0003 supported by the French
”Agence Nationale de la Recherche” and by the French ”Fondation de
Recherche pour l’Aéronautique et l’Espace”, funding for this project was
also provided by a grant from ”La Région Rhône-Alpes”.

REFERENCES
[1] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor, and

Y. Makris, “Counterfeit integrated circuits: A rising threat in the global
semiconductor supply chain,” Proceedings of the IEEE, vol. 102, no.
8, pp. 1207–1228, 2014.

[2] B. Colombier and L. Bossuet, “Survey of hardware protection of design
data for integrated circuits and intellectual properties,” IET Computers
& Digital Techniques, vol. 8, no. 6, pp. 274–287, Nov. 2014.

[3] B. Colombier, L. Bossuet, and D. Hély, “From secured logic to IP
protection,” Elsevier Microprocessors and Microsystems, vol. 47, pp. 44–
54, 2016.

[4] S. M. Plaza and I. L. Markov, “Protecting integrated circuits from
piracy with test-aware logic locking,” in International Conference on
Computer Aided Design, San Jose, CA, USA, Nov. 2014.

[5] ——, “Solving the third-shift problem in IC piracy with test-aware
logic locking,” IEEE Trans. on CAD of Integrated Circuits and Systems,
vol. 34, no. 6, pp. 961–971, 2015.

[6] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of
logic encryption algorithms,” in IEEE International Symposium on
Hardware Oriented Security and Trust, Washington, DC, USA, May
2015, pp. 137–143.

[7] M. Yasin, J. Rajendran, O. Sinanoglu, and R. Karri, “On improving
the security of logic locking,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 35, no. 9, pp. 1411–1424,
2015.

[8] M. Yasin, B. Mazumdar, J. J. V. Rajendran, and O. Sinanoglu, “Sarlock:
SAT attack resistant logic locking,” in IEEE International Symposium
on Hardware Oriented Security and Trust, McLean, VA, USA, May
2016, pp. 236–241.

[9] Y. Xie and A. Srivastava, “Mitigating SAT attack on logic locking,” in
International Conference on Cryptographic Hardware and Embedded
Systems, Santa Barbara, CA, USA, Aug. 2016, pp. 127–146.

[10] J. A. Roy, F. Koushanfar, and I. Markov, “Ending piracy of integrated
circuits,” Computer, vol. 43, no. 10, pp. 30–38, 2010.

[11] R. S. Chakraborty and S. Bhunia, “HARPOON: an obfuscation-based
soc design methodology for hardware protection,” IEEE Transations
on Computer-Aided Design of Integrated Circuits and Systems, vol. 28,
no. 10, pp. 1493–1502, 2009.

[12] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security analysis
of logic obfuscation,” in Annual Design Automation Conference, San
Francisco CA, USA, Jun. 2012, pp. 83–89.

[13] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, “Security analysis
of integrated circuit camouflaging,” in ACM Conference on Computer
& communications security, Berlin, Germany, Nov. 2013, pp. 709–720.

[14] J. Rajendran, H. Zhang, C. Zhang, G. S. Rose, Y. Pino, O. Sinanoglu,
and R. Karri, “Fault analysis-based logic encryption,” IEEE Transactions
on Computers, vol. 64, no. 2, pp. 410–424, 2015.

[15] G. Sabidussi, “The centrality index of a graph,” Psychometrika, vol.
31, no. 4, pp. 581–603, 1966.

[16] J. M. Anthonisse, “The rush in a directed graph,” Mathematische
Besliskunde, no. BN 9/71, pp. 1–10, 1971.

[17] U. Brandes and D. Fleischer, “Centrality measures based on current
flow,” in Annual Symposium on Theoretical Aspects of Computer
Science, vol. 3404, Stuttgart, Germany, Feb. 2005, pp. 533–544.

[18] M. E. J. Newman, “A measure of betweenness centrality based on
random walks,” Social Networks, vol. 27, no. 1, pp. 39–54, 2005.

[19] K. Stephenson and M. Zelen, “Rethinking centrality: Methods and
examples,” Social Networks, vol. 11, no. 1, pp. 1–37, 1989.

[20] G. Csardi and T. Nepusz, “The igraph software package for complex
network research,” InterJournal Complex Systems, vol. 1695, no. 5,
pp. 1–9, 2006.

[21] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using NetworkX,” in Python in Science
Conference, Pasadena, CA USA, Aug. 2008, pp. 11–15.

[22] S. Davidson, “ITC’99 benchmark circuits - preliminary results,” in
IEEE International Test Conference, Atlantic City, NJ, USA, Sep. 1999,
p. 1125.

[23] L. Amarú, P.-E. Gaillardon, and G. D. Micheli, “The EPFL com-
binational benchmark suite,” in International Workshop on Logic &
Synthesis, Mountain View, CA, USA, Jun. 2015.

[24] A. Lulli, L. Ricci, E. Carlini, and P. Dazzi, “Distributed current flow
betweenness centrality,” in International Conference on Self-Adaptive
and Self-Organizing Systems, Cambridge, MA, USA, Sep. 2015, pp. 71–
80.

[25] S. Gören, C. C. Gürsoy, and A. Yildiz, “Speeding up logic locking
via fault emulation and dynamic multiple fault injection,” Journal of
Electronic Testing, vol. 31, no. 5-6, pp. 525–536, 2015.

