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Abstract—In this paper, we propose a novel robust method for
short-time spectral amplitude (STSA) estimation in audio denois-
ing. This method extends the smoothed sigmoid-based shrinkage
(SSBS), which does not require any prior information about the
probability distribution of the signal of interest. With regard to
audio processing, the SSBS method yields better performance in
terms of noise reduction but nevertheless introduces significant
musical noise. In order to benefit from non-diagonal processing,
which removes background noise without introducing musical
noise, two non-diagonal SSBS are derived. First, the decision-
directed approach is incorporated into the SSBS method. Second,
the time-frequency domain is divided into rectangular blocks
and then, a SSBS function is applied to estimate the spectral
amplitude in each block. The experimental results demonstrate
the relevance of the proposed methods both in terms of speech
quality and intelligibility via objective criteria.

Index Terms—Block threshold, audio denoising, smoothed
sigmoid-based shrinkage.

I. INTRODUCTION

Nowadays, a fundamental task in signal processing espe-
cially in audio and speech enhancement, is the elimination of
additive noise from the contaminated signal y[n] = s[n]+x[n],
where s, x are the signal of interest and noise respectively and
n = 0, 1, . . . , N − 1. Traditionally, by transforming the signal
model into the time-frequency domain, many studies aim to
improve not only speech quality but also speech intelligibility.

The first computationally simple method is power spectral
subtraction, which can be carried out without having much
prior information [1]. Then, assuming a linear relationship
between the estimate and observed signals, the optimal Wiener
filter is derived [2, Chap.6]. However, the main drawback of
these methods is the independent time-frequency generating
musical noise or artifact noise as the thresholding methods
proposed in [3]–[5]. Alternatively, short-time spectral am-
plitude (STSA) estimators based on minimum mean square
error (MMSE) yield better performance without introducing
musical noise by taking into account past estimate of STSA via
decision-directed approach [6]–[8]. Nevertheless, supposing
that the signal of interest follows a Gaussian probability
density function (pdf) is not always respected. Benefiting from
the block thresholding introduced in [9], the block threshold
denoising for audio signal developed in [10] is able to reduce

musical noise for music signal but not for speech signal. In
contrast to [10] our approach reduces musical noise for speech
denoising.

This paper addresses a novel time-frequency domain non-
diagonal audio denoising method that takes into account both
advantage of smoothed sigmoid-based shrinkage (SSBS) gain
function and block thresholding. Firstly, the modified SSBS
is proposed, which fits with short-time spectral amplitude
estimator in the time-frequency domain. Then, for eliminating
isolated estimated spectral amplitudes, which produce musical
noise, two strategies are proposed. The first one, the decision-
directed approach is used to estimate the instantaneous a priori
signal to noise ratio (SNR), which is incorporated into the
SSBS gain function. The second one, the same SSBS gain
function is applied to each time-frequency bin block.

The remaining of this paper is organized as follows. Sec-
tion II presents some notation and background on threshold
methods. Section III details the proposed algorithms. Then,
experimental results are presented in Section IV. Finally,
Section V concludes this paper.

II. SIGNAL MODEL AND BACKGROUND

In most audio denoising applications, the noisy speech
signal is segmented and transformed into the time-frequency
domain by short-time Fourier transform (STFT). Thus, the
observed signal in the time-frequency domain becomes

Y [m, k] = S[m, k] +X[m, k], (1)

where, m , k denote respectively the frame and frequency
index. The noisy signal can also be formulated in polar form
as follows

R[m, k]ejφY [m,k] =A[m, k]ejφS [m,k] +D[m, k]ejφX [m,k],

where R[m, k], A[m, k], D[m, k] are the short-time spectral
amplitude (STSA) of the observed signal, clean signal, noise
STFT coefficients and the associated phases are φY [m, k],
φS [m, k], φX [m, k], respectively. Additionally, the signal of
interest and noise are assumed to be independent so that the
observed spectral power is E

[
R2[m, k]

]
= E

[
A2[m, k]

]
+

E
[
D2[m, k]

]
. We set σ2[m, k] = E

[
D2[m, k]

]
. The a pos-

teriori signal to noise ration (SNR) γ[m, k] is defined by
γ[m, k] = R2[m, k]/σ2[m, k]. The a priori SNR and the
instantaneous a priori SNR are also defined as ξ[m, k] =978-1-5386-8173-2/18/$31.00 c©2018 IEEE



E[A2[m, k]]/σ2[m, k], ζ[m, k] = A2[m, k]/σ2[m, k]. Note
that ζ[m, k] can be considered as an estimate of ξ[m, k]. Due
to the importance of the short-time spectral amplitude, many
researches aim to estimate it and the associated phase is simply
fixed to the noisy phase. In order to retrieve the clean signal, a
gain function G[m, k] is often determined so that the enhanced
STFT coefficient signal is calculated by

Ŝ[m, k] = G[m, k]Y [m, k], (2)

where for simplifying notation, the estimates are henceforth
denoted by a wide hat symbol e.g ξ̂ is an estimate of ξ.

A. Thresholding estimation: Sigmoid shrinkage

Shrinkage functions are often applied to image processing to
estimate signal coefficients produced by the projection of the
noisy signal on an orthogonal basis. The main difference with
Bayesian estimators is that shrinkage methods do not require
prior information about the pdf of the signal of interest. The
first shrinkage function called hard thresholding is presented
in [3] and developed in [4]. Denoised STSA coefficients can
then be obtained by hard threshold as follows

Â[m, k] =

{
R[m, k] if R[m, k] ≥ Λ,

0 otherwise. (3)

where Λ = λσ[m, k] and λ is a convenient parameter. Thus,
this equation can be written as (2) by introducing the gain
function

Gλ[m, k] =

{
1 if γ[m, k] ≥ λ2,
0 otherwise. (4)

This gain function (4) is also depicted as binary masking or
channel selection function [2, Section 13.2, pp. 618].

In the same way, shrinkage can be smoothed by using soft
thresholding instead of hard thresholding. The soft threshold-
ing proposed in [4] is given as follows

Gλ[m, k] =

{
1− λ√

γ[m,k]
if γ[m, k] ≥ λ2,

0 otherwise,
(5)

and can be written as:

G[m, k] =

(
1− λ√

γ[m, k]

)
+

, (6)

where (z)+ = max(z, 0). Smooth shrinkage can be also
performed SSBS stated and analyzed in [5]. The gain function
is constructed based on three properties of shrinkage functions
including smoothness, penalized shrinkage and vanishing at-
tenuation at infinity. This type of shrinkage can be described
by the following equation:

Gλ,τ,λ[m, k] =
|1− µ√

γ[m,k]
|

1 + e−τ((γ[m,k])
1/p−λ)

, (7)

where µ, τ , p and λ are the parameters of methods. It is worthy
noticing that hard and soft thresholding functions are limit
cases of SSBS functions. For often, parameter λ can be taken
equal to the universal, minimax or detection threshold [11],

whereas parameter µ is often set equal to zero and τ controls
the attenuation yielded by the SSBS function [5]. Parameter p
can control the smooth property of the SSBS function. In [5]
p = 2.

B. Block Thresholding

From the above methods [3]–[5] the attenuation factors
G[m, k] are independently and singly evaluated for each
(m, k) atom. Therefore, in order to incorporate the impact
of neighboring time-frequency (or scale) atoms, the block
thresholding is proposed in [9] for the wavelet transform and
is developed in [10] for the STFT transform. Both methods
are based on the power subtraction gain function:

G[m, k] =

(
1− λ

1 + ξ̂[m, k]

)
+

. (8)

This gain function can be considered as the generalization of
the Wiener filter where ξ̂[m, k] is an estimator of ξ[m, k].

The time-frequency [m, k] plane is divided into non-
overlapping time-frequency rectangular blocks. In place of
calculating a gain function G[m, k] for each time-frequency
[m, k] bin, for each block Bi, the signal of interest is estimated
by the same gain function Gi. Thus, the estimated signal in
the time-frequency domain is given by

Ŝ[m, k] = GiY [m, k] (m, k) ∈ Bi, (9)

where the block gain function Gi =
(

1− λ

1+ξ̂i

)
+

. By
considering neighboring time-frequency atoms, the estimated
a priori SNR ξ̂i is calculated as the mean of all ξ[m, k], where
(m, k) bin belongs to the given block Bi.

III. NON-DIAGONAL SMOOTHED SIGMOID-BASED
SHRINKAGE

A. Decision-directed SSBS (DSS)

Performance of SSBS method in the image processing
is pinpointed in [5]. SSBS function is also called logistic
function, which is widely used in the machine learning. In
order to devise a robust audio denoising method, the SSBS
gain function (7) with µ = 0 is considered. The a posteriori
SNR is approximated as following:

γ[m, k] = ζ[m, k] + 1. (10)

Thus, for calculating the gain function G[m, k], we need to
estimate the instantaneous a priori SNR ζ[m, k]. However, the
clean short-time spectral amplitude A[m, k] is not available so
that the instantaneous a priori SNR can be estimated via the
decision-directed approach. First of all, as in [6], for taking
into account the previous atoms in the same frequency bin,
the estimated a priori SNR ξ̂[m, k] is given by:

ξ̂[m, k] = β
Â2[m, k]

σ2[m, k]
+ (1− β)(γ[m, k]− 1)+, (11)



where β is tthe smoothing factor. For the same reason to
modify the decision-directed approach in [12], we propose to
estimate the instantaneous SNR as:

ζ̂[m, k] =

(
ξ̂[m, k]

1 + ξ̂[m, k]

)2

γ[m, k]. (12)

This gives more emphasis to the role of current atom Y [m, k].
Instead of using the observed absolute value R[m, k] or the
square root of the a posteriori SNR γ[m, k] as in (7), we
modify the SSBS gain function as

G[m, k] =
1

1 + e
−τ
(

4
√
ζ̂[m,k]+1−λ

) . (13)

It mean p = 4. Because, this method brutally modifies each
isolated atoms in the time-frequency domain, the power four

can provide more smooth property than using the
√
ζ̂[m, k]

or ζ̂[m, k] and conserve a large enough reduction of noise.

B. Block SSBS (BSS)

For considering the time-frequency neighboring atoms, the
estimated a priori SNR ξ̂i can be estimated by averaging
instantaneous noisy signal energy R2[m, k] and the averaging
noise power spectral σ2[m, k] over block Bi, so that:

ξ̂i =

(
Y 2
i

σ2
i

− 1

)
+

, (14)

where

Y 2
i =

1

Ni

∑
(m,k)∈Bi

R2[m, k], (15)

σ2
i =

1

Ni

∑
(m,k)∈Bi

σ2[m, k], (16)

where Ni is the number of the time-frequency bin [m, k] in the
given block Bi. The block SSBS gain function now becomes

Gi =
1

1 + e−τ(
√
ξ̂i+1−λ)

. (17)

We remain use p = 2 for have a good attenuation of noise
whereas the smooth property is regularized by using block
approaches.

The fundamental problem is convenient choice of the block
size Ni. For simple implementation, the time-frequency image
is tiled in non-overlapping rectangular blocks so that the bin
number of rectangular block Bi is Ni = Li ×Wi, where Li
and Wi are the rectangular length and width corresponding to
the number of the frames and the number of the frequency
bins in the time-frequency domain, respectively. Note that the
larger Li, the greater time delay will appear. For real time
processing application, the rectangular length Li must be small
enough. However, the larger Li, the greater time delay will be
presented. For real time processing application, the rectangular
length Li must be small enough. Therefore, in this subsection
as in [9], [10], we address the size of the given block with

respect to this constraint and aim at minimizing the upper
bound on risk r which is given by:

r = E
[
‖ŝ− s‖2

]
. (18)

Based on the property of the frame basis after short-time
Fourier transform [13], the risk r is upper bounded as

r ≤ 1

f

I∑
i=1

∑
(m,k)∈Bi

E
[
‖Ŝ[m, k]− S[m, k]‖2

]
, (19)

where f is the redundant factor and I is the total number of
frames. By denoting Zi as the upper bound of risk over the
given block Bi, we obtain the upper bounded risk as

r ≤ 1

f

I∑
i=1

Zi = Z, (20)

where Z is overall upper bound risk. Applying the SURE
theorem [14, Section 2] and after some routine algebra, we
are able to get the unbiased estimate Ẑi:

Ẑi = Niσ2
i (2Gi − 1)+

(1−Gi)(1 + τGi

√
ξ̂1 + 1−Gi)‖Y‖22.,

(21)

where ‖Y‖22 =
∑

(m,k)∈Zi
Z2[m, k].

Generally, all parameters τ , λ and Ni can be estimated via
minimizing the estimate Ẑ of Z. For now, a given τ and λ,
the block size Ni is obtained by minimizing the estimated
risk Z. For reducing the complexity and the time delay, the
time-frequency domain is divided into rectangular blocks Bi
of size Wi × Li. Then, we try to split each block into sub-
blocks via minimizing the overall risk Zi over a given block
Bi. Furthermore, for taking into consideration that the impact
of non-stationary noise is different from a band to another
[15], we need to only find the rectangular length of sub-
block whereas the rectangular width Wi is fixed by using the
frequency linear, logarithmic or mel spacing.

IV. EXPERIMENT AND RESULTS

We benchmarked our proposed BSS and DSS methods to
the reference Log-Spectral Amplitude (LSA) [7] and Audio
Block Thresholding (ABT) [10] methods on the NOIZEUS
database [2] to evaluate their performance. This database
contains IEEE sentences corrupted by noise coming from
the AURORA database, at four levels, namely 0, 5, 10 and
15 dB. In our experiments, speech signals with sampling
rate at 8 kHz were segmented into sets of 20-ms duration
frames, transformed by STFT with 50% overlapped Hamming
windows. The parameters τ and λ of the SSBS gain function
were chosen after preliminary tests on 20 randomly selected
sentences corrupted by car noise with SNR equal to 5 dB.
The result of the test allow us to set τ = 5.0725 and, for each
given frequency bin, λ = 0.8. The noise power spectral σ2 is
estimated by up-to-date method B-E-DATE [16].

The speech quality and intelligibility, yielded by the de-
noising algorithms, are evaluated by both objective quality
and intelligibility criteria. Speech quality is firstly measured



TABLE I
PERFORMANCE EVALUATION WITH TWO CRITERIA: MARS OVL AND STOI

MARS ovl STOI(%)
Noise Method 0dB 5dB 10dB 15dB 0dB 5dB 10dB 15dB

White

LSA 2.41 3.08 5.32 8.36 84.97 96.65 99.11 99.67
ABT -1.38 -0.67 0.65 3.29 84.76 97.26 99.39 99.80
DSS 2.65 3.61 6.88 9.67 91.58 98.26 99.51 99.80
BSS 2.56 3.41 6.86 10.24 91.87 98.48 99.57 99.83

Train

LSA 2.34 2.88 4.67 8.19 85.40 97.69 99.44 99.80
ABT -1.33 -0.48 0.74 3.27 85.43 98.48 99.62 99.87
DSS 2.23 2.80 5.30 9.04 92.39 98.92 99.69 99.88
BSS 2.09 2.68 4.25 8.60 88.75 98.87 99.71 99.89

Airport

LSA 2.56 3.40 5.95 9.16 88.80 98.00 99.58 99.86
ABT -0.49 0.77 2.44 6.35 88.81 98.78 99.79 99.91
DSS 2.35 3.28 6.33 10.11 93.47 99.04 99.77 99.91
BSS 2.16 3.05 5.44 9.81 91.94 99.03 99.80 99.92

Babble

LSA 2.44 3.16 5.35 8.75 80.97 96.94 99.50 99.83
ABT -0.84 0.43 1.60 5.10 81.76 98.26 99.73 99.90
DSS 2.19 2.91 5.48 9.41 88.51 98.56 99.74 99.90
BSS 2.01 2.75 4.40 8.95 84.83 98.57 99.76 99.90

by the overall quality pseudo-subjective criterion based on
multivariate adaptive regression splines (MARS ovl) [17].
Secondly, speech intelligibility was initially evaluated by the
short-time objective intelligibility measure (STOI), which has
the high correlation with intelligibility measured by listening
tests. A logistic function is applied to STOI measures to map
intelligibility scores [18].

The average results for different noise types and SNR values
are shown in Table I. For each SNR, each type of noise and
each given criterion, the value in bold face emphasizes the best
result. For MARS ovl criterion, the proposed methods lead the
significantly best score at high SNR levels and remain close to
the vicinity of the best score at low SNR levels (0 and 5 dB).
For speech intelligibility criterion, our proposed methods yield
best scores at all SNR levels, especially at low SNR levels.

V. CONCLUSION

In this paper, a novel method has been proposed to enhance
the speech corrupted by background noise. By considering ad-
vantage of non-diagonal estimator and shrinkage, our method
yields promising results conducted on the NOIZEUS database.
In future steps, as we discussed above, parameters will be
theoretically chosen by minimizing the estimated risk.
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