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Abstract

We consider a network coding problem where the destination wants to recover the sum of the signals (Gaussian random
variables or random finite field elements) at all the source nodes, but the sum must be kept secret from an eavesdropper that can
wiretap on a subset of edges. This setting arises naturally in sensor networks and federated learning, where the secrecy of the
sum of the signals (e.g. weights, gradients) may be desired. While the case for finite field can be solved, the case for Gaussian
random variables is surprisingly difficult. We give a simple conjecture on the necessary and sufficient condition under which such
secret computation is possible for the Gaussian case, and prove the conjecture when the number of wiretapped edges is at most
2.
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I. INTRODUCTION

Network coding, studied by Ahlswede et al. [1] and Li et al. [2], is a network communication technique where each node in
the network combines its inputs to produce its outputs. Network coding for sum computation, where the destination only wants
to recover the sum of the sources, was investigated by and Ramamoorthy and Langberg [3], [4], Appuswamy et al. [5]–[7],
Shenvi and Dey [8], and Rai and Dey [9]. Also see [10]–[13]. This setting arises, for example, in sensor networks [9].

This paper aims at solving the following network coding problem. Consider a network where each source node has a source
signal that is a Gaussian random variable (or a uniformly chosen finite field element). The destination wants to recover the
sum of the source signals, but the sum must be kept secret from an eavesdropper that can observe a subset of wiretapped
edges in the network. There is no capacity constraint on the edges, which can transmit arbitrary signals (even real numbers as
in arithmetic network coding [14], [15]). What is the condition under which this is possible?

In this paper, we resolve the case for finite field. For the Gaussian case, we present a simple conjecture on the necessary and
sufficient condition under which such secret computation is possible – secret computation is possible if and only if removing
the wiretapped edges (and edges that are only reachable from the source nodes through wiretapped edges) does not weakly
disconnect any source node from the destination node. Despite its simplicity, proving this conjecture appears to be surprisingly
difficult. We prove the converse part of the conjecture, and the achievability part for the case where there are at most two
wiretapped edges.

A similar problem has been studied by Guang et al. [16], which considered secure sum computation over finite field where
all sources (instead of only the sum) must be kept secret. We call our setting secret sum computation to distinguish these two
settings. While keeping all sources secret is desirable from a privacy perspective, there are settings where the secrecy of the
sum is more important. For example, in a sensor network, the sensors are not users, so the privacy of individual sensors may
be irrelevant. The sum (or average) of the measurements at the sensors is the quantity of interest, where decisions will be
based upon, so its secrecy is vital.

Most aforementioned results on network coding for sum computation are on finite fields or rings1. Secrecy on sum of real
numbers is considerably different from that for finite fields (e.g. the sum of two uniformly chosen elements in a finite field is
independent of either one of the summands, but no analogous result holds for real numbers). We consider real source signals
for two reasons. First, real signals is more natural for applications such as sensor networks and federated learning [17], [18].
Second, many existing protocols in federated learning and distributed averaging [19] involve sending real numbers, so it is not
uncommon to allow transmission of real numbers. These will be elaborated in the following subsections.

A. Federated Learning

The proposed setting arises naturally in federated learning [17], [18], a machine learning setting where the data is stored in
a decentralized manner. The goal is to allow the server to train the model without having every user share all of their subsets

1We remark that arithmetic sum over integers has been studied in [6], [7]. Nevertheless, the authors are not aware of any previous work on arithmetic sum
over real numbers.
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Figure 1: A simple network. The dashed edge is the wiretapped edge.

of the data set. In federated stochastic gradient descent [20], each user train their local model using their subset of the data set,
and upload the gradients of the parameters to the server. The server then update the global model according to the sum of the
gradients. In federated averaging [17], each user instead upload the parameters of their local model, and the server takes the
average of those parameters. Both techniques involve sum computation (on the gradients or parameters) through a network.

If a subset of the edges in the network is insecure and can be wiretapped, then it is desirable to ensure that the sum is
independent of the signals along the wiretapped edges, so that the eavesdropper cannot gain any knowledge on the learned
model at the server. We remark that this goal is different from ensuring the privacy of the local data sets of each user (which
is more common in the literature), though for the real-valued signals case, ensuring that the eavesdropper’s knowledge is
independent of the sum can also guarantee privacy of each user to a certain degree (e.g., the eavesdropper cannot know the
precise value of any individual source signal).

B. Arithmetic Network Coding

We do not impose any capacity constraint on the edges. Edges are allowed to carry arbitrary (even continuous) signals. In
the coding schemes constructed in this paper, real numbers are transmitted through the edges of the network, and only linear
operations are performed at the nodes, which is the setting in (linear) arithmetic network coding [14], [15], [21]. This is related
to physical layer network coding [22]–[24] and analog network coding [25], [26], which are useful in wireless networks. Secure
analog network coding has been studied, for example, in [27], [28].

Arithmetic network coding is a natural setting for federated learning, since many existing protocols in federated learning
(e.g. [17], [20]) are based on sending real numbers. Also, several related protocols (e.g. distributed averaging [19]) involve
transmitting real numbers. In practice, real numbers in these protocols are usually encoded as floating-point numbers, which
are often accurate enough that the effect of quantization can be ignored. We also emphasize that the focus of this paper is
not on the communication rate (where the encoding and quantization of those numbers would be of importance), but on the
secrecy constraint.

Our linear coding scheme also applies to the physical layer network coding scenario where all edges are (single-use) additive
Gaussian noise channels with noise variance σ2 instead of having infinite capacities. In this case, a linear scheme can ensure
secrecy of the sum, while allowing the sum to be recovered at the destination with mean squared error O(σ2). Refer to [29]
for a related setting in secure physical layer network coding with multiple access Gaussian channels. Also see [30]–[33] for
other related results.

C. Other Related Works

The application of network coding on federated learning has been studied in [34], which shows that network coding can
improve the communication efficiency. Nevertheless, [34] has only considered the butterfly network.

In the distributed averaging problem [19], every node in the network has a number, and every node wants to obtain the
average of these numbers. In our setting, only the server needs to obtain the sum (or average) of the numbers. Secure sum
protocols [35], [36] are about computing the sum of the source signals while preserving the privacy of the source signal of
each user. In our setting, we instead preserve the secrecy of the sum of the signals.

This paper is organized as follows. In Section II, we present a motivating example. In Section III, we define the problem
setting. In Section IV, we resolve the case for finite field signals. In Section V, we present the conjecture for the case for
Gaussian signals, and prove the converse part of the conjecture, and the achievability part when the number of wiretapped
edges is at most 2.

II. MOTIVATING EXAMPLE

Consider the simple network in Figure 1, where each of the source nodes 5, 6, 7 holds an independent Gaussian source
signal following N(0, 1) (or uniform in Fq). Let the source signal at source node s be Xs. The destination node 1 wants to
recover the sum X5 +X6 +X7. Nevertheless, the signal along the wiretapped edge (2, 3) must be independent of the sum.
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Consider a simple linear coding scheme where each of the source nodes 5, 7 forwards its source signal to its out-neighbor,
and each of nodes 2, 3, 4 forwards the sum of its incoming signals to its out-neighbor. For source node 6, it sends β1X6 to
node 4, and β2X6 to node 2. The signal along edge (2, 3) is X5 + β2X6. For the Gaussian case, to ensure X5 + β2X6 is
independent of X5 +X6 +X7, we can take β2 = −1. For the finite field case, we can take any β2. The sum of the signals to
node 1 is X5 +X7 + (β1 + β2)X6. Taking β1 = 1− β2, we can ensure that the sum can be recovered.

To illustrate the difference between secret sum computation and secure sum computation, note that if we require the signal
along the wiretapped edge to be independent of (X5, X6, X7) (as in secure sum computation) instead of only the sum, then it is
still possible if nodes are allowed to generate additional local randomness, since node 6 can generate a secret key and forward
the key to node 4 (which in turn forwards it to node 1) and node 2, and node 2 can encrypt X5+X6 using the key. Node 1 can
then recover X5 +X6 using the key. Nevertheless, secrecy of (X5, X6, X7) is impossible if no local randomness is allowed.
Secrecy of (X5, X6, X7) is also impossible for the Gaussian case if only linear codes are allowed (even if local randomness
is allowed)2. In this paper, we require only the secrecy of the sum X5 + X6 + X7, where linear codes suffice to show the
achievability (for the case where there are at most two wiretapped edges), allowing the scheme to be also applicable to the
case where all edges are (single-use) additive Gaussian noise channels. Also, in this paper, we do not assume the existence of
local randomness.

III. PROBLEM FORMULATION

A network is defined as a weakly-connected directed acyclic graph (V,E), where we assume V = {1, . . . , n}. For a node v,
denote its set of in-neighbors (resp. out-neighbors) as Ni(v) (resp. No(v)). Nodes with zero in-degree are called source nodes
(denote this set as S := {v ∈ V : Ni(v) = ∅}), and we require that there is exactly one node with zero out-degree called the
destination node (let it be d ∈ V ).

We consider the standard network coding setting, where each node can compute its outgoing signals as arbitrary functions
of its incoming signals. The only difference is that there is no capacity constraint on the signals (they can be continuous).
We give the precise definition of a secret coding scheme as follows. First, each source node s ∈ S observes an independent
Gaussian source signal Xs ∼ N(0, 1) (or a uniformly chosen element in the finite field Fq) i.i.d. across s. Then, in topological
order, each node v computes its outgoing signals Yv,w along the edge (v, w) for w ∈ No(v) as a function of its observations
(source Xv if v ∈ S, and signal Yu,v from in-neighbor u ∈ Ni(v)) without using any local randomness, i.e.,

Yv,w := fv,w
(
{Yu,v}u∈Ni(v), 1{v ∈ S}Xv

)
(1)

for w ∈ No(v), where 1{v ∈ S} = 1 if v ∈ S, 1{v ∈ S} = 0 if v /∈ S. Finally, the destination node d computes its output as

Z := fd,d̃
(
{Yu,d}u∈Ni(d)

)
, (2)

where d̃ := n + 1. The notation can be simplified by letting Y0,s := Xs for s ∈ S, and Yd,d̃ := Z. Then, instead of (1) and
(2), we have the following formula: for any v ∈ V , w ∈ No(v) or (v, w) = (d, d̃),

Yv,w = fv,w
(
{Yu,v}u∈Ni(v)∨ (u=0∧ v∈S)

)
.

Let Ẽ ⊆ E be a set of wiretapped edges, which is accessible to the eavesdropper. A secret coding scheme with wiretapped
edges Ẽ must satisfy two requirements. First, the final output must be the sum of the sources, i.e.,

Yd,d̃ =
∑
s∈S

Y0,s.

Second, the collection of signals along the edges Ẽ must be independent of the sum, i.e.,

{Yu,v}(u,v)∈Ẽ ⊥⊥
∑
s∈S

Y0,s.

This ensures that the eavesdropper cannot gain any information about the sum.
We may also consider a linear secret coding scheme, where

fv,w
(
{Yu,v}u∈Ni(v)∨ (u=0∧ v∈S)

)
=

∑
u∈Ni(v)∨ (u=0∧ v∈S)

αu,v,wYu,v

is a linear combination of its inputs as in arithmetic network coding [14], [15], where {αu,v,w} is a collection of coefficients.
While our conjecture and the converse result are on general (linear/nonlinear) secret coding schemes, the schemes we construct
in achievability proofs are linear secret coding schemes.

We use the notation u −→ v to mean that v is reachable from u, i.e., there is a directed path from u to v. The notation

u
Ẽc

−→ v means that there is a directed path from u to v in the graph where the edges in Ẽ are removed.

2A secure sum computation scheme that ensures the secrecy of (X5, X6, X7) would be having node 6 generate K ∼ Unif[0, 1], and sending K to node
4 (which in turn forwards it to node 1) and node 2. Node 2 sends (Φ((X5 + X6)/

√
2) + K) mod 1, from which node 1 can recover X5 + X6 using K,

where Φ is the cdf of the standard Gaussian distribution. Nevertheless, this scheme is nonlinear and requires sending two numbers X7,K through edge (4, 1)
(and hence fails when the edges are single-use additive Gaussian noise channels), and requires additional randomness K.
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IV. FINITE FIELD SOURCE SIGNALS

In this section, we resolve the case for source signals in the finite field Fq .

Theorem 1. Consider the network (V,E) with uniform signals in Fq and wiretapped edges Ẽ ⊆ E. A secret coding scheme

exists if and only if there exists s ∈ S such that s Ẽc

−→ d.

Proof: For the converse part, assume removing the edges in Ẽ disconnects all source nodes from the destination. Then
the collection of source signals {Y0,s}s∈S is conditionally independent of the output of the destination Yd,d̃ (which should be
the sum of sources), conditioned on the collection of the signals along the wiretapped edges {Yu,v}(u,v)∈Ẽ (which should be
independent of the sum of sources). This is clearly impossible.

For the achievability part, let s0 ∈ S with s0
Ẽc

−→ d. Consider the path v0 = s0, v1, . . . , vk−1, vk = d from s0 to d without
passing through Ẽ. Design a linear secret coding scheme as follows. Each node u forwards the sum of its inputs (and its source
signal if it is a source node) to one of its out-neighbors, where we choose the out-neighbor vi+1 if u = vi for some i, or any
one out-neighbor of u if u is not on the path. Note that only the edges on the path can depend on the source signal Y0,s0 . Each
edge not on the path has a signal that is the sum of a subset in {Y0,s}s∈S\{s0}. Hence, {Yu,v}(u,v)/∈{(v0,v1),...,(vk−1,vk)} (the
collection of signals along edges not on the path) is a function of {Y0,s}s∈S\{s0}, which is independent of the sum

∑
s∈S Y0,s.

The finite field case is simple and perhaps not particularly enlightening, considering that the sum can be kept secret even
when all except one of the sources are leaked, making such scheme useful only when the privacy of individual sources is
unimportant. On the contrary, for the Gaussian case, keeping the sum secret implies that the eavesdropper cannot know any
of the sources exactly, making it a harder requirement to fulfill.

V. GAUSSIAN SOURCE SIGNALS

In the remainder of the paper, we consider the case for Gaussian source signals. We first make an observation that if the
set of edges Ẽ ⊆ E has signals that are independent of the sum of the sources, then any edge that cannot be visited from a
source node without passing through Ẽ must also be independent of the sum. Define the secrecy closure of Ẽ as

scl(Ẽ) := Ẽ ∪ {(u, v) ∈ E : ¬∃s ∈ S. s Ẽc

−→ u}.

Since the signals along the edges in scl(Ẽ) only depend on the signals along the edges in Ẽ, the edges in scl(Ẽ) must also
be independent of the sum.

We now present our main conjecture on the necessary and sufficient condition for a secret coding scheme to exist.

Conjecture 1. Consider the network (V,E) with Gaussian source signals and wiretapped edges Ẽ ⊆ E. A secret coding
scheme exists if and only if removing the edges in scl(Ẽ) does not weakly disconnect any source node s ∈ S from the
destination node d (i.e., in the graph (V, E\scl(Ẽ)), after treating the graph as an undirected graph, any s ∈ S is connected
to d).

We first show the converse part of the conjecture. The proof is given in Appendix A.

Theorem 2 (Converse). Consider the network (V,E) with Gaussian source signals and wiretapped edges Ẽ ⊆ E. If removing
the edges in scl(Ẽ) weakly disconnect a source node s ∈ S from the destination node d, then there does not exist a secret
coding scheme with wiretapped edges Ẽ.

Next, we discuss the achievability part of the conjecture. Despite the simplicity of the conjecture, proving the achievability
is surprisingly hard, and we are only able to prove it for |Ẽ| ≤ 2. We first give a sketch of the proof of the case where there is
one wiretapped edge. Refer to Theorem 4 for the rigorous proof (note that the two-edge case covers the one-edge case since
we can split the one wiretapped edge into two).

Theorem 3 (One wiretapped edge). Consider the network (V,E) with Gaussian source signals and wiretapped edges Ẽ ⊆ E
with |Ẽ| = 1. A linear secret coding scheme exists if removing the edges in scl(Ẽ) does not weakly disconnect any source
node s ∈ S from the destination node d.

Proof sketch: Without loss of generality, assume Ẽ = {(2, v2)} and d = 1. We assign label to each node u according to
which nodes in node 1, 2 that u can reach without going through Ẽ, that is,

l(u) =


1 if u

Ẽc

−→ 1, u
Ẽc

6−→ 2

2 if u
Ẽc

6−→ 1, u
Ẽc

−→ 2

12 if u
Ẽc

−→ 1, u
Ẽc

−→ 2.
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Figure 2: The coding scheme in Theorem 3. The dashed edge is the wiretapped edge. The nodes are partitioned into V1, V2, V12
according to which of nodes 1, 2 it can reach. There are 4 kinds of edge: black edges which forward the sum of the incoming
signals, red edges which forward the sum after multiplying by β1, blue edges which forward the sum after multiplying by β2,
and grey edges which are unused.

Note that any node falls in one of the above three cases (if removing edge (2, v2) disconnects a node from the destination,
then that node must be able to reach 2). Also note that l(v2) = l(v3) = 1.

Define Sλ := {u ∈ S : l(u) = λ} to be the set of source nodes with label λ, and Vλ := {u ∈ V : l(u) = λ}. Note that
S2∪S12 6= ∅ since we can find an ancestor of node 2 with zero in-degree, which must be a source node. Fix any s ∈ S2∪S12.
Since removing the edge (2, v2) does not weakly connect s from node 1, we can consider an undirected path from s to node
1. Since l(s) ∈ {2, 12} and l(1) = 1, there must be an edge (w1, w2) ∈ E\Ẽ along that path that connects two nodes w1, w2

with different labels. Note that l(w1) = 12 since at least one of w1 and w2 must be able to reach node 1 (and the same holds
for node 2). By considering an ancestor of w1 with zero in-degree, we know that S12 6= ∅.

We now design a linear secret coding scheme. For each node u /∈ {1, 2}, if it has an out-neighbor v (via a non-wiretapped
edge) with the same label, then node u forwards the sum of its incoming signals to node v. If there are multiple possible
v’s, select any one of them. If there is no such v, then l(u) = 12 must hold, and node u will instead forward the sum of its
incoming signals, after multiplying by β1, to one of its out-neighbors with label 1; and also forward the sum of its incoming
signals, after multiplying by β2, to one of its out-neighbors with label 2. For node 2, it simply forward the sum of its incoming
signals along the wiretapped edge. Refer to Figure 2 for an illustration.

Write XA =
∑
v∈AXv . The signal along the wiretapped edge (2, v2) is

Y2,v2 = XS2 + β2XS12 .

Since the signals are Gaussian, to check the secrecy constraint, it suffices to check that the covariance

E[(XS1 +XS2 +XS12)Y2,v2 ] = |S2|+ β2|S12| = 0,

which gives β2 = −|S2|/|S12|. The sum of the signals at the destination node 1 is

XS1 + β1XS12 + Y2,v2 = XS1 +XS2 + (β1 + β2)XS12 .

For the recovery requirement, we take β1 = 1− β2 = 1 + |S2|/|S12|.

We now discuss the case with two wiretapped edges.

Theorem 4 (Two wiretapped edges). Consider the network (V,E) with Gaussian source signals and wiretapped edges Ẽ ⊆ E
with |Ẽ| = 2. A linear secret coding scheme exists if removing the edges in scl(Ẽ) does not weakly disconnect any source
node s ∈ S from the destination node d.

Sketch of the proof of Theorem 4: Assume d = 1 and the wiretapped edges are (2, v2) and (3, v3). A natural attempt is
to define a labelling according to which of nodes 1, 2, 3 can the node reach as in the proof Theorem 3, resulting in seven
labels: 1, 2, 3, 12, 13, 23, 123. For the case where there is no source node with label 123, it can be solved using a similar
technique as Theorem 3. However, for the case where there is a source node with label 123, there are many different cases
of the set of labels of its out-neighbors (it can be {1, 23}, {12, 13}, etc.), and hence we cannot define coefficients for nodes
with label 123 together. We should rather treat {1, 23}, {12, 13}, etc. as separate labels. But now a node with set of labels of
its out-neighbors {{1, 23}, {12, 13}} needs to have its own label as well, resulting in an unbounded number of labels.
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Figure 3: An example where there exist source nodes with label 123. The original labels l(u) are in blue. The proof involves
assigning new labels l′(u) to each node (in red, by the “relabelling to 3” rule).

To reduce the number of labels, we consider the following new labelling rule, which we call relabelling to 3. Nodes with
labels 1, 2, 3 and 12 remain unchanged. If a node has out-neighbors with labels 1 and 3 only, then it is labelled 3 instead of
13. If a node has out-neighbors with labels 2 and 3 only, then it is labelled 3 instead of 23. If a node has out-neighbors with
labels 12 and 3, then it is labelled 123. There are five different labels: 1, 2, 3, 12, 123. Now, a node with label 123 either has
out-neighbors with labels 12 and 3, or an out-neighbor with label 123, so we only have to design the coefficients to labels
12 and 3 (instead of considering {1, 23}, {12, 13} etc.). Refer to Figure 3 for an illustration of the original and new labelling
rules.

Nevertheless, it is possible that the information of the weakly-connectedness assumption in Theorem 4 is lost in the new
labelling rule. For example, if the only node with original label 123 is a source node with out-neighbors with original labels
13 and 2, then the weakly-connectedness assumption is satisfied. Nevertheless, this source node will have a new label 3 (since
its out-neighbors have new labels 3 and 2). Hence, if we only consider the new labels, then it is possible that we only have
source nodes with labels 1, 2 and 3 even if weakly-connectedness is satisfied. Therefore, it is impossible to deduce whether
weakly-connectedness is satisfied using only the labels of the source node. A scheme that only depends on the new labels of
the node must fail due to the converse of the conjecture.

To solve this problem, we apply the new labelling rule according to the out-neighbors of any one node with original label
123. If the out-neighbors have labels 13 and 2, then we apply a relabelling to 2 instead of 3 (i.e., we have label 2 instead of
labels 12, 23). If the out-neighbors have labels 23 and 1, then we apply a relabelling to 1. This way, we can guarantee that
this node with original label 123 will still have a new label 123. The presence of a source node with label 123 implies that
weakly-connectedness is satisfied. Hence, we can design the coefficients for the new labels in a way similar to Theorem 3.

We now give the rigorous proof.
Proof of Theorem 4: Define

vscl(Ẽ) := {u ∈ V : ¬∃s ∈ S. s Ẽc

−→ u}.

to be the set of nodes only reachable from the source nodes via Ẽ. Then we have scl(Ẽ) = Ẽ ∪ {(u, v) ∈ E : u ∈ vscl(Ẽ)}.
Let Ẽ = {(u2, v2), (u3, v3)}. Without loss of generality, assume u2 = 2, u3 = 3 and d = 1. We will assign label

l(u) ⊆ {1, 2, 3} to node u according to the following rule:

l(u) := {v ∈ {1, 2, 3} : u Ẽc

−→ v}.

Define

Vλ := {u ∈ V : l(u) = λ},
Sλ := {u ∈ S : l(u) = λ}.

We write (V, Ẽc) for the graph where the edges in Ẽ are removed. Note that the labels l(u) are subsets of {1, 2, 3}, and
we will write 12 for the subset {1, 2} for brevity. Also note that l(u) 6= ∅ since we have u −→ 1 in the original graph (node

1 is the only node with zero out-degree), so after removing the edges (2, v1), (3, v2), we have u Ẽc

−→ 1, u Ẽc

−→ 2 or u Ẽc

−→ 3.
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Moreover, we assume that 2, 3 /∈ vscl(Ẽ). If 3 ∈ vscl(Ẽ), then node 3 is only reachable from source nodes via the wiretapped
edge (2, v2), so the secrecy requirement on {(2, v2), (3, v3)} is implied by the secrecy requirement on (2, v2), and this reduces
to the one-wiretapped-edge case. Hence we can assume 2, 3 /∈ vscl(Ẽ).

Also, we assume that l(2) = {2} and l(3) = {3}. If l(2) 6= {2}, then we can add a new node 2′, remove the edge (2, v2),
and add the edges (2, 2′) and (2′, v2) (which is the new wiretapped edge). Adding a node this way is permitted since node 2
in the original network can simulate node 2′ in the new network. Now we have l(2′) = {2}, and hence we can use node 2′

as the new node 2. Therefore, we can always assume l(2) = {2} and l(3) = {3}.
Note that at least one of l(v2), l(v3) is {1} (otherwise it forms a cycle). Without loss of generality, assume l(v2) = {1}.

We have l(v3) = {1}, {2} or {1, 2}.
We first prove the following claims:

Claim 1. If s ∈ S, v ∈ V , s Ẽc

−→ v, then s
scl(Ẽ)c−→ v.

To prove this claim, assume the contrary that s Ẽc

−→ v, s
scl(Ẽ)c

6−→ v. Then there exists a directed path from s to v in (V, Ẽc)
that passes through an edge in scl(Ẽ)\Ẽ, contradicting the definition of scl.

Claim 2. For any node v /∈ vscl(Ẽ) with l(v) 6= {1}, there exists β ⊇ l(v) such that Sβ 6= ∅.

To prove this claim, let v /∈ vscl(Ẽ), l(v) = λ, λ 6= {1}. By the definition of vscl, there is an ancestor s of v in the graph
(V, Ẽc) that is a source node. We have l(s) ⊇ l(v), and the claim is satisfied.

Claim 3. If S123 = ∅, then at least two of S12, S13 and S23 are nonempty.

To prove the claim, assume S123 = ∅. Since node 1 is weakly connected to node 2 in the graph (V, scl(Ẽ)c) (by Claim 2,

since 2 /∈ vscl(Ẽ), there exists s ∈ S where s Ẽc

−→ 2, and hence s
scl(Ẽ)c−→ 2 by Claim 1, and s is weakly connected to 1 in

(V, scl(Ẽ)c) by the assumption in the theorem), we can find a sequence of nodes w0 = 1, w1, . . . , wk−1, wk = 2 such that any
two consecutive nodes wi−1, wi are adjacent in (V, scl(Ẽ)c) (i.e., either (wi−1, wi) ∈ E\scl(Ẽ) or (wi, wi−1) ∈ E\scl(Ẽ)).
Consider l(wi−1)∪ l(wi). By Claim 2, if l(wi−1)∪ l(wi) = λ, |λ| = 2, then we have Sλ 6= ∅ (this is because if (wi−1, wi) ∈
E\scl(Ẽ), then l(wi−1) = λ and wi−1 /∈ vscl(Ẽ) by the definition of scl). If there exists i such that l(wi−1)∪ l(wi) = {1, 2},
then S12 6= ∅. If there does not exist such i, then let imin, imax be the minimum / maximum i such that |l(wi−1)∪ l(wi)| ≥ 2
(such i exists since 1 ∈ l(w0) and 2 ∈ l(wk)). Since {1, 2} * l(wi−1) ∪ l(wi), we have l(wimin−1) ∪ l(wimin

) = {1, 3},
implying S13 6= ∅. Similarly, by considering imax, we have S23 6= ∅. Hence, we have S12 6= ∅, or S13, S23 6= ∅. By considering
nodes 1 and 3 instead of nodes 1 and 2, we can similarly show that S13 6= ∅, or S12, S23 6= ∅. Combining these two conditions,
we know that if S123 = ∅, then at least two of S12, S13 and S23 are nonempty.

Then we have two cases on whether S123 6= ∅ or not. We will design the coefficients in the scheme for the two cases
separately.

Case 1: Suppose S123 = ∅. By Claim 3, at least two sets of S12, S13 and S23 are nonempty. We design the scheme as
follows. For a node v ∈ V12, it forwards the sum of its incoming signals to one of its out-neighbors w ∈ V12 (along a
non-wiretapped edge) with the same label. If no such out-neighbor exists, then it forwards the sum of its incoming signals
to one of its out-neighbors w1 ∈ V1 (along a non-wiretapped edge) after multiplying the sum by the coefficient β12,1, and
also forwards the sum to one of its out-neighbors w2 ∈ V2 (along a non-wiretapped edge) after multiplying the sum by the
coefficient β12,2, where {βλ1,λ2

}λ2⊆λ1⊆{1,2,3} is a set of coefficients. Perform similar operations for V13, V2,3. More generally,
for v /∈ {1, 2, 3}, we use a linear secret coding scheme with

αu,v,w =

{
1{w = min(Ño(v) ∩ Vl(v))} if Ño(v) ∩ Vl(v) 6= ∅
βl(v),l(w)1{w = min(Ño(v) ∩ Vl(w))} if Ño(v) ∩ Vl(v) = ∅,

(3)

where Ño(v) is the set of out-neighbors of node v in graph Ẽc. Note that the “w = min(· · · )” condition is to ensure that the
signal is only forwarded to one out-neighbor in the first case, or two out-neighbors in the second case.

For node 2 or 3, it simply forwards the sum of its incoming signals through the wiretapped edge. More precisely, we take
αu,2,v2 = 1 for any u, and αu,3,v3 = 1 for any u.

First consider the case l(v3) = {1}. Note that for each source node in S1, it will reach node 1 without being multiplied
by any coefficient (i.e., the αu,v,w’s along its path to node 1 will be all 1’s). The same for source nodes in S2 and S3 (since
αu,v,w = 1 along the wiretapped edge). For a source node in S12, it will encounter the second case in (3) exactly once, and be
forwarded to two nodes in V1 and V2 respectively after being multiplied by β12,1 and β12,2 respectively. Hence, it will reach
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node 2 after being multiplied by β12,2, and reach node 1 after being multiplied by β12,1 + β12,2. Similar for S13, S23. Write
XA =

∑
v∈AXv . The signals along the wiretapped edges (2, v2), (3, v3) are

Y(2,v2) = XS2 + β12,2XS12 + β23,2XS23 , (4)
Y(3,v3) = XS3 + β13,3XS13 + β23,3XS23 , (5)

and the sum of the signals to node 1 is

XS1
+ β12,1XS12

+ β13,1XS13
+ Y(2,v2) + Y(3,v3)

= XS1
+XS2

+XS3
+ (β12,1 + β12,2)XS12

+ (β13,1 + β13,3)XS13
+ (β23,2 + β23,3)XS23

. (6)

For the secrecy constraint, we require that Y(2,v2) and Y(3,v3) are uncorrelated with the sum of Xs’s. By (4) and (5), we have

|S2|+ β12,2|S12|+ β23,2|S23| = 0,

|S3|+ β13,3|S13|+ β23,3|S23| = 0. (7)

For the recovery requirement, we need (6) to be the sum of Xs’s. Hence,

β12,1 + β12,2 = 1,

β13,1 + β13,3 = 1,

β23,2 + β23,3 = 1. (8)

Next consider the case l(v3) = {1, 2}. The only difference is that now the signal along the wiretapped edge (3, v3) is sent
to a node with label {1, 2}. The signals along the wiretapped edges (3, v3), (2, v2) are

Y(3,v3) = XS3
+ β13,3XS13

+ β23,3XS23
,

Y(2,v2) = XS2
+ β12,2(XS12

+ Y(3,v3)) + β23,2XS23

= XS2
+ β12,2XS3

+ β12,2XS12
+ β12,2β13,3XS13

+ (β12,2β23,3 + β23,2)XS23
,

and the sum of the signals to node 1 is

XS1 + β12,1(XS12 + Y(3,v3)) + β13,1XS13 + Y(2,v2)

= XS1 +XS2 + (β12,1 + β12,2)(XS3 +XS12)

+ ((β12,1 + β12,2)β13,3 + β13,1)XS13

+ ((β12,1 + β12,2)β23,3 + β23,2)XS23 .

It is straightforward to check that the secrecy constraint and the recovery requirement reduce to exactly the same constraints (7),
(8) as in the case l(v3) = {1}. The intuitive reason is that, since both sources in S1 or S12 would be transmitted to the destination
with coefficient 1, whether l(v3) = {1} or l(v3) = {1, 2} would not change whether the recovery requirement is satisfied.
Also, since the signal along the wiretapped edge (3, v3) is uncorrelated to the sum, adding that signal to a node with label
{1, 2} would not change whether the secrecy constraint at edge (2, v2) is satisfied. The case l(v3) = {2} is the same as the
case l(v3) = {1} for the same reason.

Recall that at least two of S12, S13 and S23 are nonempty. We consider the following cases.
Case 1a: S12, S23 6= ∅. We can take 

β12,1 = 1− β12,2
β12,2 = − |S2|+β23,2|S23|

|S12|
β23,2 = 1− β23,3
β23,3 = − |S3|

|S23|
β13,1 = 1
β13,3 = 0.

(9)

Case 1b: S12, S13 6= ∅, S23 = ∅, We can take 

β12,1 = 1− β12,2
β12,2 = − |S2|

|S12|
β13,1 = 1− β13,3
β13,3 = − |S3|

|S13|
β23,2 = 1
β23,3 = 0.

(10)
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The case S13, S23 6= ∅ is similar.

Case 2: Suppose S123 6= ∅. Fix any s ∈ S123. Consider the case where there does not exist node v with |l(v)| = 2 such

that s Ẽc

−→ v. Let w be a node satisfying l(w) = {1, 2, 3}, s Ẽc

−→ w, and there is no out-neighbor of w with label {1, 2, 3}
(such w can be found by starting at s and repeatedly moving to an out-neighbor of the current node while staying at nodes

with label {1, 2, 3}). Due to the assumption that there does not exist node v with |l(v)| = 2 such that s Ẽc

−→ v, there exists
out-neighbors w1, w2, w3 of w where l(w1) = {1}, l(w2) = {2} and l(w3) = {3}. We can create a new node w′, remove
edges (w,w1), (w,w2), and add edges (w,w′), (w′, w1), (w

′, w2). Adding a node this way is permitted since node w in the
original network can simulate node w′ in the new network. Now we have l(w′) = {1, 2}. Therefore, we can always assume

that there exists node v0 with |l(v0)| = 2 such that s Ẽc

−→ v0.
Consider the following sub-cases.
Case 2a: l(v0) = {1, 2}. Define a new labelling by

l′(v) :=


{1, 2, 3} if v Ẽc

−→ V12 and v Ẽc

−→ 3

{3} else if v Ẽc

−→ 3

l(v) otherwise.

where v Ẽc

−→ V12 means there exists a node v′ ∈ V12 such that v Ẽc

−→ v′. By l(v0) = {1, 2}, we have l(s) = {1, 2, 3}. Similar
to case 1, by considering the label l′ instead of l, we will design the coefficients β12,1, β12,2, β123,12, β123,3. Regardless of
whether l′(v3) = {1}, {2} or {1, 2}, the secrecy constraints are

|S2|+ β12,2(|S12|+ β123,12|S123|) = 0, (11)
|S3|+ β123,3|S123| = 0. (12)

The recovery requirement is

β12,1 + β12,2 = 1, (13)
(β12,1 + β12,2)β123,12 + β123,3 = 1. (14)

Solving these equations, 
β12,1 = 1− β12,2
β12,2 = − |S2|

|S12|+|S123|+|S3|
β123,12 = 1− β123,3
β123,3 = − |S3|

|S123| .

(15)

Case 2b: l(v0) = {2, 3}. Define a new labelling by

l′(v) :=


{1, 2, 3} if v Ẽc

−→ V23 and v Ẽc

−→ 1

{1} else if v Ẽc

−→ 1

l(v) otherwise.

We have l(s) = {1, 2, 3}. By considering the label l′ instead of l, we will design the coefficients β23,2, β23,3, β123,1, β123,23.
Regardless of whether l′(v3) = {1} or {2}, the secrecy constraints are

|S2|+ β23,2(|S23|+ β123,23|S123|) = 0, (16)
|S3|+ β23,3(|S23|+ β123,23|S123|) = 0. (17)

The recovery requirement is

β23,2 + β23,3 = 1, (18)
(β23,2 + β23,3)β123,23 + β123,1 = 1. (19)

Solving these equations, 
β23,2 = |S2|

|S2|+|S3|
β23,3 = |S3|

|S2|+|S3|
β123,23 = − |S2|+|S3|+|S23|

|S123|
β123,1 = 1− β123,23.

(20)

Case 2c: l(v0) = {1, 3}. This is similar to the case l(v0) = {1, 2}.
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APPENDIX

A. Proof of the Converse in Theorem 2

Assume a source node s ∈ S is weakly disconnected from the destination node d after removing edges in scl(Ẽ). Our
goal is to prove that Xs (the source signal at s) is conditionally independent of the final output Yd,d̃ at the destination, given
{Yu,v}(u,v)∈scl(Ẽ) (the signals along wiretapped edges). Due to the secrecy requirement {Yu,v}(u,v)∈scl(Ẽ) ⊥⊥ Yd,d̃, we have
Xs ⊥⊥ Yd,d̃, which is impossible since Yd,d̃ is a sum of a set of source signals that contains Xs.

We will prove the desired conditional independence by constructing a Bayesian network [37] on the signals along edges.
Consider the directed line graph of G̃ := (V ∪ {0, d̃}, E ∪ {(0, s), (d, d̃)}), where the set of vertices is E ∪ {(0, s), (d, d̃)},
and there is an edge from (u1, v1) to (u2, v2) if and only if v1 = u2. Since the signal along edge (u, v) only depends on the
signals along incident edges at node u, the directed line graph gives a Bayesian network on the signals Yu,v along the edges.
Also note that the Bayesian network contains Xs = Y0,s and the final output Yd,d̃.

We now apply the concept of d-separation [37]. If the desired conditional independence does not hold, then there exists
an undirected path (u0, v0) = (0, s), (u1, v1), . . . , (uk−1, vk−1), (uk, vk) = (d, d̃) from Y0,s to Yd,d̃ in the Bayesian network
that is not blocked by scl(Ẽ). If the connection at (ui, vi) is serial to the right direction (i.e., the edges are (ui−1, vi−1) →
(ui, vi) → (ui−1, vi−1)), then we have vi−1 = ui, vi = ui+1. If the connection at (ui, vi) is diverging (i.e., the edges are
(ui−1, vi−1) ← (ui, vi) → (ui−1, vi−1)), then we have vi = ui−1 = ui+1, and hence the nodes vi−1, vi, vi−1 are connected
in the graph G̃ without going through ui. If the connection at (ui, vi) is converging (i.e., the edges are (ui−1, vi−1) →
(ui, vi) ← (ui−1, vi−1)), then we have ui = vi−1 = vi+1, and hence the nodes ui−1, ui, ui−1 are connected in G̃ without
going through vi. Hence, we can construct an undirected path from s to d in G̃ by finding the sequence of nodes visited in
(u0, v0), (u1, v1), . . . , (uk, vk) after discarding each (ui, vi) with a converging or diverging connection (keeping only serial
connections). Since s ∈ S is weakly disconnected from d after removing edges in scl(Ẽ), there must exist (ui, vi) ∈ scl(Ẽ)
with a serial connection, contradicting the d-separation requirement that the undirected path is not blocked by scl(Ẽ). The
result follows.
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