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Abstract—This paper revisits the connection between the girth
of a protograph-based LDPC code given by a parity-check matrix
and the properties of powers of the product between the matrix
and its transpose in order to obtain the necessary and sufficient
conditions for a code to have given girth between 6 and 12, and
to show how these conditions can be incorporated into simple
algorithms to construct codes of that girth. To this end, we
highlight the role that certain submatrices that appear in these
products have in the construction of codes of desired girth. In
particular, we show that imposing girth conditions on a parity-
check matrix is equivalent to imposing conditions on a square
submatrix obtained from it and we show how this equivalence is
particularly strong for a protograph based parity-check matrix
of variable node degree 2, where the cycles in its Tanner graph
correspond one-to-one to the cycles in the Tanner graph of a
square submatrix obtained by adding the permutation matrices
(or products of these) in the composition of the parity-check
matrix. We end the paper with exemplary constructions of codes
with various girths and computer simulations. Although, we
mostly assume the case of fully connected protographs of variable
node degree 2 and 3, the results can be used for any parity-check
matrix/protograph-based Tanner graph.

I. INTRODUCTION

Low-density parity-check (LDPC) codes, in particular

quasi-cyclic LDPC (QC-LDPC) codes, are now found in many

industry standards. One of the main advantages of QC-LDPC

codes is that they can be described simply, and as such

are attractive for implementation purposes since they can be

encoded with low complexity using simple feedback shift-

registers [1] and their structure leads to efficiencies in decoder

design [2]. The performance of an LDPC code with parity-

check matrix H depends on cycles in the associated Tanner

graph, since cycles in the graph cause correlation during

iterations of belief propagation decoding [3]. Moreover, these

cycles form substructures found in the undesirable trapping

and absorbing sets that create the error floor. Cycles have also

been shown to decrease the upper bound on the minimum

distance (see, e.g., [4]). Therefore, codes with large girth are

desirable for good performance (large minimum distance and

low error floor). Significant effort has been made to design

QC-LDPC code matrices with large minimum distance and

girth, see [5]–[10] and references therein.

In this paper, we will use some previous results by Mc-

Gowan and Williamson [11] and the terminology introduced

in Wu et al. [12] that elegantly relate the girth of H with the

girth of Bn(H) ,
(

HHT
)⌊n/2⌋

H(n mod 2), n ≥ 1. We take

this connection in a new direction. Our purpose is to showcase

certain submatrices of HHT of importance when looking for

cycles in the Tanner graph of H and thus to highlight the

role that these matrices have in the construction of codes of

desired girth. In particular, we show that the cycles in the

Tanner graph of a 2N×nvN parity-check matrix H based on

the (2, nv)-regular fully connected (all-one) protograph, with

lifting factor N , correspond one-to-one to the cycles in the

Tanner graph of a N ×N matrix, that we call C12, obtained

from H . Similarly, we show that imposing girth conditions on

a 3N × nvN parity-check matrix is equivalent to imposing

girth conditions on a 3N × 3N submatrix of HHT, which we

call CH . Although we mostly assume the case of an (nc, nv)-
regular fully connected protograph, for nc = 2, 3, the results

can be used to analyze the girth of the Tanner graph of any

parity-check matrix.

We use the results to construct codes of girth 6, 8, 10,

and 12. We also show that, by following a two-step lifting

procedure called pre-lifting [10], girth 12 codes can be pre-

lifted in a deterministic way in order to obtain a girth 14

code and to increase the minimum distance. We conclude

the paper with computer simulations of some of these codes,

confirming the expected robust error control performance. We

emphasize that we do not visit other constructions found in the

literature because what we present is a unifying framework, in

particular providing necessary and sufficient conditions for a

given girth to be achieved, and thus all constructions must fit

in this framework. The proposed algorithms to choose lifting

exponents are extremely fast, in fact they can be evaluated by

hand, and could display codes of a given girth for the smallest

graph lifting factor N .

II. DEFINITIONS, NOTATIONS AND BACKGROUND

We use the following notation, for any positive integer L,

[L] denotes the set {1, 2, . . . , L}. As usual, an LDPC code C
is described as the null space of a parity-check matrix H to

which we associate a Tanner graph [13] in the usual way. The

girth girth(H) of a graph is the length of the shortest cycle

in the graph.

A protograph [14], [15] is a small bipartite graph rep-

resented by a parity-check or base biadjacency matrix B
with non-negative integer entries bij . The parity-check matrix

H of a protograph-based LDPC block code can be created
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by replacing each non-zero entry bij by a sum of bij non-

overlapping N × N permutation matrices and a zero entry

by the N × N all-zero matrix. Graphically, this operation is

equivalent to taking an N -fold graph cover, or “lifting”, of

the protograph. We denote the N × N circulant permutation

matrix where the entries of the N ×N identity matrix I are

shifted to the left by r positions modulo N as xr.

We use the elegant triangle operator introduced in [12]

between any two non-negative integers e, f to define

d , e△f ,

{

1 if e ≥ 2, f = 0

0 otherwise
,

and between two s×t matrices E = (eij)s×t and F = (fij)s×t

with non-negative integer entries to define the matrix D =
(dij)s×t , E△F entry-wise as dij , eij△fij, for all i ∈
[s], j ∈ [t].

The following theorem found in [11] and [12] describes

an important connection between girth(H) and matrices

Bn(H) ,
(

HHT
)⌊n/2⌋

H(n mod 2), n ≥ 1 and offers some

insight on the inner structure of the Tanner graph which

simplifies considerably the search for QC protograph-based

codes with large girth and minimum distance.

Theorem 1. ([11] and [12]) A Tanner graph of an LDPC

code with parity-check matrix H has girth(H) > 2g if and

only if Bt(H)△Bt−2(H) = 0, t = 2, 3, . . . , g.

Lastly, we extend the theorem on cycles in all-one pro-

tographs from [10] that gives the algebraic conditions imposed

by a cycle of length 2l in the Tanner graph of an all-one

protograph to the more general case of any protograph.

Theorem 2. Let C be a code described by a protograph-based

parity-check matrix H where each (i, j) entry is the N ×N
zero matrix or a sum of non-overlapping N ×N permutation

matrices, denoted Pij . Then, a 2l-cycle in the Tanner graph

of H exists if and only if there exists a sequence of permu-

tation matrices Pi0j0 , Pi1j0 , Pi1j1 , Pi2j1 , . . . , Pil−1jl−1
, Pi0jl−1

(with no two equal adjacent permutations) such that
(

Pi0j0P
T

i1j0
Pi1j1P

T

i2j1
· · ·Pil−1jl−1

PT

i0jl−1
+ I

)

△0 6= 0.1

III. THE CASE OF A (2, nv)-REGULAR PROTOGRAPH

We start the results of this paper with the case of 2×nv base

matrices because, although it has limited practical importance

in its own, it becomes essential when seen as part of a larger

protograph since each nc × nv base matrix of girth g, with

nc ≥ 2, has
(

nc

2

)

2×nv base matrices that must have girth at

least g.

Theorem 3. Let Pi denote permutation matrices, i ∈ [nv],

nv ≥ 3. Let H =

[

I I · · · I
P1 P2 . . . Pnv

]

and C21 = CT

12 ,

nv
∑

i=1

Pi. Then girth(H) = 2 girth(C21).

1A 2l-cycle in the Tanner graph of H is a lifted cycle of a 2l-cycle in the
protograph, i.e., it visits sequentially the groups of nodes of the same type in
the lifted graph in the same order in which the cycle visits the nodes of the
original protograph.

Proof: From Theorem 2, the Tanner graph associated

with H has a cycle of length 2l if and only if there exist

indices i1, i2, . . . , il ∈ {1, . . . , nv}, such that is 6= is+1 and

such that IPT

i1
Pi2I

TIPT

i3
Pi4I

T · · ·PT

il−1
PilI

T△I 6= 0 ⇐⇒

PT

i1
Pi2P

T

i3
Pi4 · · ·P

T

il−1
Pil△I 6= 0. Equivalently, there exist

m1,m2, . . . ,ml such that Pi1(m2,m1) = Pi2 (m2,m3) =
· · · = Pil(ml,m1) = 1, which is equivalent to having an

l-cycle in C21.

Corollary 4. Let Pi, Qi be permutation matrices, i ∈ [nv],

nv ≥ 3. Let H =

[

P0 P1 · · · Pnv

Q0 Q1 · · · Qnv

]

and C21 = CT

12 ,

nv
∑

i=1

PT

i Qi. Then girth(H) = 2 girth(C21).

Proof: The graph of H is equivalent to the graph of

the matrix

[

I I · · · I
PT

0 Q0 PT

1 Q1 . . . PT

nQn

]

which, based on

Theorem 3 has twice the girth of C21.

Example 5. To insure that the matrix H =

[

I I I
I P2 P3

]

of

size 2N × 3N has girth 8 we only need to choose matrices

P2, P3 such that the matrix I + P2 + P3 has entries 0 or 1,

while in order for H to have girth 12, we need to choose

P2, P3 such that the girth of I + P2 + P3 has girth 6. For

example, the 7×7 parity-check matrix of the cyclic projective

code given by the parity-check polynomial matrix 1+ x+ x3

has girth 6 giving a 14 × 21 matrix H with girth 12. Since

the girth of I + P2 + P3 cannot exceed the upper bound 6
if P2, P3 are circulant, we need to take them non-circulant to

obtain a larger girth. The matrix H with

P2 =





x 0 0
0 x13 0
0 0 x7



 and P3 =





0 x 0
0 0 x2

x 0 0





has girth 8 for a circulant size N = 7, girth 10 for N = 11,

and girth 12 for N = 31. Therefore, the modulo 31 polynomial

matrix (or the 6 · 31 × 9 · 31 scalar parity-check matrix)

constructed with these matrices P2, P3 has girth 24. �

IV. THE CASE OF A (3, nv)-REGULAR PROTOGRAPH

We now provide results for the case of a general 3 × nv

base matrix. These results will be used in Section V to form

simple constructive algorithms.

Theorem 6. Let H define the 3N ×nvN parity-check matrix

of a protograph-based LDPC code such that: P1 = Q1 = I
and

H =





I I . . . I
P1 P2 . . . Pnv

Q1 Q2 . . . Qnv



 , CH ,





0 C12 C13

C21 0 C23

C31 C32 0





C12 = CT

21 ,

nv
∑

j=1

PT

j , C13 = CT

31 ,

nv
∑

j=1

QT

j ,

C23 = CT

32 ,

nv
∑

j=1

PjQ
T

j .

Then the following equivalences hold.



1) girth(H) > 4 ⇔ girth(Cij) > 2 ⇔ CH△0 = 0;
2) girth(H) > 6 ⇔ CH△0 = 0 and CHH△H = 0;
3) girth(H) > 8 ⇔ girth (CH) = 6 ⇔ C2

H△I = 0;

4) girth(H) > 10 ⇔

{

girth(CH) = 6
C2

HH△(H + CHH) = 0
;

5) girth(H) > 12 ⇔

{

girth(CH) = 6
C3

H△(I + CH + C2
H) = 0

.

Proof: Note that

B2(H) = HHT = nvI + CH , B3(H) = nvH + CHH,

B4(H) = (nvI + CH)2, B5(H) = (nvI + CH)2H,

B6(H) = (nvI + CH)3, etc..

Then 1) B2(H)△I = 0 ⇔ CH△0 = 0;

2) B3(H)△B1(H) = 0 ⇔ CHH△H = 0;

3) B4(H)△B2(H) = 0 ⇔ (nvI + CH)2△(nvI + CH) = 0
⇔ C2

H△(I + CH) = 0. A 2- or 4-cycle can happen in CH

if and only if it happens in one of the matrices
[

C12 C13

]

,
[

C21 C23

]

,
[

C31 C32

]

. Since girth (CH) = 6 is equiv-

alent to C2
H△I = 0 we obtain that the weaker condition

C2
H△(I+CH) = 0 must hold. The conditions for girth(H) >

10 and 12 follow the same approach and are omitted due to

space constraints.

Remark 7. 1) A similar theorem can be stated for the case

nc > 3, however, girth(CH) > 4 is only a necessary but not

sufficient condition for H to have girth 10.

2) Note that nc ≥ 3, girth(CH) ≤ 6, while for nc ≥ 4,

girth(CH) ≤ 4, no matter the matrix H . �

We exemplify these results on a 3× 4 base matrix lifted to

a protograph-based parity-check matrix of girth 10 from [10].

Example 8. Let H =





I I I I
I P2 P3 P4

I Q2 Q3 Q4



 ,















1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 x 0 0 x10 0 x13

0 1 0 x5 x10 0 x13 0
1 0 0 x7 x11 0 x2 0
0 1 x7 0 0 x11 0 x4















.

The polynomial matrices Cij(x) and CH(x) associated with

H , Cij and CH are as follows.

C21(x) = CT

12(x) =

[

1 + x x10 + x13

x10 + x13 1 + x5

]

,

C31(x) = CT

13(x) =

[

1 + x2 + x11 x7

x7 1 + x4 + x11

]

,

C23(x) = CT

32(x) =

[

1 x−6 + x−1 + x9

x−1 + x−2 + x11 1

]

.

The girth of CH is 6. So the 3N × 3N much denser (8, 8)-
regular matrix CH has girth 6 while, equivalently, the (3, 4)-
regular H has girth 10, or larger. �

V. CONSTRUCTING (3, nv)-REGULAR PROTOGRAPH-BASED

QC-LDPC CODES OF GIVEN GIRTH g ≤ 12

In this section, we will show how the equivalent conditions

from Section IV can be used to construct QC matrices

H(x) =





1 1 1 . . . 1
xi1 xi2 xi3 . . . xinv

xj1 xj2 xj3 . . . xjnv



 , i1 = j1 = 0, (1)

such that they have girth 6 ≤ g ≤ 12. We work with the

polynomial matrices Cij(x) and CH(x) associated with the

QC-scalar matrices Cij and CH , defined as



























C12(x) = CT

21(x) ,
nv
∑

l=1

x−il

C13(x) = CT

31(x) ,
nv
∑

l=1

x−jl

C23(x) = CT

32(x) ,
nv
∑

l=1

xil−jl

. (2)

Theorem 9. Let H(x) and CH(x) be defined as in (1) and

(2). Then

1) girth(H(x)) > 4 if and only if each one of the sets

{i1, . . . , inv
}, {j1, . . . , jnv

}, {i1 − j1, . . . , inv
− jnv

}
contains non-equal values.

2) girth(H(x)) > 6 if and only if, for any l ∈ [nv], each

one of the three sets below contains non-equal values:

{il − is | s ∈ [nv], s 6= l} ∪ {jl − jt | t ∈ [nv], t 6= l},

{is | s ∈ [nv], s 6= l} ∪ {it − jt + jl | t ∈ [nv], t 6= l},

{js | s ∈ [nv], s 6= l} ∪ {jt − it + il | t ∈ [nv], t 6= l}.

Equivalently, girth(H(x)) > 6 if and only if

jl /∈ {il+(jt−is), is+(jt−it), js+(it−jt) | 1 ≤ s, t < l}.

3) girth(H(x)) > 8 if and only if each two of the following

sets of differences contain non-equal values:

{iu − iv | u 6= v, u, v ∈ [nv]},

{ju − jv | u 6= v, u, v ∈ [nv]},

{(iu − ju)− (iv − jv) | u 6= v, u, v ∈ [nv]}.

4) girth(H(x)) > 10 if and only if, for all l ∈ [nv],

a) each two of the four sets contain non-equal values:

{iu − iv | u 6= v, u, v ∈ [nv], u 6= l},

{ju − jv | u 6= v, u, v ∈ [nv], u 6= l},

{−ju + jv − iv + il | u 6= v, u, v ∈ [nv], v 6= l},

{−iu + iv − jv + jl | u 6= v, u, v ∈ [nv], v 6= l}.

b) each two of the four sets contain non-equal values:

{iu − ju + jv | u 6= v, u, v ∈ [nv], v 6= l},

{iu − iv + il | u 6= v, u, v ∈ [nv], v 6= l},

{(iu − ju)− (iv − jv) + il | u 6= v, u, v ∈ [nv], v 6= l},

{iu − jv + jl | u 6= v, u, v ∈ [nv], v 6= l}.



c) each two of the four sets contain non-equal values:

{ju − iu + iv | u 6= v, u, v ∈ [nv], v 6= l},

{ju − iv + il | u 6= v, u, v ∈ [nv], v 6= l},

{ju − jv + jl | u 6= v, u, v ∈ [nv], v 6= l},

{ju − iu + iv − jv + jl | u 6= v, u, v ∈ [nv], v 6= l}.

Proof: 1) In order to avoid 4-cycles, we impose

Cij(x)△0 = 0, for all 1 ≤ i < j ≤ 3. Equivalently, the

claim on the three sets above holds.

2) In order to avoid 6-cycles, we impose, for all l ∈ [nv],






C12(x)x
il + C13(x)x

jl△1 = 0,
C21(x) + C23(x)x

jl△xil = 0,
C31(x) + C32(x)x

il△xjl = 0,

which is equivalent to the conditions below, from which the

claim follows: for all l ∈ [nv] and all s, t ∈ [nv] \ {l},






































nv
∑

s=1

s 6=l

(

xil−is + xjl−js
)

△1 = 0

nv
∑

s=1

s 6=l

(

xis + xis−js+jl
)

△xil = 0

nv
∑

s=1

s 6=l

(

xjs + xjs−is+il
)

△xjl = 0

⇐⇒







xil−is 6= xjl−jt

xis 6= xit−jt+jl

xjs 6= xjt−it+il

.

Conditions 3 and 4 are obtained in similar fashion.

Since the condition sets from Theorem 9 have relatively

few elements, they can be integrated into simple algorithms to

generate the lifting exponents for the desired girth. For exam-

ple, we present two exemplary recursive algorithms to choose

these exponents: Type A in which we alternately choose the

exponents i1, j1, i2, j2, . . . , inv
, jnv

; and Type B in which we

first choose i1, i2, . . . , inv
and then choose j1, j2, . . . , jnv

. We

state below the steps followed in our algorithms for girth 8

and for girth 10 codes.

Algorithm Type A for girth 8

Step1: Set i1 = 0, j1 = 0. Set l = 1.

Step 2: Let l := l+1. Choose il /∈ {js+(it−jt) | 1 ≤ s, t < l}
and then jl /∈ {il + (jt − is), is + (jt − it), | 1 ≤ s, t < l}.
Step 3: If l = nv stop, otherwise, go to Step 2.

Algorithm Type B for girth 10

Step1: Set i1 = 0. Set l = 1.

Step 2: Let l := l+1. Let il /∈ {iu+is−it | 0 ≤ u, t, s ≤ l−1}.
Step 3: If l = nv stop, otherwise, go to Step 2.

Step 4: Set j1 = 0. Set l = 1.

Step 5: Let l := l+1. jl /∈ {ju+js−jt, ju+ia−ib, ju+(js−
is)+(jt−it), il+(ju−iu)+(ia−ib), il+(ju−iu)+(jv−iv)−
(js− is), il+(ju− iu)+(js− jt) | 0 ≤ a, b ≤ nv, u, s, t < l}.

Step 6: If l = nv stop, otherwise, go to Step 5.

Example 10. We use the algorithm Type B for girth 10 to

obtain the following (3, 8)-regular protograph-based code C
of girth 10 with H(x) from (1). We follow Steps 1-3 and

choose i1 = 0, i2 = 1, i3 − i2 /∈ {i2 − i1}, so we may

choose i3 = 2i2 + 1 = 3. Similarly, i4 = 2i3 + 1 = 7. We

can choose, e.g., i5 = 2i4 + 1, but in this case, this is not

the smallest possible value i4. So we instead choose i5 =
i4 +min∗ (Z \ {i4 − i3, i4 − i2, i4 − i1, i3 − i2, i3 − i1,

i2 − i1}) = 7+min∗ (Z \ {4, 6, 7, 2, 3, 1}) = 7+5 = 12.2 We

continue in the same way, by choosing the minimum positive

value not in the respective forbidden set, to obtain:
[

xi1 · · · xi8
]

=
[

1 x x3 x7 x12 x20 x30 x44
]

.

Therefore, C12 = 1+x+x3+x7+x12+x20+x30+x44 has

girth 6 over, e.g., N = 1 + 2 × 44 = 89. (N is chosen such

that the negative differences are not equal to positive ones.)

We now choose the row
[

xj1 · · · xj8
]

following Steps

4 and 5 that will ensure the conditions of Theorem 9 are

satisfied. The following matrix has girth 10 for N = 554 (for

example) was obtained with this algorithm

H =





1 1 1 1 1 1 1 1
1 x x3 x7 x12 x20 x30 x44

1 x66 x461 x106 x144 x194 x274 x385



 .

Note that C12, C13, and C23 all have girth 6, giving three

(2, 8) codes of girth 12. �

Remark 11. The smallest N for which a code of girth 10

exists can also be computed from Theorem 9 as: Nmin =
min∗ (Z \ {ia + ib − ic − id, ju − jv + ia − ib,
ju − jv + js − jt, ju − jv + (js − is)− (jt − it),
(js − is)− (jt − it) + (ju − iu)− (jv − iv),
(js − is)− (jt − it) + ia − ib, | a, b, s, t, u, v ∈ [nv]}) . Simi-

larly, based on Theorem 9, we can obtain the minimum lifting

factor Nmin for each desired girth g ≤ 12. �

The following theorem allows a fast way to choose the

lifting exponents by taking increasing values that are larger

than the ones in the “forbidden" sets. We provide a girth 10

statement, but similar rules can be obtained for other girths.

Lemma 12. Let H(x) and CH(x) be defined as in (1) and

(2). Let il and jl be defined recursively as:
{

i1 = 0
il = 1 + 2il−1, l ≥ 2

and

{

j1 = 0, j2 = 1 + i2 + 2inv

jl = 1 + 2jl−1 + il, l ≥ 3.

Then the Tanner graph of the code with parity-check matrix

H(x) has girth 10 for some N (which is not too large).

Example 13. We build a (3, 7)-regular matrix based on

Lemma 12 as

H(x) =





1 1 1 1 1 1 1
1 x x3 x7 x15 x31 x63

1 x128 x260 x528 x1072 x2176 x4416



 =





1 1 1 1 1 1 1
1 x x3 x7 x15 x31 x63

1 x128 x260 x95 x206 x11 x86





The first matrix has girth 10 for N = 433, or larger. The

second matrix obtained by reducing the exponents modulo

N = 433 has the minimum value N = 347 for which the

girth is 10. We write 260 = −87 and obtain

H(x) =





1 1 1 1 1 1 1
1 x x3 x7 x15 x31 x63

1 x128 x−87 x95 x−141 x11 x86





2The min
∗ operator returns the minimum positive value from a set.



which has the minimum value N = 327 for which the girth

is 10. We update −141 = 186 and −87 = 240 for N = 327,

and rewrite the matrix as




1 1 1 1 1 1 1
1 x x3 x7 x15 x31 x63

1 x128 x240 x95 x186 x11 x86



 .

The minimum N for which this matrix has girth 10 is now

N = 278. We note that N = 278 is not the minimum for

which a code can be found (the minimum found with the

algorithm is N = 219), but it is easily obtained by hand. �

The following is another example obtained using the algo-

rithm Type B for girth 12 (omitted due to space constraints),

where the values chosen are of some random non-forbidden

values rather than the minimum value possible at each point.

Example 14. The matrix H =





I I I I I
1 x x7 x18 x44

1 x32 x54 x141 x133





has girth 12 for N = 245 (length n = 1225), for example. �

VI. OBTAINING QC-LDPC CODES WITH GIRTH LARGER

THAN 12 AND/OR INCREASED MINIMUM DISTANCE

To achieve girth larger than 12 and/or a minimum distance

larger than the known upper bound (nc +1)! [16], we cannot

take H in the form (1), so we need to consider permutation

matrices Pi and Qi such that some (at least) are not circulant.

In [10], we showed how to increase the minimum distance

by composing them of a sub-array of circulant matrices by

first choosing the pre-lifting protograph and then choosing the

circulant matrices to be placed according to this protograph.

A similar method can be applied not only to increase the

minimum distance, but to also to obtain codes with Tanner

graph of girth 14 or larger. We exemplify the process below.

Example 15. Let P1 = Q1 = I, and let the indices in the ma-

trices P2, . . . , P5 be [1, 0, 0], [3, 9, 17], [39, 4, 11], [29, 59, 71],
respectively, according to the protograph

[

x x x2 x2
]

,

this means that, e.g., P2 has non-zero entries x1, x0, x0

in the 3 × 3 permutation matrix corresponding to x.

The indices in the matrices Q2, . . . , Q5 are [118, 32, 209],
[136, 479, A], [290, B, 800], [353, C,−319], respectively, ac-

cording to the protograph
[

x2 e x 1
]

where e is a (non-

circulant) permutation matrix with its non-zero positions on

(1, 3), (2, 2), (3, 1). Substituting A,B, and C by 0 (masking)

gives a girth 14 irregular code for N = 891. Choosing

any of A,B,C to be non-zero restricts the girth to 12,

because a 2 × 3 all-one protograph is included. Substituting

A = 1199, B = 1239, C = −579 gives a girth 12 code

for which many 12-cycles were eliminated by choosing the

majority of the exponents to give an (irregular) H of girth 14.

Both codes are simulated for N = 891 (or length n = 13, 365)

in Section VII. �

The final example demonstrates a construction of a girth 14

regular code obtained from a 3-cover (prelifted all-ones 3× 5
base matrix) that meets the conditions. Here, we must ensure

that the 3-cover does not have any 2× 3 all-one submatrix.

Example 16. Let H such that the indices in the matrices

P2, . . . , P5 are [1, 0, 7], [3, 5, 11], [6, 23, 29], [15, 19, 42], ac-

cording to the protograph
[

x x 1 x2
]

, and Q2, . . . , Q5

are [25, 64, 9], [61, 180, 143], [94, 239, 256], [153, 358, 474]
according to

[

1 x2 x x
]

, respectively, where the notation

[1, 0, 7], for example, means that P2 has x1, x0, x7 in the

nonzero entries of the 3× 3 permutation matrix x. This graph

has girth 14 for, e.g., N = 903 (or length n = 13, 545). �

VII. SIMULATION RESULTS

To verify the performance of the constructed codes, com-

puter simulations were performed assuming binary phase shift

keyed (BPSK) modulation and an additive white Gaussian

noise (AWGN) channel. The sum-product message passing de-

coder was allowed a maximum of 100 iterations and employed

a syndrome-check based stopping rule. In Fig. 1, we plot the

bit error rate (BER) for the R ≈ 2/5 QC-LDPC codes from

Examples 14-16. Along with the performance of the (3, 5)-
regular QC-LDPC code with girth 12 from Example 14, we

show the performance of constructed (3, 5)-regular QC-LDPC

codes of the same rate and length with girths 6 and 8. At lower

SNRs, the higher girth codes perform slightly worse, but this

ordering reverses in the error floor. With respect to the longer

codes from Examples 15-16, we remark that the codes display

no indication of an error-floor, at least down to a BER of 10−7.

The regular codes from Examples 15 (reduced multiplicity of

12 cycles) and 16 (with girth 14) have similar performance

in the simulated range, but we anticipate deviation at higher

SNRs where the 12-cycles are involved in trapping sets.
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100

Fig. 1. Simulated decoding performance in terms of BER for the R = 2/5
QC-LDPC codes from Examples 14-16.

VIII. CONCLUDING REMARKS

In this paper we gave necessary and sufficient conditions

for the Tanner graph of a protograph-based QC-LDPC code

to have girth 6 ≤ g ≤ 12. We also showed how these girth

conditions can be used to write fast algorithms to construct

such codes and exemplified them for codes of girth 10. We

also showed that in order to exceed girth 12 a double graph-

lifting procedure called pre-lifting can be employed, which

was demonstrated to construct QC-LDPC codes with girth 14.

This material is based upon work supported by the National Science
Foundation under Grant Nos. OIA-1757207 and HRD-1914635.
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