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Asymptotic Bounds on the Rate of Locally

Repairable Codes
Ron M. Roth

Abstract—New asymptotic upper bounds are presented on the
rate of sequences of locally repairable codes (LRCs) with a pre-
scribed relative minimum distance and locality over a finite field
F . The bounds apply to LRCs in which the recovery functions
are linear; in particular, the bounds apply to linear LRCs over F .
The new bounds are shown to improve on previously published
results, especially when the repair groups are disjoint, namely,
they form a partition of the set of coordinates.

Index Terms—Large deviations, Linear-programming bound,
Locally repairable codes, Sphere-packing bound.

I. INTRODUCTION

Hereafter, we fix F to be a finite field Fq (of size q).

For a positive integer a, we denote by [a] the integer set

{1, 2, . . . , a}. For a word (vector) y ∈ FN and a nonempty

subset R ⊆ [N ], we let (y)R denote the sub-word of y that

is indexed by R.

An (N,M, d) code of length over F is a nonempty subset

C ⊆ FN of size M and minimum (Hamming) distance d. The

rate of the code is R = (logqM)/N and its relative minimum

distance (r.m.d.) is d/N . When C is linear over F we will

use the standard notation [N, k, d] where k = logqM is the

dimension of C. For a nonempty subset R ⊆ [N ], we let (C)R
be the punctured code {(c)R : c ∈ C}.

We say that an (N,M, d) code C over F is a locally

repairable code (in short, LRC) with locality r if for every

coordinate j ∈ [N ] there is a subset

Rj = R∗
j

⋃· {j} ⊆ [N ]

of size at most n = r+1 (that contains j) such that for every

codeword c = (ct)t∈[N ], the value cj is uniquely determined

from (c)R∗
j
. In other words, there is a recovery function ϕj :

F |R∗

j | → F such that

cj = ϕj

(
(c)R∗

j

)
. (1)

The set Rj is called the repair group of j and (C)Rj
is

the respective constituent code. Clearly, the constituent code

(C)Rj
cannot contain two codewords that differ only on

position j. Repair groups will usually be represented as a list

(Rj)
N
j=1, where each repair group is indexed by the coordinate

j ∈ [N ] that it corresponds to.1
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1Occasionally, however, we will refer to the set of distinct repair groups
within this list; we will then use the notation {Rj}j∈[ℓ], where ℓ is the
number of such repair groups (this notation implicitly assumes that the first ℓ
coordinates of C are associated with distinct repair groups). Note that a list of
repair groups of an LRC C—and, therefore, the set of distinct repair groups
in such a list—may not be unique. Yet such a list (or set) always covers all
the coordinates of C.

When the recovery functions ϕj are linear over F for all

j ∈ [N ], we say that the LRC C is linearly recoverable. In

this case, each constituent code (C)Rj
is a subcode of a linear

[|Rj |, |Rj |−1] code over F . If C is a linear code over F then

it is also linearly recoverable [2, Lemma 10]. The LRC C is

said to be all-disjoint if it has a list of repair groups (Rj)
N
j=1

that satisfies Rj ∩ Rj′ ∈ {∅,Rj,Rj′} for all j, j′ ∈ [N ].
By possibly adding dummy elements to repair groups, this

definition is equivalent to requiring that no two distinct repair

groups intersect; in this case, the set of distinct repair groups

{Rj}j forms a partition of [N ]. In the all-disjoint case, each

repair group Rj is also a repair group for all j′ ∈ Rj and, so,

each constituent code has minimum distance ≥ 2.

The general study of LRCs was initiated in [10] and [21],

and has generated an extensive body of literature since,

including constructions of LRCs, bounds on their parameters,

and studies of additional attributes, such as availability and

local minimum distance of the constituent codes; see [2], [3],

[7], [8], [11], [12], [13], [14], [15], [19], [20], [22], [26], [27],

[28].

In this work, we will be interested in asymptotic upper

bounds on the rate of linearly recoverable LRCs with pre-

scribed r.m.d. and locality, as the code length tends to infinity.2

Hereafter, by an infinite sequence of codes over F we

mean a sequence (Ci)
∞
i=1, where each Ci is an (Ni,Mi, di)

code over F and the length sequence (Ni)
∞
i=1 is strictly

increasing. The rate and the r.m.d. of the sequence are defined,

respectively, as R = limi→∞Ri and δ = limi→∞ di/Ni.

The supremum over all the rates of sequences of codes with

r.m.d. ≥ δ will be denoted by Ropt(δ). Given ω ∈ [0, 1],
we let Ropt(δ, ω) be such a supremum for sequences (Ci)

∞
i=1

of constant-weight codes, with the codewords of each Ci

all having the same weight wi, such that limi→∞ wi/Ni =
ω. There are several known upper bounds on Ropt(δ) and

Ropt(δ, ω), and the best known are obtained using the linear-

programming method [1], [4], [18]. In particular, it is known

that Ropt(δ, ω) = Ropt(δ) = 0 when δ ≥ (q−1)/q; hence, we

will implicitly assume hereafter that δ < (q−1)/q. It is also

easy to see that Ropt(δ, ω) = 0 when ω < δ/2. The upper

bounds on the rate of LRCs which are considered in this work

will often be expressions that involve Ropt(δ) or Ropt(δ, ω);
concrete upper bounds for LRCs can then be obtained by

replacing these terms with any upper bound on them.

A (δ, n)-LRC sequence over F is an infinite sequence of

LRCs (Ci)
∞
i=1 over F with r.m.d. ≥ δ where each LRC

2While our results are stated for linearly recoverable LRCs, we shall only
use the fact that each recovery function ϕj in (1) preserves the addition of
the field F . Hence, our results apply more generally to the case where F is

a finite Abelian group and each ϕj is a homomorphism from F |R∗
j | to F .

http://arxiv.org/abs/2010.14492v1
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Ci has locality r = n − 1. The sequence is said to be all-

disjoint if each Ci is all-disjoint, and it is linearly recoverable

(respectively, linear) if so is each Ci. It follows from the results

of [10] and [21] that the rate R of any (δ, n)-LRC sequence

is bounded from above by

R ≤ n−1
n
· (1− δ). (2)

This bound, which is oblivious to the field size, can be

seen as the LRC counterpart of the Singleton bound, and

it applies generally to (δ, n)-LRC sequences (which are not

necessarily all-disjoint or linearly recoverable). The bound (2)

was improved in [8, Theorem 1] to R ≤ RCM(δ, n), where

RCM(δ, n) = min
τ∈[0,1−δ]

{
τ · n−1

n
+ (1−τ) · Ropt

(
δ

1−τ

)}
.

(3)

This bound, which depends on the field size, coincides with (2)

when δ 7→ Ropt(δ) is taken to be the Singleton bound

δ 7→ 1 − δ. Small improvements to (3) were obtained in [2];

the latter paper considered the more general setting where the

constituent codes (C)Rj
have a prescribed minimum distance

ρ ≥ 2 (see also [12]). For non-asymptotic improvements,

see [28].

For reference, we also mention the Gilbert–Varshamov-type

lower bound on the largest attainable rate of LRC sequences:

it was shown in [8, Theorem 2] and [25, Theorem B] that

there exists an all-disjoint linear (δ, R)-LRC sequence of rate

R ≥ R0(δ, n) =
n−1
n
− λ (δ, n) , (4)

where λ(ω, n) is defined for every n ∈ Z+ and ω ∈ R≥0 by

λ(ω, n) = λq(ω, n) = inf
z∈(0,1]

{
−ω logq z −

1

n

+
1

n
logq

(
(1 + (q−1)z)n + (q−1)(1−z)n

)}
. (5)

The function ω 7→ R0(ω, n) will play a role in our results as

well. The expression λ(ω, n) is the growth rate of the volume

of a ball of radius ωN in the subspace of FN formed by

the Cartesian product of copies of the [n, n−1, 2] parity code

over F , as N →∞.3 The function ω 7→ λq(ω, n) is drawn in

Figure 1 for (q, n) = (2, 4), (2, 5), (4, 5); it will follow from

our analysis that it is continuous, increasing, and concave on

[0+,∞] and its values range from 0 at ω = 0 to (n−1)/n
at ω ≥ (q−1)/q. As we show in Lemma 18 in Appendix B,

finding the infimum in (5) is computationally easy: it amounts

to finding a root of a certain real polynomial of degree ≤ n.

Our first set of results pertain to linearly recoverable LRC

sequences that are all-disjoint. We prove the next bound-

enhancement theorem by using, inter alia, the generalization

of [16] to the shortening method for improving upper bounds

on the rate of code sequences.

Theorem 1. Let δ 7→ RLRC(δ, n) be an upper bound on

the rate of any all-disjoint linearly recoverable (δ, n)-LRC

3The proof of the lower bound (4) only requires λ(ω, n) to be an upper
bound on this growth rate—a relation which follows from the Chernoff bound
as in Eq. (10) below. On the other hand, for our results, we will need a lower
bound on this growth rate; to this end, we will use a stronger result from
large deviations theory (Eq. (11)).

sequence over F . Then the rate of such a sequence is bounded

from above also by

R1(δ, n) = inf
τ∈(0,1)

min
(θ,θ′)

{
τ · R0

(
θ

2
, n

)

+ (1 − τ) · RLRC(θ
′, n)

}
, (6)

where R0(·, n) is defined in (4)–(5) and the (inner) minimum

is taken over all pairs (θ, θ′) in [0, (q−1)/q]2 such that

τ · θ + (1− τ) · θ′ = δ. (7)

In particular, Theorem 1 holds for RLRC(δ, n) = Ropt(δ)
(i.e., ignoring locality or linear recoverability). This, in turn,

yields a concrete upper bound for all-disjoint linearly recover-

able LRC sequences. When we do so and substitute θ = 0 in

the objective function in (6), we get the expression RCM(δ, n)
in (3). Yet, generally, the minimum in (6) is obtained at some

nonzero θ, thereby yielding an improvement. For τ → 1
(which forces θ = δ), the objective function in (6) becomes

the asymptotic version of the sphere-packing bound of [28]

(see Theorem 9 below):

R ≤ RSP(δ, n) = R0

(
δ

2
, n

)
. (8)

Thus, the objective function in (6) can also be written as:

τ · RSP(θ, n) + (1− τ) · RLRC(θ
′, n).

Remark 1. Theorem 1 can be given the following geometric

interpretation (see [16, pp. 77]): for any distinct θ1, θ2 ∈
[0, (q−1)/q], the line in the (δ, R)-plane through the points

(θ1,RSP(θ1)) and (θ2,RLRC(θ2, n)) is an upper bound on the

rate for any δ ∈ [min{θ1, θ2},max{θ1, θ2}]. In particular,

if δ 7→ RLRC(δ, n) is convex, then, from the convexity of

δ 7→ RSP(δ, n) we get that the lower convex envelope of

min {RSP(δ, n),RLRC(δ, n)} is also an upper bound.

Our second main result is the following bound.

Theorem 2. The rate of any all-disjoint linearly recoverable

(δ, n)-LRC sequence over F is bounded from above by

R2(δ, n) = min
ω∈[δ/2,(q−1)/q]

{
R0(ω, n) + Ropt(δ, ω)

}
.

The bound of Theorem 2 can be further improved by

substituting RLRC(δ, n) = R2(δ, n) in Theorem 1.

The various bounds are plotted in Figures 2 and 3 for q = 2
and n = 3, 4:

• curve (a) presents δ 7→ RSP(δ, n);
• curve (b) presents δ 7→ RCM(δ, n), where we have

substituted the linear-programming bound RLP(δ) of [18]

for Ropt(δ);
• curve (c) presents δ 7→ R1(δ, n) taking RLRC(δ, n) =

RLP(δ) in (6) (the same curve is obtained also for

RLRC(δ, n) = RCM(δ, n));
• curve (d) presents δ 7→ R2(δ, n);
• curve (e) presents δ 7→ R1(δ, n) taking RLRC(δ, n) =

R2(δ, n) in (6);

• and curve (f) presents the lower bound δ 7→ R0(δ, n).
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Fig. 1. Function ω 7→ λq(ω, n) for (a) (q, n) = (2, 4), (b) (q, n) = (2, 5), and (c) (q, n) = (4, 5). The lighter curves depict the function ω 7→ λ∗
q (ω, n).

In the range where any of the curves (b)–(d) is not seen it

coincides with curve (e). The values of the upper bounds for

q = 2, n = 4, and δ ∈ {0.07, 0.10, 0.15, 0.30} are summarized

in Table I. Notice that curve (d) is not convex and that there is

a (small) range where it is worse than curve (b), but curve (e)

yields the best results. The bounds of [2] slightly improve on

RCM(δ, n) but are too close to it to be seen at the scale of the

figures.

TABLE I
VALUES OF THE BOUNDS FOR q = 2 AND n = 4.

δ (a) (b) (c) (d) (e)

0.07 0.6133 0.6317 0.6131 0.6079 0.6079
0.10 0.5681 0.5809 0.5643 0.5576 0.5576
0.15 0.5004 0.4964 0.4830 0.4781 0.4781
0.30 0.3346 0.2427 0.2391 0.2470 0.2391

Our second set of results includes (weaker) counterparts of

Theorems 1 and 2 that apply generally to linearly recoverable

LRC sequences (that are not necessarily all-disjoint).

The rest of this work is organized as follows. In Section II,

we present some basic tools from large deviations theory

which are tailored to our needs. Additional tools will be

presented in Section III, where we also prove the asymptotic

sphere-packing bound (8). Section IV is devoted to proving

Theorems 1 and 2. Then, in Section V, we present improved

results for the special case q = 2 and n = 3. Finally, in

Section VI, we present our bounds for (δ, n)-LRC sequences

that are not necessarily all-disjoint (but are still linearly

recoverable).

II. LARGE DEVIATION TOOLS

We summarize here several basic notions from large devi-

ations theory (see [9, Sections 2.1.2 and 2.2]). Let X be a

random variable which takes values in a finite subset X ⊆ R,

with Prob{X = x} = p(x) > 0 for every x ∈ X . For every

u ∈ R, let the function gu : (0, 1]→ R be defined by

gu(z) = z−u · E
{
zX

}
=

∑

x∈X

p(x) · zx−u

and let

γ(u) = γX(u) = inf
z∈(0,1]

gu(z). (9)

The following theorem follows from the Chernoff bound

and Cramér’s theorem.

Theorem 3. Let (Xi)
∞
i=1 be a sequence of i.i.d. random

variables which take values in a finite subset X ⊆ R. Then

for every real u ≥ xmin = minx∈X x and ℓ ∈ Z+,

1

ℓ
logProb

{
1

ℓ

ℓ∑

i=1

Xi ≤ u
}
≤ log γ(u). (10)

Moreover,

lim
ℓ→∞

1

ℓ
logProb

{
1

ℓ

ℓ∑

i=1

Xi ≤ u
}

= log γ(u). (11)

Some properties of u 7→ γ(u) are summarized in the next

lemma, which is proved in Appendix A.

Lemma 4. The function u 7→ γ(u) is

• identically zero when u < xmin = minx∈X x,

• equal to p(xmin) when u = xmin,

• constant 1 when u ≥ E{X},
• strictly increasing when xmin ≤ u < E{X},
• continuous when u ∈ [x+min,∞), and—

• log-concave (i.e., u 7→ log γ(u) is concave) when u ≥
xmin.

Let C be a linear [n, k] code over F and denote by WC(z) =∑n
i=0Wiz

i the weight enumerator polynomial of C, namely,

Wi = |{c ∈ C : w(c) = i}| ,
where w(·) denotes Hamming weight. For ω ∈ R, define

α(ω) = αC(ω) = inf
z∈(0,1]

{
z−nω ·WC(z)

}
.

We have α(ω) = qk · γX(nω), where X is a random variable

which equals the weight of a codeword selected uniformly

from C. In particular, ω 7→ α(ω) is continuous on R≥0.

Moreover, when C has no trivial coordinates (i.e., none of
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the coordinates is identically zero across all codewords) then

E{X} = n(q−1)/q; so, ω 7→ α(ω) is strictly increasing (and

therefore also positive) at any positive ω < (q−1)/q.

For a code C of length N over F and ω ∈ R≥0, we denote

by C(ω) the set of all codewords in C that are contained in a

Hamming ball of radius ωN :

C(ω) = {c ∈ C : w(c) ≤ ωN} .
Lemma 5. Let C be a linear code [n, k] over F and for

ℓ ∈ Z+, let C(ℓ) be the linear [ℓn, ℓk] code over F defined by

the Cartesian product

C
(ℓ) = C×ℓ = C × C · · · × C︸ ︷︷ ︸

ℓ times

.

Then the following holds.

(i) For any ω ∈ R≥0 and ℓ ∈ Z+:

1

ℓ
log |C(ℓ)(ω)| ≤ logα(ω).

(ii) For any ω ∈ R≥0:

lim
ℓ→∞

1

ℓ
log |C(ℓ)(ω)| = logα(ω).

Proof. Apply Theorem 3 with the random variable Xi taken

as the weight of a codeword selected uniformly from C.

Remark 2. A variant of Lemma 5 holds also for C(ℓ)(ω±ε),
defined as the set of all codewords in C(ℓ) of weight within

(ω ± ε)ℓn. Assuming that C has no trivial coordinates, it fol-

lows from [9, Theorem 2.1.24] that for any ω ∈ (0, (q−1)/q]:

lim
ε→0

lim
ℓ→∞

1

ℓ
log |C(ℓ)(ω ± ε)| = logα(ω).

For (q−1)/q < ω < maxc∈C w(c)/n, this equality holds if

we replace α(ω) by:

α∗(ω) = inf
z∈(0,1]

znω ·WC(z
−1)

(this can be shown by stating Theorem 3 with Xi and u
replaced by −Xi and −u, respectively).

Example 1. Let C be the [n, n−1, 2] parity code over F .

The weight enumerator polynomial of the [n, 1, n] repetition

code, which is the dual code of C, is given by

WC⊥(z) = 1 + (q−1)zn.
Hence, by MacWilliams’ identities (see [23, Theorem 4.6]):

WC(z) =
1

q

(
(1 + (q−1)z)n + (q−1)(1−z)n

)
.

Thus, for the code C we have:

1

n
· logq α(ω) =

1

n
inf

z∈(0,1]
logq

(
z−nω ·WC(z)

)

= λ(ω, n),

where λ(ω, n) is defined in (5). From this we can conclude

that the mapping ω 7→ λ(ω, n) takes the value 0 at ω = 0
and (n−1)/n at ω = (q−1)/q, and is strictly increasing in

between for any n > 1. For ω ≥ (q−1)/q it remains a constant

(n−1)/n.

In Figure 1, we have also depicted the following function,

which is defined for (q−1)/q < ω < maxc∈C w(c)/n:

λ∗(ω, n) = λ∗q(ω, n) =
1

n
· logq α∗(ω)

=
1

n
inf

z∈(0,1]
logq

(
znω ·WC(z

−1)
)
.

Note that maxc∈C w(c)/n equals 1, except when q = 2 and n
is odd, in which case it equals (n−1)/n. It is also fairly easy

to see that when q = 2 and n is even we have λ∗2(ω, n) =
λ2(1−ω, n).

III. ASYMPTOTIC SPHERE-PACKING BOUND

The purpose of this section is to present additional tools

that will be used in this work. Along the way, we present an

asymptotic formulation of the sphere-packing bound of [28]

for the all-disjoint linearly recoverable case. The following

proposition will be useful for this purpose, as well as for other

proofs in the sequel.

Proposition 6. Given n ∈ Z+, let (Ai)
∞
i=1 be an infinite

sequence of codes over F where each Ai is a linear code of

length Ni over F of the form

Ai = Ci,1 × Ci,2 × · · · × Ci,ℓi ,
with each constituent code Ci,j being a linear [ni,j , ni,j−1]
code of length ni,j ≤ n over F . Then for any nonnegative

real sequence (ωi)
∞
i=1 such that limi→∞ ωi = ω:

lim
i→∞

1

Ni
logq

|Ai|
|Ai(ωi)|

≤ R0(ω, n), (12)

where R0(ω, n) is defined in (4)–(5).

A. Proof of Proposition 6

We will prove Proposition 6 in two steps. We first prove

it under an additional assumption on the sequence (Ai)
∞
i=1

(Lemma 7). We then prove a more general claim (Lemma 8),

which will also be needed in Section VI where we remove the

all-disjoint assumption.

Lemma 7. Proposition 6 holds when all the constituent

codes have the same length ni,j = n.

Proof. The claim is immediate when ω = 0, so we assume

hereafter in the proof that ω > 0.

For s ∈ [n], let Cs be the linear [n, n−1] code over F with

the parity-check matrix
(
1 1 . . . 1︸ ︷︷ ︸
s times

0 0 . . . 0
)
.

Without real loss of generality we can assume that Ci,j ∈
{Cs}ns=1 for each j ∈ [ℓi]. Therefore, we can write

Ai = C
(ℓi,1)
1 × C

(ℓi,2)
2 × · · · × C

(ℓi,n)
n , (13)

where C
(ℓ)
s = (Cs)×ℓ and ℓi,1, ℓi,2, . . . , ℓi,n are nonnegative

integers that sum to ℓi. (The code C
(0)
s is taken to have zero

length, which will practically mean that we remove C
(ℓi,s)
s

from the product (13) in case ℓi,s = 0.)
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For each s ∈ [n], the weight enumerator polynomial of the

dual code of Cs is given by

WC⊥
s
(z) = 1 + (q−1)zs

and, so, by MacWilliams’ identities:

WCs
(z) =

1

q
(1+(q−1)z)n−s

(
(1+(q−1)z)s+(q−1)(1−z)s

)
.

In particular, for every z ∈ (0, 1]:

WCs
(z) ≥WCn

(z) =
1

q

(
(1 + (q−1)z)n + (q−1)(1−z)n

)
.

Hence, for every i ∈ Z+:

logq αCs
(ωi) ≥ logq αCn

(ωi) = n · λ(ωi, n).

Fixing some ε ∈ (0, ω), by Lemma 5(ii) we then get that,

whenever i and ℓi,s are sufficiently large,

1

ℓi,sn
logq |C(ℓi,s)

s (ωi)| ≥
1

ℓi,sn
logq |C(ℓi,s)

s (ω−ε)|

≥ λ(ω−ε, n)− ε. (14)

For i ∈ Z
+ define

S(i) =
{
s ∈ [n] : ℓi,s ≥

√
ℓi

}
.

For sufficiently large i (and, therefore, sufficiently large ℓi) we

have:

1

ℓin
logq |Ai(ωi)|

≥ 1

ℓin

n∑

s=1

logq |C(ℓi,s)(ωi)|

≥
∑

s∈S(i)

ℓi,s
ℓi
· 1

ℓi,sn
logq |C(ℓi,s)(ωi)|

(14)

≥ (λ(ω−ε, n)− ε)
∑

s∈S(i)

ℓi,s
ℓi
.

Noting that

1− n√
ℓi
<

∑

s∈S(i)

ℓi,s
ℓi
≤ 1,

we conclude that

lim
i→∞

1

ℓin
logq |Ai(ωi)| ≥ λ(ω−ε, n)− ε.

Finally, we get (12) by taking the limit ε → 0 and recalling

that Ni = ℓin and that

1

ℓin
logq |Ai| =

n−1
n

.

Remark 3. It follows from the proof that equality is attained

in (12) when Ai = (Cn)×ℓi , namely, the growth rate of Ai(ω)
is minimized when each Ci,j is the [n, n−1, 2] parity code.

This result, however, holds only asymptotically (namely, when

i → ∞) and not necessarily for individual values of i. For

example, for q = 2, n = 5, and ℓi = ℓ1 = 1 we have

|C5(0.4)| = 11 yet |C2(0.4)| = 8 and |C3(0.4)| = 7.

The next lemma involves the following definition. For n ∈
Z
+, ω ∈ R≥0, and a real µ ∈ [1, n], define:

R0(ω, n, µ) = max
π

min
ϑ

∑

s∈[n]

πs · R0(ϑs, s), (15)

where R0(·, ·) is as in (4), the maximum is taken over all

vectors π = (πs)s∈[n] ∈ Rn
≥0 that satisfy

P1)
∑

s∈[n]

πs = 1 and

P2)
∑

s∈[n]

πs
s
≥ 1

µ
,

and the minimum is taken over all vectors ϑ = (ϑs)s∈[n] ∈
Rn

≥0 that satisfy

P3)
∑

s∈[n]

πs · ϑs = ω.

Remark 4. The expression in (15) is fairly easy to com-

pute, and we provide a formula for it in Proposition 21 in

Appendix B. In particular, we show there that the support of

the maximizing vector π in (15) is {⌊µ⌋, ⌈µ⌉}; thus, when µ
is an integer then

R0(ω, n, µ) = R0(ω, µ).

It will also follow from our analysis that for given ω ∈ R≥0

and µ ∈ [1,∞), the value R0(ω, n, µ) is the same for all

n ≥ µ.

Proposition 6 follows by substituting µ = n in the next

lemma.

Lemma 8. Let (Ai)
∞
i=1 be as in Proposition 6 and assume

in addition that for a prescribed µ ∈ [1, n], the average length

of the constituent codes satisfies

lim
i→∞

Ni

ℓi
≤ µ. (16)

Then for any nonnegative real sequence (ωi)
∞
i=1 such that

limi→∞ ωi = ω:

lim
i→∞

1

Ni
logq

|Ai|
|Ai(ωi)|

≤ R0(ω, n, µ),

where R0(ω, n, µ) is defined in (15).

Proof. By possibly permuting the coordinates of Ai, we can

write

Ai = Ai,1 × Ai,2 × · · · × Ai,n,

where each Ai,s is a linear [s · ℓi,s, (s−1) · ℓi,s] code over F
of the form

Ai,s = C′i,1 × C′i,2 × · · · × C′i,ℓi,s ,
with each C′i,j being a linear [s, s−1] code over F .

Define πi = (πi,s)s∈[n] by

πi,s =
s · ℓi,s
Ni

(17)

(i.e., πi,s is the fraction of coordinates of Ai that correspond

to constituent codes of length s). We have

∑

s∈[n]

πi,s =
1

Ni

∑

s∈[n]

s · ℓi,s =
1

Ni

∑

j∈[ℓi]

ni,j = 1 (18)
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and

lim
i→∞

∑

s∈[n]

πi,s
s

= lim
i→∞

1

Ni

∑

s∈[n]

ℓi,s = lim
i→∞

ℓi
Ni

(16)

≥ 1

µ
. (19)

By possibly restricting to a subsequence of (Ai)
∞
i=1, we

can assume that the sequence (πi)
∞
i=1 converges to a limit

π = (πs)s∈[n]; by (18)–(19), this limit satisfies conditions (P1)

and (P2).

Let (ωi)
∞
i=1 be a nonnegative real sequence such that

limi→∞ ωi = ω and let ϑ = (ϑs)s∈[n] be a vector in Rn
≥0

that satisfies condition (P3). For any i ∈ Z+ and s ∈ [n],
define:

ϑi,s =





πs
πi,s
· ωi

ω
· ϑs if ω > 0 and s ∈ Supp(πi)

0 otherwise

,

where Supp(·) denotes the support of a vector. It is easily seen

that ∑

s∈[n]

πi,s · ϑi,s ≤ ωi (20)

and that for any s ∈ Supp(π):

lim
i→∞

ϑi,s = ϑs.

We then have:

1

Ni
logq |Ai| (17)

=
∑

s∈Supp(πi)

πi,s ·
1

s · ℓi,s
logq |Ai,s|

and

1

Ni
logq |Ai(ωi)|

(17)+(20)

≥
∑

s∈Supp(πi)

πi,s·
1

s · ℓi,s
logq |Ai,s(ϑi,s)|.

Hence,

lim
i→∞

1

Ni
logq

|Ai|
|Ai(ωi)|

≤ lim
i→∞

∑

s∈Supp(πi)

πi,s ·
1

s · ℓi,s
logq

|Ai,s|
|Ai,s(ϑi,s)|

=
∑

s∈Supp(π)

lim
i→∞

πi,s ·
1

s · ℓi,s
logq

|Ai,s|
|Ai,s(ϑi,s)|

Lemma 7

≤
∑

s∈[n]

πs · R0(ϑs, s).

Finally, selecting ϑ ∈ Rn
≥0 that minimizes the inner expression

in (15) (subject to condition (P3)), we get:

lim
i→∞

1

Ni
logq

|Ai|
|Ai(ωi)|

≤ min
ϑ

∑

s∈[n]

πs · R0(ϑs, s)

≤ R0(ω, n, µ),

for any π ∈ Rn
≥0 that satisfies conditions (P1)–(P2).

B. Ambient spaces of LRCs

Let C be a linearly recoverable LRC (which is not neces-

sarily all-disjoint) of length N and locality r = n− 1 over F ,

and let {Rj}j be a set of distinct repair groups of C. Recall

that for each repair group Rj , the constituent code (C)Rj
is

a subcode of a linear [|Rj |, |Rj |−1] code, Cj , over F . Let A

be a largest subset of FN which satisfies the following linear

constraints:

(A)Rj
⊆ Cj , j ∈ [ℓ]. (21)

Clearly, A is a linear subspace of FN (which is defined

uniquely by (21)) and C ⊆ A. We will refer hereafter to A

as an ambient space of C (this term is similar to the notion of

an L-space defined in [28]).

In the all-disjoint case, we can assume that {Rj}j forms

a partition of [N ]. By possibly permuting the coordinates of

both C and A, we can further assume that A takes the form

A = C1 × C2 × · · · × Cℓ.

C. Sphere-packing bound

Ambient spaces were used in [28] as an ingredient in

obtaining a sphere-packing bound on LRCs. The asymptotic

formulation of this bound is presented in the next theorem.

Theorem 9. The rate of any all-disjoint linearly recoverable

(δ, n)-LRC sequence over F is bounded from above by

RSP(δ, n) = R0

(
δ

2
, n

)
.

Proof. Let (Ci)
∞
i=1 be an all-disjoint linearly recoverable

(δ, n)-LRC sequence, with Ni and di being the length and

the minimum distance of Ci. Letting Ai be an ambient space

of Ci, by a sphere-packing argument we get:

|Ci| ≤
|Ai|

Ai(di−1/(2Ni))
.

The result follows from Proposition 6 by taking ωi =
(di−1)/(2Ni).

Remark 5. For general µ ∈ [1, n], we get from Lemma 8

that

R0

(
δ

2
, n, µ

)

is an upper bound on the rate of any all-disjoint linearly

recoverable (δ, n)-LRC sequence (Ci)
∞
i=1 over F , with µ

bounding from above the supremum (as i → ∞) over the

average sizes, Ni/ℓi, of the distinct (and disjoint) repair groups

of Ci. A similar bound can be stated when the average size

is computed per coordinate, so that each repair group is

counted a number of times equaling its size. See Remark 11

in Appendix B.
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IV. PROOFS OF THEOREMS 1 AND 2

In this section, we prove Theorems 1 and 2.

We start with the next simple lemma, usually attributed to

Bassalygo or Elias; it provides an effective tool in obtaining

upper bounds.

Lemma 10. Let A be a subspace of FN and let B and C

be subsets of A. Then there exists y ∈ A for which

|(y + C) ∩ B| ≥ |B||A| · |C|.

Proof. Let χB : A → {0, 1} be the characteristic function of

B, namely, χ(y) = 1 when y ∈ B and χ(y) = 0 otherwise.

Then,

1

|A| · |C| · |B| =
1

|A|
∑

c∈C

∑

y∈A

χB(c+ y)

=
1

|A|
∑

y∈A

∑

c∈C

χB(y + c)

=
1

|A|
∑

y∈A

|(y + C) ∩ B| .

Hence,

max
y∈A
|(y + C) ∩ B| ≥ |B||A| · |C|.

Proof of Theorem 1. We tailor the generalization of the short-

ening method of [16, Theorems 1 and 2] to our setting.

Let (Ci)
∞
i=1 be an all-disjoint linearly recoverable (δ, n)-LRC

sequence over F and fix τ in the interval (0, 1) and a pair

(θ, θ′) ∈ [0, (q−1)/q]2 that satisfies (7). For each i ∈ Z+,

let Ni and di be the length and the minimum distance of Ci,

respectively, where

lim
i→∞

di
Ni
≥ δ. (22)

Let {Ri,j}j∈[ℓi] be a set of distinct (and disjoint) repair

groups of Ci, and denote

ti =
∣∣∣
⋃

j∈[ℓ′i]
Ri,j

∣∣∣ ,

where ℓ′i is the smallest in [ℓi] so that ti ≥ τNi; in particular,

lim
i→∞

ti
Ni

= τ. (23)

By possibly permuting the coordinates of Ci, we assume

hereafter in the proof that
⋃

j∈[ℓ′i]
Ri,j indexes the first ti

coordinates4 of Ci. Letting Ai be an ambient space of Ci,

we denote by A′
i the set of the distinct ti-prefixes of the

vectors in Ai; the sequence (A′
i)

∞
i=1 satisfies the conditions

of Proposition 6.

Define

wi = min

{⌊θ
2
· ti

⌋
,
⌊di − 1

2

⌋}
.

By (22)–(23) (and (7)) we have:

lim
i→∞

ωi

ti
=
θ

2
. (24)

4Namely, we deviate here from the notational convention that we set in
Footnote 1.

Next, we apply Lemma 10 with C ← Ci and A ← Ai, and

with B taken as the set of all vectors in Ai whose ti-prefixes

are in A′
i(wi/ti); namely,

B = A′
i(wi/ti)× A′′

i , (25)

where A′′
i is the set of (Ni − ti)-suffixes of the vectors of Ai.

It follows that there exists y = (y′ y′′) ∈ Ai (where y′ ∈ A′
i)

for which the intersection

C∗
i = (y + Ci) ∩ B

satisfies

|Ci| ≤
|Ai| · |C∗

i |
|B| =

|A′
i|

|A′
i(wi/ti)|

· |C∗
i |. (26)

Now, on the one hand, the code −y + C∗
i is an all-disjoint

linearly recoverable LRC with locality r = n−1 and minimum

distance ≥ di; yet, on the other hand, all the ti-prefixes of

its codewords are at distance at most wi from −y′, which

means that any two prefixes are at most 2wi apart. It follows

that all the (Ni − ti)-suffixes of the codewords of −y + C∗
i

form an all-disjoint linearly recoverable LRC, C′′
i , of minimum

distance ≥ di− 2wi (> 0) (in particular, these suffixes are all

distinct). Hence,

|C∗
i | = |C′′

i | ≤MLRC(Ni − ti, di − 2wi, n), (27)

where MLRC(N,D, n) denotes the largest size of any all-

disjoint linearly recoverable LRC over F with length N ,

minimum distance D, and locality n − 1. Combining (26)

and (27) leads to

|Ci| ≤
|A′

i|
|A′

i(wi/ti)|
·MLRC(Ni − ti, di − 2wi, n),

and taking logarithms and dividing by Ni yield the following

upper bound on the rate, Ri = (logq |Ci|)/Ni, of Ci:

Ri ≤
1

Ni

(
logq

|A′
i|

|A′
i(wi/ti)|

+ logqMLRC(Ni − ti, di − 2wi, n)
)

=
ti
Ni
·
(
1

ti
logq

|A′
i|

|A′
i(wi/ti)|

)

+

(
1− ti

Ni

)
· logqMLRC(Ni − ti, di − 2wi, n)

Ni − ti
.

(28)

We now take the limit as i → ∞ of each of the terms

in (28). By (24) and Proposition 6 we get

lim
i→∞

1

ti
logq

|A′
i|

|A′
i(wi/ti)|

≤ R0

(
θ

2
, n

)
. (29)

In addition,

lim
i→∞

di − 2wi

Ni − ti
(22)–(24)

≥ δ − τ · θ
1− τ

(7)
= θ′

and, so,

lim
i→∞

logqMLRC(Ni − ti, di − 2wi, n)

Ni − ti
≤ RLRC(θ

′, n).
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We conclude that the rate R of the code sequence (Ci)
∞
i=1

satisfies

R = lim
i→∞

Ri ≤ τ · R0

(
θ

2

)
+ (1− τ) · RLRC(θ

′, n).

The sought result is reached by minimizing over θ and τ .

We now turn to the proof of Theorem 2. Recall that the

expression R2(δ, n) therein involves the value Ropt(δ, ω),
being the supremum over all rates of sequences (Ci)

∞
i=1 with

r.m.d. ≥ δ such that the codewords in each Ci all have the

same weight ≈ ωNi. For our purposes, it would be convenient

if this definition were relaxed so that the codeword weights

only need to be bounded from above by (approximately) ωNi.

It turns out that Ropt(δ, ω) is the rate supremum also under

this relaxed setting, provided that ω ∈ [0, (q−1)/q]. We make

this statement precise in Lemma 11 below.

For N, d, w ∈ Z+, let Mopt(N, d, w) denote the largest size

of any code in FN with minimum distance d and codeword

weights that are all bounded from above by w. Define

Ropt(δ,≤ω) = sup
d∈L(δ)
w∈U(ω)

lim
N→∞

1

N
logqMopt(N, dN , wN ),

where L(δ) (respectively, U(ω)) is the set of all sequences

(aN )∞N=1 over Z+ satisfying limN→∞ aN/N ≥ δ (respec-

tively, limN→∞ aN/N ≤ ω).

We have the following technical lemma, which is proved in

Appendix A.

Lemma 11. For every δ, ω ∈ [0, (q−1)/q],
Ropt(δ,≤ω) = Ropt(δ, ω).

Proof of Theorem 2. Let (Ci)
∞
i=1 be an all-disjoint linearly

recoverable (δ, n)-LRC sequence over F . Letting Ai be an

ambient space of Ci, the sequence (Ai)
∞
i=1 satisfies the con-

ditions of Proposition 6.

Fixing any ω ∈ [δ/2, (q−1)/q] and substituting C ← Ci,

A← Ai, and B← Ai(ω) in Lemma 10 yield that there exists

y ∈ Ai for which

|Ci| · |Ai(ω)| ≤ |Ai| · |(y + Ci) ∩ Ai(ω)|
≤ |Ai| ·Mopt(Ni, di, ω),

where Ni and di are the length and the minimum distance of

Ci, respectively. Taking logarithms and dividing by Ni yield

the following upper bound on the rate Ri of Ci:

Ri ≤
1

Ni
logq

|Ai|
|Ai(ω)|

+
1

Ni
logqMopt(Ni, di, wi), (30)

where wi = ⌊ωNi⌋. The result is obtained by taking the limit

as i → ∞. Specifically, on the left-hand side of (30) we get

the rate R = limi→∞Ri of (Ci)
∞
i=1, and on the right-hand

side the respective terms become

lim
i→∞

1

Ni
logq

|Ai|
|Ai(ω)|

Proposition 6

≤ R0(ω, n)

and

lim
i→∞

1

Ni
logqMopt(Ni, di, wi)

Lemma 11
≤ Ropt(δ, ω).

V. THE CASE q = 2 AND n = 3

We consider in this section the case n = 3 over the

binary field. We assume that the LRCs are all-disjoint, but

not necessarily linearly recoverable.

As a warm-up, we start with the case n = 2 over any

finite field. It is straightforward to see that if an all-disjoint

(N,M, d) LRC C over F with locality n−1 = 1 has no fixed

(in particular, trivial) coordinates, then all the repair groups

have to be of size (exactly) 2, and all the constituent codes have

minimum distance (exactly) 2.5 Thus, both N and d are even

and, without loss of generality, each constituent code is the

[2, 1, 2] repetition code over F . We can therefore view C as a

concatenated code over F comprising an outer (N/2,M, d/2)
code over F and an inner [2, 1, 2] repetition code over F . We

conclude that the rate of any all-disjoint (δ, 2)-LRC sequence

over F is bounded from above by (1/2) · Ropt(δ); moreover,

we can get arbitrarily close to this bound by a concatenated

code construction.6

We now turn to the case n = 3 when F = F2. Let C be an

all-disjoint (N,M, d) LRC over F with locality n−1 = 2 and

without fixed coordinates, and assume first that all the repair

groups have size exactly 3. Then each constituent code (C)Rj
,

being of length 3 and minimum distance ≥ 2 and having no

fixed coordinates, has size 2, 3, or 4. It is rather easy to see that

such codes are essentially unique (up to a replacement 0↔ 1
at any given coordinate across all codewords). Moreover,

any (3, 3, 2) code over F is necessarily equi-distant (i.e., the

distance between any two distinct codewords is exactly 2) and

can be augmented by a fourth codeword while still remaining

equi-distant. Hence, we assume that each constituent code

is either the [3, 1, 3] repetition code or the [3, 2, 2] parity

code (which is equi-distant). We can therefore view C as a

concatenated code over F comprising an outer code C of

length ℓ = N/3 and size M over a mixed alphabet, namely:

C ⊆ F t × (F 2)ℓ−t,

for some t ≤ ℓ. The first t (binary) coordinates are mapped

to an inner code which is the [3, 1, 3] repetition code, and the

remaining ℓ − t (quaternary) coordinates are mapped to the

[3, 2, 2] parity code. Writing each codeword of C as (c c′),
where c ∈ F t and c′ ∈ (F 2)ℓ−t, the following inequality must

hold for any two distinct codewords (c1 c′1), (c2 c′2) ∈ C to

maintain the minimum distance d of C:

3dF (c1, c2) + 2dF 2(c′1, c
′
2) ≥ d, (31)

where dQ(·, ·) denotes Hamming distance over the alphabet

Q. Regarding now C as an element in a (δ, 3)-LRC sequence

where t/ℓ converges to τ ∈ [0, 1], the condition (31) becomes

τ · dF (c1, c2)
t

+
2

3
(1− τ) · dF 2(c′1, c

′
2)

ℓ− t ≥ δ. (32)

5If C does contain trivial coordinates, we can shorten it on these coordi-
nates, thereby only increasing the r.m.d. and the rate and, thus, obtaining an
upper bound on that larger rate.

6This upper bound holds in fact also when the repair groups are not
necessarily disjoint, as overlapping repair groups force all the entries that
are indexed by their union to be equal. This corresponds to having inner
repetition codes of rate smaller than 1/2.
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We are interested in finding the value of τ for which the rate of

the LRC sequence is maximized, subject to satisfying (32). We

do this using the following lemma; the function δ 7→ RLP;Q(δ)
stands for the (second) linear-programming bound, due to

Aaltonen [1, p. 141], on the rate of code sequences over a

finite alphabet Q (see also [4, Theorem 1]).

Lemma 12. Let Q andQ′ be finite alphabets and fix β, β′ ∈
R+ and τ ∈ [0, 1]. Let (Ci)

∞
i=1 be a code sequence such that

Ci ⊆ Qti × (Q′)ℓi−ti ,

where limi→∞ ti/ℓi = τ . Suppose also that the (weighted)

r.m.d. of the sequence is at least δ, where, for the purpose of

computing distances, each coordinate of Q (respectively, Q′)

contributes β (respectively, β′) to the distance. Then

lim
i→∞

log |Ci|
ℓi

≤ min
(θ,θ′)

{
τ · RLP;Q(θ) log |Q|

+ (1− τ) · RLP;Q′(θ′) log |Q′|
}
, (33)

where the minimum is taken over (θ, θ′) ∈ [0, 1]2 such that

τ · β · θ + (1− τ) · β′ · θ′ = δ.

A special case of this lemma, for the case Q = Q′ and

β = β′, was proved by Ben-Haim and Litsyn in [4].7 For this

case, Lemma 12 states that the bound δ 7→ RLP;Q(δ) can be

improved by taking its lower convex envelope (it turns out

that this bound is not convex for general Q). With little effort,

Theorem 5 in [4] can be adapted to the case of mixed alphabets

and weighted distance [5].8

Applying Lemma 12 with Q = F2, Q′ = F4, β = 1,

and β′ = 2/3, we have verified numerically that the ex-

pression (33) is maximized when τ = 0. Hence, we get the

following upper bound on the rate R of any all-disjoint (δ, 3)-
LRC sequence over F in which the repair groups are all of

size 3:

R ≤ 2

3
· RLP;F4

(
3δ

2

)
. (34)

It remains to consider the case where the (N,M, d) LRC

C has repair groups of size 2, namely, some s out of the t
coordinates of the outer code C (⊆ F t × (F 2)ℓ−t) map to

the [2, 1, 2] repetition code. By adding s information bits to C

(thereby increasing its size by a factor of 2s) we can obtain a

new concatenated code C∗ in which we replace all the inner

instances of the [2, 1, 2] repetition code by instances of the

[3, 2, 2] parity code. Doing so, the overall code length becomes

N+s, the minimum distance remains unchanged (and, so, the

r.m.d. reduces by a factor of N/(N+s)), and the rate becomes

(log2M) + s

N + s
=

(log2M)/N + (s/N)

1 + (s/N)
. (35)

7This is not stated so explicitly in [4], but this is what Theorem 7 in [4]
reduces to when Eq. (36) in that paper is plugged into Eq. (39) and the result
is then plugged into Eq. (40).

8Specifically, one only needs to modify the definition of the function f
in that theorem so that the first multiplicand therein is β(a1 + b1 − x1 −
y1)+ β′(a2 + b2 − x2 − y2). The proof, as is, holds also when the prefixes
and suffixes—of lengths n1 and n2—of the codewords are over different
alphabets.

Switching to a code sequence (Ci)
∞
i=1 where limi→∞ si/Ni =

σ, we get from (35) the following relationship between the rate

R of the sequence and the rate R∗ of (C∗
i )

∞
i=1:

R∗ =
R+ σ

1 + σ
.

On the other hand, the bound (34) applies to (C∗
i )

∞
i=1, namely:

R∗ ≤ 2

3
· RLP;F4

(
3δ

2(1 + σ)

)
.

Combining the last two equations yields:

R ≤ 2(1 + σ)

3
· RLP;F4

(
3δ

2(1 + σ)

)
− σ.

We have verified numerically that this expression is maximized

when σ = 0. We therefore conclude that (34) holds for any

all-disjoint (δ, 3)-LRC sequence over F . The bound (34) is

depicted in Figure 2 (curve (g)).

VI. THE GENERAL LINEARLY RECOVERABLE CASE

In this section, we present some (weaker) bounds for (δ, n)-
LRC sequences that are not necessarily all-disjoint (but they

are still linearly recoverable). Our results are based on deriving

the asymptotic version of the sphere-packing bound of [28]

(Theorems 5 and 12 therein).

Let C be a linearly recoverable LRC of length N , minimum

distance d, and locality r = n − 1 over F and let (Rj)j∈[N ]

be a list of repair groups of C. We assume hereafter in this

section (without loss of generality) that this list satisfies the

following conditions.

R1) |Rj | ≤ n for each index j ∈ [N ] (this condition follows

directly from the locality).

R2) For each j ∈ [N ], the repair group Rj is minimal in

the sense that no proper subset of it is a repair group for

j; this, in turn, implies that Rj is a repair group for all

j′ ∈ Rj .

R3) Each repair group Rj contains at least one index j′ that

is not contained in any repair groupRi 6= Rj (otherwise,

Rj can be spared).

Considering now only the set of distinct repair groups

{Rj}j∈[ℓ] of C, for each repair group Rj , the constituent

code (C)Rj
is contained in a linear [|Rj |, |Rj |−1] code over

F , which we denote by Cj; moreover, by condition (R2), the

code Cj has minimum distance 2. An ambient space A of C is

defined as in (21); by condition (R3), the containment in (21)

holds in fact with equality for all j ∈ [ℓ].

The method of [28] for obtaining a (non-asymptotic) sphere-

packing-type bound on the rate of C is based on shortening

C on the set of coordinates, S, on which repair groups

intersect, thereby reducing to the all-disjoint case. Denoting

ν = |S|/N , the resulting shortened code, Ĉ, is an all-disjoint

linearly recoverable LRC of length (1 − ν)N and minimum

distance ≥ d, with the following ℓ distinct repair groups:

R̂j = Rj \ S, j ∈ [ℓ].
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Now, on the one hand, we have:

ℓ · n ≥
∑

j∈[ℓ]

|Rj | =
∑

t∈[N ]

∣∣{j ∈ [ℓ] : t ∈ Rj

}∣∣

=
∑

t∈S

∣∣{j : t ∈ Rj

}∣∣+
∑

t∈[N ]\S

∣∣{j : t ∈ Rj

}∣∣

≥ 2|S|+ (N − |S|). (36)

On the other hand, by condition (R3), we also have:

N − |S| ≥ ℓ. (37)

From (36) and (37) we get:

1 + ν

n
≤ ℓ

N
≤ 1− ν (38)

and, in particular,

0 ≤ ν ≤ n− 1

n+ 1
.

Moreover, from (38) we get that the average size of the distinct

(and disjoint) repair groups of Ĉ satisfies

1

ℓ

∑

j∈[ℓ]

|R̂j | =
(1− ν)N

ℓ
≤ 1−ν

1+ν
· n = µ. (39)

The rate R = (logq |C|)/N of C is related to that of Ĉ by:

R =
1

N
· logq |C| ≤

1

N

(
|S|+ logq |Ĉ|

)
= ν + (1− ν) · R̂.

(40)

Thus, given ν, any upper bound on R̂ implies an upper bound

on R, and the dependence on ν can then be eliminated by

maximizing the latter bound over ν ∈ [0, (n−1)/(n+1)].
Using the above strategy, we next turn to adapting our

previous bounds to linearly recoverable (δ, n)-LRC sequences

that are not necessarily all-disjoint. We will make use of the

following notation. For n ∈ R+ and ω ∈ R≥0, define:

R̂0(ω, n) = max
ν

{
ν + (1− ν) · R0

(
ω

1−ν , n,
1−ν
1+ν

· n
)}

,

(41)

where R0(·, ·, ·) is as defined in (15) and the maximum is taken

over all ν ∈ [0, (n−1)/(n+1)].

Remark 6. Substituting ν = 0 and ν = (n−1)/(n+1) in the

objective function in (41), we get the following lower bound

on R̂0(ω, n):

R̂0(ω, n) ≥ max

{
R0(ω, n),

n−1
n+1

}
.

Based on our numerical evidence, we conjecture that this lower

bound is tight (see also Remark 10 in Appendix B).

The following proposition is a (weaker) counterpart of

Proposition 6 for the case where repair groups can intersect.

Proposition 13. Given n ∈ Z+, let (Ai)
∞
i=1 be an infinite

sequence of codes over F where each Ai is a linear code of

length Ni over F defined by

(Ai)Ri,j
= Ci,j , j ∈ [Ni],

with the list (Ri,j)j∈[Ni] satisfying conditions (R1)–(R3) and

each constituent code Ci,j being a linear [|Ri,j |, |Ri,j |−1, 2]

code over F . Then for any nonnegative real sequence (ωi)
∞
i=1

such that limi→∞ ωi = ω:

lim
i→∞

1

Ni
logq

|Ai|
|Ai(ωi)|

≤ R̂0(ω, n).

Proof. For each i ∈ Z+, let Âi be obtained by shortening

Ai on the set of coordinates on which repair groups (i.e.,

subsets) Ri,j intersect. Denoting by νi (∈ [0, (n−1)/(n+1)])
the fraction of removed coordinates, by possibly restricting

to a subsequence of the codes, we can assume that (νi)
∞
i=1

converges to a limit ν and that the length, mi = (1−νi)Ni, of

Âi strictly increases with i. We then get that the code sequence

(Âi)
∞
i=1 satisfies the conditions of Proposition 6 (and, hence, of

Lemma 8); in particular, since each Ci,j has minimum distance

2, the respective (shortened) constituent codes of each Âi all

(still) have redundancy 1. Moreover, the average length of

those constituent codes is bounded from above by

1−νi
1−νi

· n

(as in (39)). In addition,

1

Ni
logq |Ai| ≤ νi + (1− νi) ·

1

mi
logq |Âi| (42)

(as in (40)) and, for any nonnegative real sequence (ωi)
∞
i=1:

1

Ni
logq |Ai(ωi)| ≥

1

Ni
logq |Âi(ωi/(1−νi))|

= (1− νi) ·
1

mi
logq |Âi(ωi/(1−νi))|. (43)

Therefore,

lim
i→∞

1

Ni
logq

|Ai|
|Ai(ωi)|

(42)+(43)

≤ ν + (1− ν) · lim
i→∞

1

mi
logq

|Âi|
|Âi(ωi/(1−νi))|

Lemma 8

≤ ν + (1− ν) · R0

(
ω

1−ν , n,
1−ν
1+ν

n

)

(41)

≤ R̂0(ω, n),

where ω = limi→∞ ωi.

The following sphere-packing bound is proved similarly

to Theorem 9, except that we use Proposition 13 instead of

Proposition 6.

Theorem 14. The rate of any linearly recoverable (δ, n)-
LRC sequence over F is bounded from above by

R̂SP(δ, n) = R̂0

(
δ

2
, n

)
.

Next are our (weaker) versions of Theorems 1 and 2 for

general linearly recoverable LRC sequences.

Theorem 15. The rate of any linearly recoverable (δ, n)-
LRC sequence over F is bounded from above by

R̂1(δ, n) = inf
τ∈(0,1)

min
(θ,θ′)

{
τ · R̂0

(
θ

2
, n

)

+ (1− τ) · Ropt(θ
′, n)

}
,
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where the (inner) minimum is taken over all pairs (θ, θ′) in

[0, (q−1)/q]2 that satisfy (7).

Proof. The proof resembles that of Theorem 1, yet requires

several modifications which are described below. Given a

linearly recoverable (δ, n)-LRC sequence (Ci)
∞
i=1 over F ,

we let (Ri,j)j∈[Ni] be a list of repair groups of Ci that

satisfies conditions (R1)–(R3). Letting {Ri,j}j∈[ℓi] be the set

of distinct repair groups in the list, we define (as in the proof

of Theorem 1)

ti =
∣∣∣
⋃

j∈[ℓ′i]
Ri,j

∣∣∣ ,

where ℓ′i is the smallest in [ℓi] so that ti ≥ τNi. And by

possibly permuting the coordinates of Ci, we assume that⋃
j∈[ℓ′i]

Ri,j = [ti].
We now specify the changes to the proof of Theorem 1.

First, we need to modify the argument that leads to Eq. (26),

since the decomposition (25) may no longer hold. Still, due

to condition (R3), the size of the following set is the same for

all y′ ∈ A′
i:

{
y′′ ∈ FNi−ti : (y′ y′′) ∈ Ai

}
.

Thus,
|Ai|
|B| =

|A′
i|

|A′
i(wi/ti)|

,

which justifies (26).

Secondly, we need to weaken Eq. (27), since the code C′′
i is

now not necessarily an LRC. Specifically, (27) now becomes

|C∗
i | = |C′′

i | ≤Mopt(Ni − ti, di − 2wi),

where Mopt(N,D) denotes the largest size of any code over

F with length N and minimum distance D. Accordingly, from

this point in the proof of Theorem 1, we change the instances

of RLRC(·, n) into Ropt(·).
Finally, using Proposition 13, we change (29) into

lim
i→∞

1

ti
logq

|A′
i|

|A′
i(wi/ti)|

≤ R̂0

(
θ

2
, n

)
.

Below is our variant of Theorem 2, which is proved using

Proposition 13 instead of Proposition 6.

Theorem 16. The rate of any linearly recoverable (δ, n)-
LRC sequence over F is bounded from above by

R̂2(δ, n) = min
ω∈[δ/2,(q−1)/q]

{
R̂0(ω, n) + Ropt(δ, ω)

}
.

Notice that unlike the all-disjoint case, we cannot substitute

R̂2(θ
′, n) for Ropt(θ

′, n) in Theorem 15.

The various bounds are plotted in Figure 4 for q = 2 and

n = 4. Curve (a) is the sphere-packing bound of Theorem 14.

Curve (b) is identical to its counterpart in Figure 3 and, as it

turns out, curve (c) is the same as in that figure too (namely,

R̂1(δ, n) = R1(δ, n) for the examined parameters); this is due

to the fact that the minimum in Theorem 16 is attained at

values θ where R̂0(θ, n) = R0(θ, n). When plotting curve (d),

we have taken the minimum of R̂2(δ, n) and RLP(δ, n). Some

values of the bounds are listed in Table II, where entries that

differ from those in Table I are marked in italics. There is still

a range where Theorem 16 yields the best upper bound, yet

this range is smaller compared to the all-disjoint case.

Remark 7. A second variant of Theorem 2 can be obtained

by first shortening the codes in a given LRC sequence on the

intersections of repair groups, and then applying Theorem 2

to the resulting (all-disjoint) LRC sequence. This yields the

upper bound

R̂3(δ, n) = max
ν

{
ν + (1− ν) ·min

ω

{
R0

(
ω, n,

1+ν

1−ν · n
)

+ Ropt

( δ

1−ν , ω
)}}

,

where the outer maximum is over ν ∈ [0, (n−1)/(n+1)] and

the inner minimum is over ω ∈ [δ/(2−2ν), (q−1)/q]. Yet at

least for the parameters that we have tested, we have observed

no difference between the values of R̂2(δ, n) and R̂3(δ, n).

TABLE II
VALUES OF THE BOUNDS FOR q = 2 AND n = 4 WITHOUT THE

ALL-DISJOINT CONSTRAINT.

δ (a) (b) (c) (d)

0.07 0.6133 0.6317 0.6131 0.6079
0.10 0 .6000 0.5809 0.5643 0 .6000
0.15 0 .6000 0.4964 0.4830 0 .6000
0.30 0 .6000 0.2427 0.2391 0 .6000
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APPENDIX A

SKIPPED PROOFS

Proof of Lemma 4. By convexity, for all z ∈ (0, 1] we have

E{zX} ≥ zE{X}, with equality holding when z = 1; hence,

γ(u) = 1 when u ≥ E{X}. When u ≤ xmin, the infimum

in (9) is attained at z → 0 and, so, γ(u) = 0 when u < xmin

and γ(u) = p(xmin) when u = xmin. For xmin < u < E{X},
we differentiate gu(z) with respect to z to obtain

g′u(z) = zxmin−u−1 · fu(z),
where

fu(z) =
∑

x∈X

(x − u) · p(x) · zx−xmin.

Thus, fu(1) = E{X} − u > 0 and fu(0) = (xmin − u) ·
p(xmin) < 0, which implies that the infimum in (9) is a proper

minimum attained at an (interior) point zu ∈ (0, 1); the point

zu satisfies

1 ≥ gu(zu) > zxmin−u
u · p(xmin),

i.e.,

zu > p(xmin)
1/(u−xmin).
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This means that zu is bounded away from zero whenever u
is bounded away from xmin. Defining zu = 1 for u ≥ E{X},
for any v > u ≥ xmin we have

γ(u) ≤ gu(zv) ≤ zu−v
v · gu(zv) = gv(zv) = γ(v),

with the second inequality being strict when v < E{X}.
Hence, u 7→ γ(u) is strictly increasing when xmin ≤ u <
E{X}. On the other hand, we also have

γ(u) = gu(zu) = zv−u
u gv(zu) ≥ zv−u

u γ(v),

which, combined with γ(u) ≤ γ(v), means that u 7→ γ(u) is

continuous when u > xmin. Moreover, it is right-continuous

at u = xmin, since

lim
ε→0+

γ(xmin + ε) ≤ lim
ε→0+

gxmin+ε(ε) = p(xmin) = γ(xmin).

Finally, the concavity of u 7→ log γ(u) follows from (11) and

Prob

{
1

ℓ1+ℓ2

ℓ1+ℓ2∑

i=1

Xi ≤
ℓ1

ℓ1+ℓ2
u1 +

ℓ2
ℓ1+ℓ2

u2

}

≥ Prob

{
1

ℓ1

ℓ1∑

i=1

Xi ≤ u1
}
· Prob

{
1

ℓ2

ℓ1+ℓ2∑

i=ℓ1+1

Xi ≤ u2
}
.

Turning to the proof of Lemma 11, it makes use of the

following theorem, which was proved in [6, Theorem 1] for

the special case of the binary alphabet. For completeness, we

provide a proof of the theorem for general q right after the

proof of Lemma 11.

Theorem 17. For any δ ∈ [0, (q−1)/q], the mapping ω 7→
Ropt(δ, ω) is non-decreasing on ω ∈ [0, (q−1)/q].
Proof of Lemma 11. Obviously, Ropt(δ, ω) ≤ Ropt(δ,≤ω).
To prove the inequality in the other direction, Let (Ci)

∞
i=1

be a code sequence with r.m.d. ≥ δ, with the (length-Ni)

codewords of each Ci all having weight at most wi, such

that limi→∞ wi/Ni ≤ ω. Letting C∗
i be a largest constant-

weight subcode of Ci (of codeword weight w∗
i ≤ wi), we

have |C∗
i | ≥ |Ci|/(wi + 1) and limi→∞ w∗

i /Ni = ω∗ ≤ ω
(and by possibly restricting to a subsequence of (C∗

i )
∞
i=1 we

can assume that ω∗ is a proper limit of (wi/Ni)
∞
i=1). Thus,

Ropt(δ,≤ω) ≤ sup
ω∗∈[0,ω]

Ropt(δ, ω
∗).

By Theorem 17 we then get that when ω ∈ [0, (q−1)/q], the

supremum is attained at ω∗ = ω.

Proof of Theorem 17. Given an Abelian group F of size q,

fix ω, θ ∈ [0, (q−1)/q] and let C be a constant-weight code

of length N and minimum distance d over F with codeword

weight ⌊ωN⌋. We show that there exists y ∈ FN such that

the translation y + C contains a constant-weight subcode C∗
of size

|C∗| ≥ |C|
(N+1)3

(44)

and of codeword weight ⌊ω∗N⌋, where

ω∗ = ω + θ

(
1− q w

q−1

)
. (45)

The result will follow by observing that ω∗ ranges over

[ω, (q−1)/q] as θ ranges over [0, (q−1)/q]. Hereafter in the

proof, we assume that ω and θ are rational numbers and N is

such that ωN , θN , and θωN/(q−1) are integers (it is easy to

see that those assumptions are allowed in order to obtain the

asymptotic result that we seek).

For any codeword c ∈ C, let T (c) denote the set of all

words y ∈ FN that satisfy the following conditions.

Y1) The subword y′ ∈ FωN of y that is indexed by the

support of c has weight θωN ,

Y2) a fraction 1/(q−1) of the nonzero entries of −y′ agree

with the respective entries in c, and—

Y3) the subword y′′ ∈ F (1−ω)N of y that is indexed by the

zero entries of c has weight θ(1−ω)N .

It follows from these conditions that the weight of each

y ∈ T (c) is θN and that for each y ∈ T (c), the weight of

y + c is
(
q−2
q−1 · θω + (1−θ)ω + θ(1−ω)

)
N

(45)
= ω∗N.

We also have:

|T (c)| =

(
ωN

θωN

)

·
(

θωN

θωN/(q−1)

)
· (q−2)θωN(q−2)/(q−1)

·
(
(1−ω)N
θ(1−ω)N

)
· (q−1)θ(1−ω)N ,

where the first term is the number of possible supports of a

subword y′ that satisfies condition (Y1) and, for each such

support, the second term counts the number of subwords y′

that satisfy condition (Y2). The third term counts the number

of subwords y′′ that satisfy condition (Y3).

We now apply the following well known approximation of

the binomial coefficients:

H

(
k

m

)
− log (m+1)

m
≤ 1

m
log

(
m

k

)
≤ H

(
k

m

)
,

where x 7→ H(x) is the (binary) entropy function −x log x−
(1−x) log (1−x) (see [23, pp. 105–106]). We get:

log |T (c)|
N

≥ ω · H(θ)

+ θω

(
H

(
1

q−1

)
+
q−2
q−1 log (q−2)

)

+ (1−ω) · H(θ) + θ(1−ω) log (q−1)

− 3 log (N+1)

N

= H(θ) + θ log (q−1)− 3 log (N+1)

N
. (46)

On the other hand, the set, Y , of all words y ∈ FN of weight

θN has size

|Y| =
(
N

θN

)
(q−1)θN

and, so,
log |Y|
N

≤ H(θ) + θ log (q−1). (47)
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Combining (46) and (47) we conclude that

T (c)
|Y| ≥

1

(N+1)3
. (48)

For y ∈ Y , let

C(y) =
{
c ∈ C : y ∈ T (c)

}
.

The set C∗(y) = y + C(y) forms a constant-weight code of

codeword weight ω∗N (and of the same minimum distance

d as C). Summing now on the size of C∗(y) over all y ∈ Y
yields:

∑

y∈Y

|C∗(y)| =
∑

y∈Y

|C(y)|

=
∣∣{(y, c) ∈ Y × C : y ∈ T (c)

}∣∣

=
∑

c∈C

|T (c)|

and, so,

1

|Y|
∑

y∈Y

|C∗(y)| = 1

|Y|
∑

c∈C

|T (c)|
(48)

≥ |C|
(N+1)3

.

Hence, there must be at least one word y ∈ Y for which

C∗ = C∗(y) satisfies (44).

APPENDIX B

CHARACTERIZATION OF R0(ω, n, µ)

We show here how to compute the expression (15). It is

easy to see that this expression equals (n−1)/n when ω = 0
(since ϑ is forced then to be all-zero on the support of π)

and it vanishes when ω ≥ (q−1)/q (by taking ϑs = ω for

all s ∈ [n]). Hence, we can assume from now on that ω ∈
(0, (q−1)/q).

We introduce the following notation. For n ∈ Z+ and ω ∈
[0, (q−1)/q], let ζn(ω) denote a particular minimizing z of

the expression for λ(ω, n) in (5). Also, for n ∈ Z+, let the

polynomials Pn(z) and Qn(z) be defined by

Pn(z) = −(q−1) ·
(
(1 + (q−1)z)n−1 − (1−z)n−1

)

Qn(z) = (1 + (q−1)z)n + (q−1)(1−z)n

(note that n · Pn(z) is the derivative of Qn(z)). Then (5) can

be written as

λ(ω, n) = inf
z∈(0,1]

{
−ω logq z −

1

n
+

1

n
logq Qn(z)

}
(49)

= −ω logq ζn(ω)−
1

n
+

1

n
logqQn (ζn(ω)) .

We have the following lemma.

Lemma 18. For n > 1 and ω ∈ [0, (q−1)/q], the value

ζn(ω) is the unique real root in [0, 1] of the polynomial

Uω,n(z) = ω ·Qn(z)− z · Pn(z).

Moreover, the mapping ω 7→ ζn(ω) is strictly increasing.

Proof. It follows from the proof of Lemma 4 that ζn(0) =
0 and ζn((q−1)/q) = 1. Assuming hereafter that ω ∈
(0, (q−1)/q), it also follows from that proof that ζn(ω) is an

(interior) point in (0, 1); as such, it is a local minimum of the

objective function in (49) and, so, it equals a value z at which

the derivative of that function (with respect to z) vanishes:

ω

z
− Pn(z)

Qn(z)
= 0. (50)

This equation, which is equivalent to requiring that Uω,n(z) =
0, can be rearranged into

(1−ω)(q−1)z − ω
(1−ω)z + ω

= (q−1) ·
(

1− z
1 + (q−1)z

)n−1

. (51)

In the range z ∈ [0, 1], the left-hand side of (51) is strictly

increasing in z (from the value −1 at z = 0 to q−1 − qω at

z = 1) while the right-hand side of (51) is strictly decreasing

in z. Hence, for any ω ∈ (0, (q−1)/q), there is (at most)

one z ∈ [0, 1] that satisfies (51), and ζn(ω) must then be

that z. Moreover, since the left-hand side of (51) is a strictly

decreasing expression in ω, the mapping ω 7→ ζn(ω) is strictly

increasing.

Remark 8. By (50), the inverse mapping z 7→ ω = ζ−1
n (z)

is given by

ζ−1
n (z) =

z · Pn(z)

Qn(z)
.

Note also that Lemma 18 is false when n = 1. In this

case ζ1(0) is arbitrary (and U0,1(z) is identically zero) while

ζ1(ω) = 1 when ω > 0 (it is then a global—rather than

local—minimum of the objective function in (49)).

We proceed to the characterization of the minimum in the

inner expression in (15). We will use the notation [n]∗ for the

set [n] \ {1}.
Lemma 19. Given n ∈ Z+, µ ∈ [n], and ω ∈ (0, (q−1)/q),

let π = (πs)s∈[n] ∈ R
n
≥0 be a vector that satisfies conditions

(P1)–(P2) with support S = Supp(π). A minimizer of the

inner expression in (15) under the constraint (P3) is any vector

ϑ = (ϑs)s∈[n] ∈ Rn
≥0 whose subvector (ϑs)s∈S is uniquely

determined as follows: ϑs = ζ−1
s (z∗), where z∗ is the unique

real in [0, 1] that satisfies

∑

s∈S

πs · ζ−1
s (z∗) = ω

(taking ζ−1
1 (z∗) ≡ 0 unless S = {1}, in which case ϑ1 = ω).

Proof. Since ω 7→ R0(ω, 1) is identically zero, the lemma

holds when S = {1}, so we assume hereafter that S 6= {1}
and denote S∗ = S \ {1}. By condition (P3), we can further

assume that ϑ1 = 0, since otherwise we can reduce ϑ1 and

increase ϑs for s ∈ [n]∗, thereby only decreasing the inner

expression in (15).

Define the function ϑ = (ϑs)s∈[n]∗ 7→ f(ϑ) for every ϑ ∈
R

n−1
≥0 to be the minimand in (15):

f(ϑ) = fπ(ϑ) =
∑

s∈S∗

πs · R0(ϑs, s).

Since ϑ 7→ R0(ϑ, s) is convex, so is ϑ 7→ f(ϑ).
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We minimize f subject to condition (P3) using the method

of Lagrange multipliers [17, §10.3]: we introduce a variable ξ
and require that the partial derivatives of the Lagrangian

L(ϑ, ξ) = f(ϑ) + ξ ·
(
ω −

∑

s∈[n]∗

πs · ϑs
)

be zero with respect to ξ and the entries of (ϑs)s∈S∗ , namely,
∑

s∈S∗

πs · ϑs = ω (52)

and
∂

∂ϑs
L(ϑ, ξ) = 0, s ∈ S∗. (53)

Denoting ζ(ϑ) = (ζs(ϑs))s∈S∗ , we can write f(ϑ) as:

f(ϑ) = f(ϑ, z)
∣∣
z=ζ(ϑ)

,

where z = (zs)s∈S∗ is a real vector of variables and

f(ϑ, z) = 1 +
∑

s∈S∗

πs

(
ϑs · logq zs −

1

s
logqQs(zs)

)
.

Recalling that

∂

∂zi
f(ϑ, z)

∣∣∣
z=ζ(ϑ)

= 0, for every i ∈ S∗,

we get for every s ∈ S∗:

∂

∂ϑs
f(ϑ) =

∂

∂ϑs
f(ϑ, z)

∣∣∣
z=ζ(ϑ)

+
∑

i∈S∗

∂

∂zi
f(ϑ, z)

∣∣∣
z=ζ(ϑ)︸ ︷︷ ︸

0

· ∂

∂ϑs
ζi(ϑi)

= πs · logq ζs(ϑs).
Hence, by (53),

πs ·
(
logq ζs(ϑs)− ξ

)
= 0,

namely, the values ζs(ϑs) are equal to (the same value) z∗ =
qξ, for all s ∈ S∗. Finally, by (52), the value z∗ must be such

that ∑

s∈S∗

πs · ζ−1
s (z∗) = ω.

This equality determines z∗ uniquely, since z 7→ ζ−1
s (z) is

strictly increasing for any s ∈ [n]∗.

We next turn to the characterization of the outer maximum

in (15).

Lemma 20. Given n ∈ Z+, µ ∈ [n], and ω ∈ (0, (q−1)/q),
let k = ⌊µ⌋ and

π =
k(k+1)

µ
− k. (54)

The entries of the maximizing vector π = (πs)s∈[n] ∈ R
n
≥0

in (15) under the constraints (P1)–(P2) are all zero, except for

the entries that are indexed by k and (possibly) k + 1, where

πk = π and πk+1 = 1− π.
Proof. When µ = 1, conditions (P1)–(P2) force π to be

(1 0 0 . . . 0) (i.e., Supp(π) = {1}), in which case ω 7→
R0(ω, n, 1) is identically zero. Hence, we assume hereafter

that µ > 1, in which case a maximizing π must have

support 6= {1} to achieve R0(ω, n, µ) > 0.

Define the function π = (πs)s∈[n] 7→ g(π) for every π ∈
Rn

≥0 to be the maximand in (15), namely,

g(π) =
∑

s∈[n]

πs · R0(ϑ
∗
s, s)

= 1− ω · logq z∗ +
∑

s∈[n]

πs
s

logqQs(z
∗),

where ϑ∗s = ζ−1
s (z∗) for each s ∈ [n] and z∗ is as in

Lemma 19; namely, z∗ is determined uniquely by π (and ω)

and, therefore, so is each ϑ∗s (in particular, ϑ∗1 = 0). We do

the maximization subject to the constraints (P1)–(P2) using

the Kuhn–Tucker conditions [17, §10.8]: we introduce a real

variable ξ and require that the partial derivatives of

K(π, ξ) = g(π) + ξ ·
(
1−

∑

s∈[n]

πs

)

− β ·
( 1

µ
−

∑

s∈[n]

πs
s

)
+

∑

s∈[n]

ηs · πs (55)

be zero with respect to ξ and the entries of π, for some

nonnegative β and η = (ηs)s∈[n] that satisfy

β ·
( 1

µ
−

∑

s∈[n]

πs
s

)
= 0 (56)

and

ηs · πs = 0, for each s ∈ [n]. (57)

The second term in the right-hand side of (55) corresponds

to condition (P1); the third term and (56) correspond to

condition (P2); and the last term and (57) correspond to

requiring that π be nonnegative.

Similarly to what we have done in the proof of Lemma 19,

we can write g(π) as

g(π) = g(π, z)
∣∣
z=z∗·1

,

where z = (zs)s∈[n]∗ is a real vector of variables and 1 stands

for the all-one vector in R
n−1
≥0 . Recalling that

∂

∂zi
g(π, z)

∣∣∣
zi=z∗

= 0, for every i ∈ [n]∗,

we get:

∂

∂πs
g(π) =

∂

∂πs
g(π, z)

∣∣∣
z=z∗·1

+
∑

i∈[n]∗

∂

∂zi
g(π, z)

∣∣∣
zi=z∗

︸ ︷︷ ︸
0

· ∂

∂πs
ζi(ϑ

∗
i (π))

=
1

s
logqQs(z

∗).

Returning to the expression for K(π, ξ) in (55), we conclude

that (∂K(π, ξ))/∂πs = 0 translates into

ηs = ψ(s), (58)

where

ψ(s) = ψ(s, β) =
1

s

(
logqQs(z

∗)− β
)
+ ξ.
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Next, we analyze the function s 7→ ψ(s) in the real variable

s ∈ [1,∞). Taking the derivative of this function, we get:

ψ′(s) =
1

s
· 1

Qs(z∗)

(
(1 + (q−1)z∗)s logq(1 + (q−1)z∗)

+ (q−1)(1−z∗)s logq(1−z∗)
)

− 1

s2
(
logq Qs(z

∗)− β
)

=
1

s2
(
β − Hq(ps)

)
, (59)

where

ps =
(q−1)(1−z∗)s

Qs(z∗)

and x 7→ Hq(x) is the q-ary entropy function x · logq(q−1)−
x logq x− (1−x) logq(1−x). This function is strictly increas-

ing on [0, (q−1)/q] and s 7→ ps is strictly decreasing on

[1,∞), with the following maximum value attained at s = 1:

p1 =
(q−1)(1−z∗)
Q1(z∗)

<
q−1
q
.

We conclude from (59) that, on the interval [1, n], the function

s 7→ ψ(s) is either (i) strictly increasing, or (ii) strictly

decreasing, or (iii) unimodal with one local minimum. Note

from (59) that β = 0 implies case (ii).

As our next step, we turn back to (58). Since ηs ≥ 0 for

all s ∈ [n], in case (i) we can have ηs = 0 only when s = 1.

Similarly, in case (ii) we can have ηs = 0 only when s = n.

And in case (iii) we can have ηs = 0 only for the (one or)

two consecutive indexes s that are adjacent to the minimum

of ψ(·). We conclude that ηs > 0 for all s except for those

two indexes; this, together with (57), implies that the support

of a maximizing π contains (only) those two indexes.

Observe that by (56), a maximizing π must satisfy con-

dition (P2) with equality, unless β = 0, in which case

π = (0 0 0 . . . 1) (case (ii) above). Condition (P2) would then

read 1/n = πn/n ≥ 1/µ, i.e., µ ≥ n. Yet we assume that

µ ∈ [n], thereby forcing µ = n, so condition (P2) holds with

equality in this case too.

Finally, let k and (possibly) k + 1 be the elements in the

support of a maximizing π. We then get from conditions (P1)

(and the equality version of) (P2) that the entries πk and πk+1

satisfy the following equations:

πk + πk+1 = 1

πk
k

+
πk+1

k+1
=

1

µ
.

Solving these equations yields πk = π and πk+1 = 1 − π,

where π is given by (54), and the value of k is determined by

π ≥ 0 ⇒ µ ≤ k + 1

π ≤ 1 ⇒ µ ≥ k.

Combining Lemmas 19 and 20 leads to the following recipe

for computing the value of R0(ω, n, µ).

Proposition 21. Given n ∈ Z+, µ ∈ [n], and ω ∈
[0, (q−1)/q], let k = ⌊µ⌋ and let π be as in (54). Also, let z∗

be the unique real in [0, 1] that satisfies

π · ζ−1
k (z∗) + (1 − π) · ζ−1

k+1(z
∗) = ω (60)

(taking ζ−1
1 (z∗) ≡ 0 when µ ∈ (1, 2) and ζ−1

1 (z∗) = ω when

µ = 1). Then

R0(ω, n, µ) = π · R0(ϑ, k) + (1− π) · R0(ϑ
′, k+1),

where

ϑ = ζ−1
k (z∗) and ϑ′ = ζ−1

k+1(z
∗).

In particular, when µ is an integer then

R0(ω, n, µ) = R0(ω, µ).

Remark 9. By Remark 8, solving (60) for z∗ amounts to

finding the (unique) real root in [0, 1] of the polynomial

ω ·Qk(z) ·Qk+1(z)

− z ·
(
π · Pk(z) ·Qk+1(z) + (1 − π) · Pk+1(z) ·Qk(z)

)
.

Remark 10. Using Proposition 21, it is fairly easy to

compute the maximization in (41) numerically. Given n ∈ Z+,

we next argue that for sufficiently small positive ω (within an

interval whose length depends on n), the maximum in (41)

is attained at ν = 0. For any ν ∈ [0, (n−1)/(n+1)],
let µ(ν) denote the value ((1−ν)/(1+ν))n (∈ [n]). Given

ω ∈ [0, 2(q−1)/(q(n+1))], the objective function in (41) can

be verified to be (continuous and) piecewise differentiable in

ν. Specifically, at any ν ∈ [0, (n−1)/(n+1)] for which µ(ν)
is not an integer, the derivative is given by
(
1 +

k

n

)
logq Qk+1(z

∗)−
(
1 +

k+1

n

)
logqQk(z

∗), (61)

where k and z∗ are as in Proposition 21, with µ and ω
therein taken as µ = µ(ν) and ω/(1−ν) (∈ [0, (q−1)/q]),
respectively. Now, by (50) and (60) it follows that z∗ → 0
as ω → 0 (uniformly in ν). And since the expression (61)

is negative at z∗ = 0 for any k ∈ [n−1], we conclude that

for sufficiently small ω > 0, the objective function in (41)

is decreasing in ν. Thus, the maximum therein is attained at

ν = 0, in which case

R̂0(ω, n) = R0(ω, n).

Remark 11. As we pointed out in Remark 5, the value

R0(δ/2, n, µ) bounds from above the rate of any all-disjoint

linearly recoverable (δ, n)-LRC sequence (Ci)
∞
i=1 under the

additional condition that the average size of the repair groups

of each Ci is at most µ (in the limit when i→∞). A related

relevant problem is obtaining such a bound when the average

is computed per coordinate, i.e., the average is taken over the

whole list of the Ni repair groups of Ci; thus, each of the

distinct repair groups is counted a number of times which

equals the number of coordinates that it covers (namely, its

size). A counterpart of the bound (2) for this setting was

presented in [24].



16

A sphere-packing upper bound for this setting is obtained

by substituting ω = δ/2 in (15), except that condition (P2) is

replaced by

P2)
∑

s∈[n]

s · πs ≤ µ.

Proposition 21 still holds, except that the value of π in (54)

is changed into

π = k + 1− µ.
Specifically, Lemma 19 holds as is; as for Lemma 20, the third

term in (55) (and, accordingly, the left-hand side of (56)) is

replaced by

β ·
(
µ−

∑

s∈[n]

s · πs
)

(with a plus sign). Consequently, (59) becomes

β − 1

s2
· Hq(ps)

which, in turn, leads to the same conclusions about the

function s 7→ ψ(s) (cases (i)–(iii)). Thus, the support of a

maximizing π contains up to two indexes, k and k + 1, and,

by (P1)–(P2), the values of πk and πk+1 are the solutions of

πk + πk+1 = 1

k · πk + (k+1) · πk+1 = µ.
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Fig. 2. Bounds for q = 2 and n = 3.
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Fig. 3. Bounds for q = 2 and n = 4.
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(e) δ 7→ R0(δ, n) (lower bound)
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Fig. 4. Bounds for q = 2 and n = 4 (not necessarily all-disjoint).
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