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Abstract—We consider the repair problem for Reed–Solomon
(RS) codes, evaluated on an Fq-linear subspace U ⊆ Fqm of
dimension d, where q is a prime power, m is a positive integer,
and Fq is the Galois field of size q. For the case of q ≥ 3,
we show the existence of a linear repair scheme for the RS
code of length n = qd and codimension qs, s < d, evaluated
on U , in which each of the n − 1 surviving nodes transmits
only r symbols of Fq , provided that ms ≥ d(m − r). For the
case of q = 2, we prove a similar result, with some restrictions
on the evaluation linear subspace U . Our proof is based on
a probabilistic argument, however the result is not merely an
existence result; the success probability is fairly large (at least
1/3) and there is a simple criterion for checking the validity of
the randomly chosen linear repair scheme. Our result extend the
construction of Dau–Milenkovich to the range r < m− s, for a
wide range of parameters.

I. INTRODUCTION

Erasure codes are widely used for increasing the reliabil-

ity of distributed storage systems. In such systems, data is

encoded and stored on several nodes, where each storage

node corresponds to one coordinate of the erasure code. To

minimize storage overhead due to coding, erasure codes used

in practice are typically Maximum Distance Separable (MDS)

codes. While an erasure code can typically recover from

several node failures (i.e., from more than a single erasure), a

single-node failure is the most common type of failure [10].

Hence, there is an interest in finding MDS codes that can

efficiently repair a single node failure.

To repair a single node failure, the system has to download

part of the content of some of the surviving nodes, called

helper nodes. The total amount of data downloaded from the

helper nodes is called the repair bandwidth. A code designed

for minimizing the repair bandwidth is called a regenerating

code. Regenerating codes have been studied extensively since

the introduction of the subject in [3]. A convenient way to

measure the repair bandwidth is through the concept of sub-

packetization, where data is divided to smaller units of a fixed

size and each helper node transmits some function of these

units. A common approach, which is adopted in this paper,

is to utilize a sub-packetization is to consider codes over

the extension field Fqm (over Fq), where each data node is

composed of m symbols of Fq , hence, the units in the sub-

packetization are Fq-symbols. A code that is defined over Fm
q

is called an array code of sub-packetization m, if m ≥ 2, and

is called a scalar code, otherwise.

This work was carried out at Samsung Semiconductor Israel R&D Center.

For an MDS code of length n and dimension k over Fqm ,

the cut-set bound [3] states that the repair bandwidth is at least

hm/(h+1−k) Fq-symbols, where h is the maximum number

of helper nodes that participates in a single node repair. Thus,

the repair bandwidth is minimized when h takes its maximum

possible value of n−1. In this paper we consider only the case

h = n−1, for which the cut-set bound reads (n−1)m/(n−k).
An MDS array code achieving the cut-set bound is called a

minimum storage regenerating (MSR) code. By now, there are

several constructions of MSR array codes (see, e.g., [11] and

[13]).

Guruswami and Wootters (GW) [5] introduced a useful

characterization of linear repair scheme for linear MDS codes

in terms of appropriate codewords of the dual codes. In the

same paper, Guruswami and Wootters also introduced a linear

repair scheme for Reed–Solomon (RS) codes over Fqm , of

full-length (i.e., their evaluation-set is the entire field) and of

codimension qm−1. This linear repair scheme is optimal, that

is, it achieves the minimum possible repair bandwidth of any

linear repair scheme with the same code parameters and sub-

packetization. The result of Guruswami and Wootters was later

extended by Dau and Milenkovich (DM) [2], who presented

linear repair schemes for RS codes with higher dimensions,

which is optimal only for RS codes.

While the schemes of [2] and [5] are optimal for full-

length RS codes, where the number of data units m in the

sub-packetization is logarithmic in the length, they are quite

far from the cut-set bound. Until recently, it was an open

question whether scalar MDS codes, particularly RS codes,

can achieve the cut-set bound. This question was answered

in [12], where an explicit evaluation set was presented for

which the corresponding RS codes achieve the cut-set bound.

For practical implementation, however, this construction is

infeasible, since it requires m to be exponential in n logn,

where n is the code length [12]. For this reason, there is

both a practical and a theoretical interest to further explore

the tradeoff between the number of data units (m) and the

repair bandwidth of RS codes and to find additional repair

schemes. This direction has been recently pursued in [4], [7],

and [8].

In this paper we consider linear repair schemes for RS codes

evaluated on an Fq-linear subspace U ⊆ Fqm , in which each

surviving node transmits r Fq-symbols for the repair of the

failed node. When q is greater than two, we show the existence

of such a linear repair scheme for every choice of U , provided

that ms ≥ d(m− r), where qs is the codimension of the RS

code and d is the dimension of U . For the case of q = 2,
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we prove that such a linear repair scheme exists for every

choice of U , whenever ms ≥ d(m− r)+1, and for many Fq-

linear subspaces, when ms = d(m− r). Our result translates

to a practical probabilistic algorithm that outputs with high

probability a linear repair scheme for the code, since success

probability is fairly large (at least 1/3) and there is a simple

algorithm for checking the validity of the construction. Our

result generalize the result of Dau and Milenkovich and the

“scheme in one coset” presented in [7] and [8].

A useful property of our scheme is a duality property

between the pair of parameters d and r, and the pair of

parameters m − r and m − d. Namely, assume C is an RS

code that is evaluated on an Fq-linear subspace of dimension

d, and that our construction generates a linear repair scheme

for C in which each surviving node transmits r Fq-symbols.

Then there is an explicit way to derive a linear repair scheme

for an RS code that is evaluated on an Fq-linear subspace

of dimension m− r, in which each surviving node transmits

m− d Fq-symbols.

We also present an explicit construction for the special cases

where d or m− r divides m and for a specific choice of U .

When d divides m, we set U to be the subfield Fqd , and present

an explicit construction that is almost identical to the scheme

of Li et al. [8]. Notice that, our existence result supports a

much wider parameters range as d may not divide m and the

evaluation set may be any subspace of dimension d. The case

that m− r divides m follows immediately from the duality of

our scheme.

The rest of this paper is organized as follows. In Section II

we present some of the basic concepts that are used throughout

the paper. In particular, we recall the concept of a linear

repair scheme and review the important result from [5] that

provides a convenient criterion for the existence of a linear

repair scheme. In Section III, we present some general results

on linear repair schemes for RS codes that are evaluated on

linear subspaces. The main result of the paper is given in

Section IV. In Section V we show explicit constructions, where

d or m − r divides m. Some specific examples are given in

Section VI and we conclude the paper in Section VII.

II. PRELIMINARIES

The set of all polynomials in the variable X with coeffi-

cients taken from a field F is denoted by F[X ]. The degree

of a polynomial f ∈ F[X ] is denoted by deg(f). For a

subset S of an Fq-linear space, the Fq-linear subspace that

is spanned by S is denoted by Spanq(S) and the rank of S
(the dimension of Spanq(S)) is denoted by rankq(S). For a

vector s = (s1, . . . , sℓ) ∈ F
ℓ
qm we will write rankq(s), for

rankq(s1, . . . , sℓ). As usual, for a matrix A ∈ F
n×n
q , the rank

of A over Fq is denoted by rankq(A).
Let V ⊆ Fqm be an Fq-subspace of dimension r with a basis

B = {b1, . . . , br} and let S = {b1, . . . , bm} be a basis for Fqm

that contains B. For x ∈ Fqm , the projection of x to V , xV ,

is the unique element v ∈ V such that x = v + w, for some

(unique) w ∈ Spanq(S\B). For an element u ∈ Fqm , consider

the Fq-linear map Fu : Fqm → Fqm defined by Fu(x)
def
=u · x,

and let [u]S ∈ F
m×m
q be the matrix representation of Fu

by right multiplication, according to the basis S. That is, if

x = (x1, x2, . . . , xm) ∈ F
m
q is the vector representation of

x ∈ Fqm according to the basis S, then [u]S · xT is the

vector representation of Fu(x) according to the basis S. We

denote by [u]B,S ∈ F
r×m
q the matrix consisting of the r rows

of [u]S corresponding to the elements of B. Note that, right

multiplication by [u]B,S represents the linear map that maps

x to the projection of Fu(x) to V . Similarly, we denote by

[u]S,B ∈ F
m×r
q the matrix consisting of the r columns of

[u]S corresponding to the elements of B. Right multiplication

by [u]S,B represents the linear map that projects x to V and

multiplies the result by u.

As usual, an [n, k]q code C is a linear code of length n and

dimension k, over the field Fq. The dual code of an [n, k]q
code C, C∗ ⊆ F

n
q , 1 is an [n, n− k]q code defined by

C∗def=

{

(x1, . . . , xn) ∈ F
n
q : ∀c ∈ C,

n∑

i=1

cixi = 0

}

.

A. The Trace Map and the Trace Dual Basis

The trace map, Trq,m : Fqm → Fq, is defined by

Trq,m(x)
def
=x+ xq + xq2 + · · ·+ xqm−1

.

For ease of notation, we denote the trace map by Tr, when

q and m are clear from the context. For a basis of Fqm

over Fq, S = {b1, . . . , bm}, the trace dual basis of S,

S′ = {b′1, . . . , b
′
m}, is a basis of Fqm over Fq for which

Tr(b′ibj) = 1 if i = j and Tr(b′ibj) = 0 otherwise. Note

that, for every basis there exists a unique trace dual basis.

For x ∈ Fqm with x =
∑m

i=1 xibi, xi ∈ Fq , we have that

xi = Tr(xb′i), 1 ≤ i ≤ m.

Let B = {b1, b2, . . . , br} ⊆ S and let V = Spanq(B). The

trace-orthogonal subspace of V , V ⊥, is defined by

V ⊥def
= {x ∈ Fqm : ∀v ∈ V, Tr(vx) = 0} .

Notice that {b′r+1, . . . , b
′
m} ⊆ S is a basis for V ⊥.

Lemma 1. Let S = {b1, b2, . . . , bm} be a basis of Fqm over

Fq, let B ⊆ S, and let V = Spanq(S \ B). For u ∈ Fqm ,

w ∈ V ⊥, and x ∈ Fqm we have that x = u · w if and only if

w · [u]B,S = x,

where w is the vector representation of w according to the

basis B′ and x is the vector representation of x according to

the basis S′.

Proof. Let [u]S = (uij). Then for all 1 ≤ j ≤ m, the jth

column of [u]S is the vector representation of bj ·u according

to the basis S. Hence, for all 1 ≤ i ≤ m, ui,j = Tr(b′i ·bj ·u).
Thus, [u]TS = [u]S′ .

Let ŵ be the vector representation of w according to the

basis S′. We have that

ŵ[u]S = x ⇔ [u]Sŵ
T = xT ⇔ x = u · w.

1We use the superscript ∗ instead of the conventional notation ⊥ to denote
the dual code. The later is used throughout this paper to denote a different
type of duality that is defined through the trace map and has a more prominent
role in this paper.
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Since w ∈ V ⊥ it follows that ŵ as zero entries in indices

corresponding to elements of S′\B′ and hence also in indices

corresponding to elements of S \B. Thus,

ŵ[u]S = x ⇔ w[u]B,S = x,

which concludes the proof.

Denote by homq(Fqm ,Fq) the set of all Fq-linear function-

als from Fqm to Fq . The set homq(Fqm ,Fq) is an Fq-linear

space. It is well known that homq(Fqm ,Fq) is isomorphic to

Fqm . More precisely, any linear functional Fqm → Fq is of

the form y 7→ Tr(xy) for a unique x ∈ Fqm .

Finally, denote by σ : Fqm → Fqm the Frobenius map,

defined by σ(x) = xq . Notice that σ is an Fq-linear map.

B. Reed–Solomon Codes

Let A = {a1, . . . , an} ⊆ Fq be a subset of n elements,

1 ≤ n ≤ q, and let k ≤ n be a positive integer. The Reed–

Solomon (RS) code, RS(A, k)q is defined as

RS(A, k)q
def
=

{

(f(a1), . . . , f(an)) :
f ∈ Fq[X ]

deg(f) ≤ k − 1

}

.

The set A is called the evaluation set of RS(A, k)q and we

say that the code RS(A, k)q is evaluated on A. The code

RS(A, k)q is a linear code of length n, dimension k, and

minimum distance n − k + 1. Thus, RS(A, k)q is an MDS

code and can correct up to n− k erasures.

For v = (v1, . . . , vn), vi ∈ Fq \ {0}, 1 ≤ i ≤ n, the

Generalized Reed–Solomon (GRS) code, GRS(A, k,v)q , is

defined as

GRS(A, k,v)q
def
= {(v1c1, . . . , vncn) : c ∈ RS(A, k)q} .

We refer to the vector v as the GRS scaling vector of

GRS(A, k,v)q .

It is well known that the dual of a GRS code is yet another

GRS code (see, e.g., [6, Thm. 5.1.6, p. 66]),

GRS(A, k,v)∗ = GRS(A, n− k,v′),

where v′ = (v′1, . . . , v
′
n) is given by

v′i =
vi

∏

j 6=i(ai − aj)
, 1 ≤ i ≤ n. (1)

C. Linear Repair Schemes

In what follows, we review the definition of a linear repair

scheme, and the important result of Guruswami–Wootters [5]

that provides a criterion to validate a linear repair scheme. The

result of Dau–Milenkovich (DM) [2] on linear repair schemes

for RS codes is also given. In Section III we focus only on

linear repair scheme of RS codes evaluated on Fq-subpaces of

Fqm .

For a linear code C ⊂ F
n
qm and for 1 ≤ i ≤ n, an Fq-linear

repair scheme for the ith node (coordinate) of codewords in

C, in which a surviving node transmits at most r Fq-symbols,

consists of the following.

1) A set of Fq-linear functionals,

L =

{

gj,t ∈ homq(Fqm ,Fq) :
1 ≤ j ≤ n, j 6= i,

1 ≤ t ≤ r

}

,

of size |L| = (n− 1)r.

2) An Fq-linear map f : F
|L|
q → Fqm , such that for all

(c1, c2, . . . , cn) ∈ C, we have

ci = f

(

(gj,t(cj))1≤j≤n, j 6=i
1≤t≤r

)

. (2)

Remark 2. It can be easily verified that if there exists some

function f for which (2) holds, then there is also an Fq-linear

map for which (2) holds. Hence, there is no loss of generality

in restricting f to be a linear map.

The repair bandwidth, bi, of the above repair scheme for

node i, is defined as bi
def
= log2(q) · (n− 1)r, which is the total

number of bits transmitted from the helper nodes in order to

repair the erased node i.
For a code C, the automorphism group of C, Aut(C), is the

set of all permutations τ of {1, . . . , n}, such that τ · C = C,

where for c = (c1, . . . , cn) ∈ C, τ · c
def
=(cτ(1), . . . , cτ(n)).

2

The group Aut(C) is called transitive if for all 1 ≤ i, j ≤ n,

there exists τ ∈ Aut(C) with τ(i) = j. If C has a transitive

automorphism group, then a linear repair scheme of C for

some node can be “permuted” in order to become a linear

repair scheme for any node.

In this paper we are interested in linear repair schemes for

RS codes evaluated on Fq-subspaces. Henceforth, U ⊆ Fqm

is an Fq-subspace of dimension d ≤ m. For a positive integer

s < d, we denote by C(U, s) the RS code evaluated on U
with codimension qs, i.e.,

C(U, s)
def
=RS(U, qd − qs)qm .

Clearly, C(U, s) is invariant under any permutation that is

a translation by an element of U , and hence we have the

following well-known lemma.

Lemma 3. The code C(U, s) has a transitive automorphism

group.

From Lemma 3 it follows that if C(U, s) has a linear repair

scheme for some node i, then it has a linear repair scheme for

all nodes.

The following theorem by Guruswami–Wootters [5] plays

an important role in the proof of the Dau–Milenkovich scheme

and is also useful for the proof of the main result of this paper.

Theorem 4. A linear code C ⊆ F
n
qm has an Fq-linear

repair scheme for the ith node in which every surviving node

transmits at most r Fq-symbols, if and only if there exist m
dual codewords uℓ = (uℓ,1, . . . , uℓ,n) ∈ C∗, 1 ≤ ℓ ≤ m, with

the following properties.

1) rankq(u1,j , . . . , um,j) ≤ r, for all j 6= i.
2) rankq(u1,i, . . . , um,i) = m.

Remark 5. As observed in [5], a repair scheme for one

GRS scaling vector is automatically also a repair scheme

for all GRS scaling vectors. In detail, a repair scheme

for GRS(A, k,v), can be converted to a repair scheme for

GRS(A, k,v′) in the following obvious way. When working

2The automorphism group is indeed a group with composition as its group
operation.
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with the latter code, each surviving node j multiplies its

content by vj/v
′
j , before using the existing repair scheme,

and then the repaired value of the ith node is multiplied by

v′i/vi. In particular, when repairing RS codes, we may assume

without loss of generality that the dual code in the criterion

of Theorem 4 is also an RS code. When this sort of argument

will be used ahead, we will say that some relevant vectors are

in the dual code up to GRS scaling.

As mentioned in the introduction, the main result of this pa-

per can be viewed as a generalization of the Dau–Milenkovich

(DM) [2] scheme. The DM scheme is given in the following

theorem.

Theorem 6. For a set A ⊆ Fqm of size n, where qs < n ≤ qm

the code RS(A, n−qs)qm has a linear repair scheme in which

each surviving node has to transmit m− s Fq-symbols for the

repair of the erased node.

For an Fq-linear subspace U of dimension d and for 1 ≤ s <
d, the result of Dau and Milenkovich given in Theorem 6 states

that the code C(U, s) has a linear repair scheme in which each

helper node transmits at most r = m− s Fq-symbols for the

repair of the erased node. The main contribution of this paper

is to show that a lower value of r can be used for the same s;

in fact, r can be as low as m(d−s)/d) (with some restrictions

on the choice of U for the case q = 2 and ms = d(m− r)).

III. LINEAR REPAIR SCHEMES FOR RS CODES

EVALUATED ON Fq-LINEAR SUBSPACES

In this section we introduce some results that will be useful

in Section IV, where we present and prove the main result of

this paper.

The result of Guruswami–Wooters, presented in Theorem 4,

provides a criterion to determine if a linear code has a linear

repair scheme. For the code C(U, s), the following proposition

provides an equivalent criterion for the existence of a linear

repair scheme that will be useful for the proof of our main

theorem.

Proposition 7. Let V ⊂ Fqm be an Fq-linear subspace of

dimension r, let B1 be a basis of V , and let B2 be a set of

m− r vectors, such that S = B1 ∪B2 is a basis of Fqm over

Fq. For a basis {u1, u2, . . . , ud} of U , consider the matrix

M ∈ F
d(m−r)×m(s+1)
q defined by

M
def
=









[u1]B2,S [uq
1]B2,S · · · [uqs

1 ]B2,S

[u2]B2,S [uq
2]B2,S · · · [uqs

2 ]B2,S

...
...

. . .
...

︸ ︷︷ ︸

m

[ud]B2,S
︸ ︷︷ ︸

ms

[uq
d]B2,S · · · [uqs

d ]B2,S









. (3)

Write M = (M1|M2), where M1 consists of the first m
columns of M , and M2 consists of the remaining ms columns.

If the column space of M1 is contained in the column space

of M2, then C(U, s) has an Fq-linear repair scheme in which

each surviving node has to transmit at most r Fq-symbols.

Proof. Assume that the column space of M1 is contained in

the column space of M2. We will prove the existence of a

linear repair scheme for the node corresponding to evaluation

on 0 ∈ U and by Lemma 3, conclude the existence of a linear

repair scheme for all nodes.

Let W = Spanq(B2). Any linear combination of the

columns of M1 over Fq can be interpreted as a vector of the

form

((a0u1)W , (a0u2)W , . . . , (a0ud)W )T ,

for some a0 ∈ Fqm (recall that xW is the projection of x to

W ). Similarly, any linear combination of the columns of M2

over Fq can be interpreted as a vector of the form

((
s∑

ℓ=1

aℓu
qℓ

1

)

W

,

(
s∑

ℓ=1

aℓu
qℓ

2

)

W

, . . . ,

(
s∑

ℓ=1

aℓu
qℓ

d

)

W

)T

,

for some a1, a2, . . . , as ∈ Fqm .

Since the column space of M1 is contained in the column

space of M2, it follows that for every a0 ∈ Fqm , there exist

a1, . . . , as ∈ Fqm such that (a0u)W = −(a1u
q + · · · +

asu
qs)W , for all u ∈ U . Equivalently, the polynomial

f(X) = a0X + a1X
q + · · ·+ asX

qs

satisfies that f(u)W = 0, for all u ∈ U , and hence f(U) ⊆ V .

In particular, if we write S = {b1, . . . , bm}, then for every

1 ≤ j ≤ m, there exist aj,1, aj,2, . . . , aj,s, such that

fj(X)
def
= bjX + aj,1X

q + · · ·+ aj,sX
qs

maps U to V .

For 1 ≤ j ≤ m, set

gj(X)
def
= fj(X)/X.

Then for all 1 ≤ j ≤ m, deg(gj) ≤ qs−1 and hence, the eval-

uation of gj on U is a codeword of C(U, s)∗, xj = (xj,u)u∈U .

Now, for all u ∈ U r {0}, we have

{xj,u}
m
j=1 = {fj(u)/u}

m
j=1 ⊆

1

u
· V,

so that rankq

(

{xj,u}
m
j=1

)

≤ dim(V ) = r. Moreover, since

xj,0 = bj , for all 1 ≤ j ≤ m, we have that

rankq({xj,0}
m
j=1) = rankq(S) = m.

The proof follows From Theorem 4.

For M1,M2 defined in Proposition 7, a sufficient condition

that the column space of M1 is contained in the column space

of M2 is that the column space of M2 is equal to F
d(m−r)
q ,

or equivalently, M2 is of full rank and ms ≥ d(m− r).

Definition 8. A pair (U, V ) of Fq-linear subspaces of di-

mensions d and r, respectively, is called a good pair, if the

corresponding matrix M2 is of full rank and ms ≥ d(m− r).

Notice that, although the matrix M is defined through a

basis B1 for V and some completion of B1 to a basis S for

Fqm over Fq , the goodness of the pair (U, V ) does not depend

on the choice of these bases.

Lemma 9. The goodness of the pair (U, V ) does not depend

on the choice of the basis {u1, u2, . . . , ud} for U .
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Proof. Let {w1, w2, . . . , wd} be another basis for U and let

A = (ai,j) ∈ F
d×d
q be the non-singular matrix such that

wi =

d∑

j=1

ai,juj ,

for all 1 ≤ i ≤ d. Consider the matrix Ã = A ⊗ Im−r,

where Im−r is the (m − r) × (m − r) identity matrix and

the operation ⊗ is the tensor product of matrices. Then Ã is a

d(m−r)×d(m−r) non-singular matrix and hence the matrix

Ã · M2 has the same rank as M2. The proof of the Lemma

follows from the fact that

Ã ·M2 =









[wq
1 ]B2,S · · · [wqs

1 ]B2,S

[wq
2 ]B2,S · · · [wqs

2 ]B2,S

...
. . .

...

[wq
d]B2,S · · · [wqs

d ]B2,S









For x1, x2, . . . , xℓ ∈ Fqm , define

T (x1, . . . , xℓ; s)
def
=








xq
1 xq

2 · · · xq
ℓ

xq2

1 xq2

2 · · · xq2

ℓ
...

...
. . .

...

xqs

1 xqs

2 · · · xqs

ℓ








∈ F
s×ℓ
qm .

Proposition 10. For every two positive integers ℓ, s and for

x1, . . . , xℓ ∈ Fqm , if ρ = rankq(x1, . . . , xℓ) then the rank of

T (x1, . . . , xℓ; s) (over Fqm) is min{s, ρ}.

Proof. Let {y1, . . . , yρ} ⊆ {x1, . . . , xℓ} be a basis for

Spanq(x1, . . . , xℓ). Since the Frobenius map, σq(x) ≡ xq ,

is an Fq-linear map, it follows that all columns of T =
T (x1, . . . , xℓ; s) are linear combinations of those of T1 =
T (y1, . . . , yρ; s). Hence rank(T ) = rank(T1) and it is suf-

ficient to prove that rank(T1) = min{s, ρ}. For this, it is

sufficient to consider the case where s ≤ ρ, because for

s ≥ ρ + 1, T (y1, . . . , yρ; ρ) appears in the first rows of T1

and if T (y1, . . . , yρ; ρ) is of full rank than rank(T1) = ρ.

For a vector a = (a1, . . . , as) ∈ F
s
qm such that aT1 = 0,

consider the polynomial

g(X) = a1X
q + a2X

q2 + · · ·+ asX
qs .

Then y1, y2, . . . , yρ are all roots of g(X) and since g(X)
is an Fq-linear map, it follows that all elements of

Spanq(y1, . . . , yρ) are roots of g(X). Let f(X) ∈ Fqm [X ]
be the polynomial

f(X) = aq
m−1

1 X + aq
m−1

2 Xq + · · ·+ aq
m−1

s Xqs−1

.

Since the Frobenius map is an Fq-linear map, and since aq
m

=
a, for all a ∈ Fqm , it follows that f(X)q = g(X). Hence, all

the roots of g(X) are roots of f(X) as well and f(X) has at

least qρ roots. However, the degree of f(X) is qs−1 < qρ. It

follows that f(X) must be the zero polynomial and aq
m−1

ℓ =
aℓ = 0, for all 1 ≤ ℓ ≤ s.

We showed that if s ≤ ρ then the rows of T1 are linearly

independent over Fqm , which concludes the proof.

The following two propositions provide useful characteri-

zations of a good pair of subspaces (U, V ).

Proposition 11. The following conditions are equivalent.

1) The pair (U, V ) is good.

2) For every basis {u1, . . . , ud} of U and for all

v′1, . . . , v
′
d ∈ V ⊥ for which

T (u1, u2, . . . , ud; s) · (v
′
1, v

′
2, . . . , v

′
d)

T = 0 (4)

we have that v′1 = v′2 = · · · = v′d = 0.

3) For every basis B′
2 = {b′1, . . . , b

′
m−r} of V ⊥ and for all

w1, . . . , wm−r ∈ U for which

T (w1, w2, . . . , wm−r; s) · (b1, b
′
2, . . . , b

′
m−r)

T = 0 (5)

we have that w1 = w2 = · · · = wm−r = 0.

Proof. Let {u1, u2, . . . , ud} be any basis for U . We first prove

that conditions (1) and (2) are equivalent. By definition, the

pair (U, V ) is good if and only if M2 is of full rank and

ms ≥ d(m− r). The latter holds if and only if x = 0 is the

only vector in F
d(m−r)
q for which xM2 = 0.

A vector x ∈ F
d(m−r)
q can be represented by d chunks

of length m − r, such that the ith chunk is the vector

representation of some element v′i ∈ V ⊥, 1 ≤ i ≤ d, according

to the basis B′
2. By Lemma 1 we have that xM2 = 0 is

equivalent to
d∑

i=1

v′iu
qℓ

i = 0,

for all 1 ≤ ℓ ≤ s, which is equivalent to equation (4).

Hence, (U, V ) is good if and only if for every basis

{u1, u2, . . . , ud} of U and for all v′1, v
′
2, . . . , v

′
d ∈ V ⊥,

equation (4) implies

v′1 = v′2 = · · · = v′d = 0.

Next, we show that conditions (2) and (3) are equivalent.

Let w1, w2, . . . , wm−r ∈ U and let A = (ai,j) ∈ F
d×(m−r)
q be

the matrix for which wj =
∑d

i=1 uiai,j , for all 1 ≤ j ≤ m−r.

Then, for every basis {b′1, b
′
2, . . . , b

′
m−r} of V ⊥,

T (w1, w2, . . . , wm−r; s) · (b
′
1, b

′
2, . . . , b

′
m−r)

T =

T (u1, u2, . . . , ud; s) ·A · (b′1, b
′
2, . . . , b

′
m−r)

T =

T (u1, u2, . . . , ud; s) · (v
′
1, v

′
2, . . . , v

′
d)

T ,

for v′1, v
′
2, . . . , v

′
d ∈ V , such that v′i =

∑m−r
j=1 ai,jb

′
j , 1 ≤ i ≤

d.

Hence,

T (w1, w2, . . . , wm−r; s) · (b
′
1, b

′
2, . . . , b

′
m−r)

T = 0,

if and only if

T (u1, u2, . . . , ud; s) · (v
′
1, v

′
2, . . . , v

′
d)

T = 0.

Therefore, if condition (2) holds and w1, w2, . . . , wm−r

satisfy equation (5), then v′1 = v′2 = · · · = v′d = 0 and hence

A is the zero matrix. Thus, w1 = w2 = · · · = wm−r = 0 and

condition (3) holds as well. Similarly, condition (3) implies

condition (2).
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For a positive integer i, define U∧qidef=
{

uqi : u ∈ U
}

.

Note that, since the Frobenius map is Fq-linear, it follows that

U∧qi is an Fq-linear subspace as well. The next proposition,

that is useful for deriving explicit code constructions, suggests

a duality between a linear repair scheme of C(U, s), in which

each surviving node as to transmits r Fq-symbols, and a linear

repair scheme of C(V ⊥, s), in which each surviving node as

to transmits m− d Fq-symbols.

Proposition 12. The pair (U, V ) is good if and only if(

V ⊥,
(

U∧qs+1
)⊥
)

is good.

Proof. We will show that if (U, V ) is good then(

V ⊥,
(

U∧qs+1
)⊥
)

is also good. Similar arguments

can be used to prove the other direction.

Let {b′1, . . . , b
′
m−r} be a basis for V ⊥. Assume that (U, V )

is good and that (wqs+1

1 , wqs+1

2 , . . . , wqs+1

m−r) ∈ U∧qs+1

satisfies

T (b′1, b
′
2, . . . , b

′
m−r; s) · (w

qs+1

1 , wqs+1

2 , . . . , wqs+1

m−r)
T = 0.

Then, for all 1 ≤ ℓ ≤ s, we have

m−r∑

j=1

wqs+1

j b′j
qℓ

= 0.

Since t = s + 1 − ℓ satisfies that 1 ≤ t ≤ s, we can rewrite

the equations as

m−r∑

j=1

wqs+1

j b′j
qt

= 0.

Rasing the tth equation to the power of qm+ℓ−(s+1) and using

the fact that xqm = x, for all x ∈ Fqm , we get that for all

1 ≤ ℓ ≤ s,
m−r∑

j=1

wqℓ

j b′j = 0,

or equivalently

T (w1, w2, . . . , wm−r; s) · (b
′
1, b

′
2, . . . , b

′
m−r)

T = 0.

Since (U, V ) is good, it follows from condition (3) of Propo-

sition 11 that w1 = w2 = . . . = wm−r = 0, and hence

wqs+1

j = 0, for all 1 ≤ j ≤ m− r. Thus, by condition (2) of

Proposition 11 we have that

(

V ⊥,
(

U∧qs+1
)⊥
)

is good.

Let Ω be the set of all vectors in F
m−r
qm whose entries are

Fq-linearly independent, i.e., for x ∈ F
m−r
qm , x ∈ Ω if and

only if rankq(x) = m− r.

Lemma 13.

|Ω| >
qm(m−r)(q − 1− q−r)

q − 1
.

Proof. The size of Ω is given by

|Ω| =
m−r−1∏

j=0

(qm − qj)

= qm(m−r)
m−r−1∏

j=0

(1− q−m+j).

A straightforward induction on n shows that for all n
positive real numbers x1, . . . , xn, we have that

∏n
j=1(1 −

xj) ≥ 1−
∑n

j=1 xj . Hence,

|Ω|

qm(m−r)
=

m−r−1∏

j=0

(1 − q−(m−j))

≥ 1−
m−r−1∑

j=0

q−(m−j)

= 1−
m∑

j=r+1

q−j

> 1−
∞∑

j=r+1

q−j

= 1−
q−(r+1)

1− q−1
= 1−

q−r

q − 1
,

as required.

Let

Bad(U)
def
=

{

x ∈ Ω :
∃(u1, . . . , um−r) ∈ Um−r

r {0},
s.t. T (u1, . . . , um−r; s) · xT = 0T

}

.

For a pair (U, V ) of Fq-linear subspaces of dimensions d and

r, respectively, let v′ ∈ Ω be such that V ⊥ = Spanq(v
′).

It follows from Proposition 11 that (U, V ) is good if and

only if v′ ∈ Ω \ Bad(U). In the next section, we will show

the existence of a good pair (U, V ) under certain conditions.

For this purpose, it will be useful to upper bound the size of

Bad(U).

Lemma 14. For u = (u1, . . . , um−r) ∈ Um−r
r {0}, let

ρ = rankq(u) and define the set

Bad(u)
def
=
{
x ∈ Ω : T (u1, . . . , um−r; s) · x

T = 0T
}
.

Then the following holds.

1) If ρ ≤ s then Bad(u) = ∅.

2) If ρ ≥ s+ 1 then

|Bad(u)| < qm(m−r−s). (6)

Proof. Let {w1, . . . , wρ} be a basis for Spanq(u). Since the

Frobenius map is Fq-linear, it follows that there exists a

(unique) matrix N ∈ F
ρ×(m−r)
q such that

T (u1, . . . , um−r; s) = T (w1, . . . , wρ; s) ·N.

To prove (1), assume that ρ ≤ s. It follows from Propo-

sition 10 that the rank of T = T (u1, . . . , uρ; s) is ρ, and

therefore the columns of T are Fqm-linearly independent.

Hence, T · N · xT = 0T if and only if N · xT = 0T .

However, for all x ∈ Ω, we have that N · xT 6= 0. This

is true since all entries of N belong to Fq, N is not the

zero matrix, and the entries of x are Fq-linearly independent.

Hence, T (u1, . . . , um−r; s) · xT 6= 0T , for all x ∈ Ω, which

implies that Bad(u) = ∅.

For the proof of (2), assume that ρ ≥ s + 1 (note

that since ρ ≤ m − r, this implies in particular that

s ≤ m − r − 1). It follows from Proposition 10, that
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rankqm(T (u1, . . . , um−r; s)) = s. Hence, the Fqm -dimension

of the right-kernel of T (u1, . . . , um−r; s) is m− r− s. Thus,

|Bad(u)| < qm(m−r−s). (7)

Lemma 15. Let a be a common factor of m and d and assume

that U ⊆ Fqm is an Fqa -linear subspace of dimension d/a.

Then,

|Bad(U)| <
qd(m−r)−ms

qa − 1
qm(m−r) (8)

Proof. Define an equivalence relation ∼ on F
m−r
qm r {0} by

setting x ∼ y if and only if there exists β ∈ Fqa r {0} such

that x = β · y. Note that, since U is a vector space over Fqa ,

the equivalence class of any u ∈ Um−r
r {0} is contained in

Um−r
r {0}.

Let Reps ⊂ Um−r
r{0} be a set consisting of a single rep-

resentative from each equivalence class of ∼ in Um−r
r {0},

and note that |Reps| = (qd(m−r)−1)/(qa−1). Note also that,

as T (β · u; s) = diag
(
{βqi}si=1

)
· T (u; s) (diag(β1, . . . , βn)

is the diagonal n×n matrix D with Di,i = βi, 1 ≤ i ≤ n), for

all β ∈ Fqm , u ∼ u′ implies Bad(u) = Bad(u′). It follows

from the above comments and from Lemma 14 that

|Bad(U)| =
∣
∣
∣

⋃

u∈Reps

Bad(u)
∣
∣
∣ ≤

∑

u∈Reps

|Bad(u)|

<
qd(m−r) − 1

qa − 1
qm(m−r−s) <

qd(m−r)−ms

qa − 1
qm(m−r)

An intriguing question is wether or not, for all U , all pairs

(U, V ) are good, or equivalently, does |Bad(U)| = 0. The

answer to this question is given in the next proposition. The

proof can be found in the appendix.

Proposition 16. Assume that 1 ≤ s < d < m and ms ≥
d(m − r). Then for every Fq-linear subspace U ⊆ Fqm of

dimension d, the following holds.

1) If r ≥ m− s then |Bad(U)| = 0.

2) If r < m− s then |Bad(U)| > 0.

IV. EXISTENCE OF LINEAR REPAIR SCHEMES

In this section we present and prove the main result of

the paper, namely, the existence of a linear repair scheme for

C(U, s), in which surviving nodes transmit at most r symbols

from Fq .

Theorem 17. The code C(U, s) has an Fq-linear repair

scheme in which each surviving node transmits r Fq-symbols,

provided that one of the following conditions holds.

1) q ≥ 3 and ms ≥ d(m− r).
2) q = 2, r ≥ 2, and ms ≥ d(m− r) + 1.

3) q = 2, ms = d(m − r) and U is a Fqa-linear subspace

of Fqm of dimension d/a, for a = gcd(m, d).

Notice that, the third condition of Theorem 17 includes a

more strict restriction on U , i.e, U is required to be an Fqa -

subspace of Fqm of dimension d/a. This requirement on U

is stronger, since any such subspace of Fqm is also an Fq-

subspace of dimension d. In addition, if d and m are co-prime,

i.e., a = 1, the equality s = d(m − r)/m implies that r =
m and s = 0, and hence C(U, s) is an RS code of length

n = qd and dimensions k = n− 1. This special case trivially

holds, since such a code can correct any node failure when all

surviving nodes transmit their entire content.

The proof of Theorem 17 involves a probabilistic argument

in which an Fq-subspace V ⊂ Fqm of dimension r is chosen

uniformly at random. If the pair (U, V ) is good then by

Proposition 7 a linear repair scheme for the code C(U, s) is

guaranteed. Moreover, the goodness of the pair (U, V ) can be

verified, using Gaussian elimination, in polynomial time. We

will show that the probability that (U, V ) is good is fairly

large (at least 1/3) and thus obtain a practical probabilistic

algorithm to construct the promised repair scheme for each

subspace U guaranteed by Theorem 17.

In what follows, we assume that v′ = (v′1, . . . , v
′
m−r) is a

vector drawn uniformly at random from the set Ω, i.e., v′ ∈
F
m−r
qm and rankq(v

′) = m− r. The proof of Theorem 17 will

follow immediately from the next theorem and corollary.

Theorem 18. Let v′ ∈ Ω and let V ⊂ Fqm be the Fq-linear

subspace of dimension r such that V ⊥ = Spanq(v
′). For a

positive integer a, if a is a common factor of m and d, and

U ⊆ Fqm is an Fqa -subspace of dimension d/a, the probability

that (U, V ) is good is at least

1−
qd(m−r)−ms

qa − 1
·

q − 1

q − 1− q−r
. (9)

Proof. We will use a counting argument based on Proposi-

tion 11. By Proposition 11, (U, V ) is good if and only if

v′ ∈ Ω \ Bad(U). Hence,

Prob
(
(U, V ) is good;U

)
= 1−

|Bad(U)|

|Ω|
. (10)

Combining (10) with Lemmas 13 and 15 we have that

Prob
(
(U, V ) is good

)
> 1−

qd(m−r)−ms

qa − 1
·

q − 1

q − 1− q−r
.

Corollary 19. If U ⊆ Fqm is an Fq-subspace of dimension d
and p is the probability that (U, V ) is good, then the following

statements hold.

1) If q ≥ 3 and ms ≥ d(m− r) then p ≥ 2/5.

2) If q = 2, r ≥ 2, and ms ≥ d(m− r) + 1 then p ≥ 1/3.

3) Let a = gcd(m, d). If q = 2, a ≥ 2, ms = d(m − r),
and U is also an Fqa -subspace of Fqm of dimension d/a,

then p ≥ 1/3.

Proof. Let h be the right hand side of (9). Then h is minimized

when ms − d(m − r), r, q, and a are minimized. If the

conditions of (1) hold, then the minimum of h is obtained

for q = 3, r = 1, ms = d(m − r), and a = 1 and is equal

to 2/5. If the conditions of (2) hold, then the minimum of h
is obtained for r = 2, ms = d(m− r) + 1, and a = 1 and is

equal to 1/3. Lastly, for the conditions of (3), the minimum

of 1/3 is obtained for a = 2 and r = 1.
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V. EXPLICIT CONSTRUCTIONS

In this section we present explicit constructions of linear

repair schemes for C(U, s), for a specific choice of the Fq-

linear subspace U , where (m− r) divides m or d divides m.

First, we present a construction for the code C(U, s), for

some Fq-linear subspace U ⊆ Fqm , where m − r divides m.

Recall that by Proposition 7, it is suffices to show an explicit

choice of an Fq-linear subspace V of Fqm of dimension r such

that the pair (U, V ) is good.

Proposition 20. Assume that (m− r) divides m, d < m, and

ms ≥ d(m− r). Let α ∈ Fqm be a primitive element and let

U
def
= Spanq(1, α, . . . , α

d−1). Then the pair (U, V = F
⊥
qm−r )

is good.

Proof. First, notice that since m− r divides m, it follows that

Fqm−r is a subfield of Fqm and therefore, V is a well defined

Fq-subspace of Fqm of dimension r. It suffices to prove the

case where s takes its minimum possible value ⌈d(m−r)/m⌉,

since if we show that M2 from Proposition 7 is of full rank

for the minimal s then it also holds for larger values of s. In

particular, we may assume that s ≤ m− r.

By condition (2) of Proposition 11 it is sufficient to prove

that for all f ∈ Fqm−r [X ] with deg(f) < d, if f(αq) =

f(αq2) = · · · = f(αqs) = 0 then f must be the zero

polynomial.

If x ∈ Fqm is a root of f(X), then so are the conjugates

xqj(m−r)

, for all 1 ≤ j < m/(m − r). Hence, it is sufficient

to prove that if all elements of

R
def
=
{

αqj(m−r)+i

: 1 ≤ i ≤ s, 0 ≤ j < m/(m− r)
}

(11)

are roots of f , then f is the zero polynomial.

Since s ≤ m− r, all exponents j(m− r)+ i of q appearing

in (11) are positive, distinct, and smaller than m+1. It follows

that |R| = sm/(m − r) ≥ d > deg(f), and thus f must be

the zero polynomial, as required.

By Proposition 20 and by the duality of the goodness

property given in Proposition 12, we conclude that if d divides

m − r then the pair (Fqd , Ũ) is good, for some Fq-linear

subspace Ũ ⊆ qm of dimension m − r that can be derived

from Spanq(1, α, . . . , α
m−r−1). Thus, we have an explicit

construction of a linear repair scheme for C(Fqd , s), in which

each surviving node has to transmit at most r Fq-symbols

for the rapier of the erased node. This construction is also

a straightforward generalization of the DM scheme and is

similar to the “scheme in one coset” proposed by Li et al. [8].

The result is summarized in the next proposition, to which

we present an alternative proof that is based on a simple but

useful argument.

Proposition 21. Assume that d divides m, d < m, and that

ms = d(m− r). Then the code C(Fqd , s) has a linear repair

scheme in which each surviving node has to transmit at most

r Fq-symbols for the repair of the erased node.

Proof. Let {b1, . . . , bm/d} be any basis for Fqm over Fqd , and

let {b′1, . . . , b
′
m/d} be its dual basis. For a polynomial f(X) ∈

Fqm [X ] of degree at most k − 1, where k = qd − qs, there

Repair Scheme q m n k r b

Prop. 21 2 8 14 10 4 52

Naive 2 8 14 10 8 80

DM 2 8 14 10 - 54

Thm. 17 2 15 64 48 5 315

Naive 2 15 64 48 15 720

DM 2 15 64 48 11 693

TABLE I

exist polynomials fj(X) ∈ Fqd [X ] of degree at most k − 1
such that

f(X) = b1f1(X) + · · ·+ bm/dfm/d(X).

Hence, the codeword c = (f(α))α∈Fd
q

can be represented by

the m/d codewords of RS(Fqd , q
d−qs)F

qd
, cj = (fj(α))α∈Fd

q
.

In addition, for β ∈ Fqd and for all 1 ≤ j ≤ m/d,

fj(β) = Trqd,m/d(f(β) · b
′
j). (12)

This implies that a linear repair scheme of RS(Fqd , q
d−qs)F

qd
,

in which each surviving node transmits at most r′ Fq-symbols,

results in a linear repair scheme for C(Fqd , s) in which each

surviving node transmits at most r = r′m/d Fq-symbols.

By the DM scheme, for every 1 ≤ s < d, RS(Fqd , q
d −

qs)F
qd

has a linear repair scheme in which each surviving

node has to transmits at most r′ = d − s symbols, which

concludes the proof.

VI. EXAMPLES

In Table I we consider two specific examples of linear

codes with linear repair schemes that are obtained from our

constructions and compare their bandwidth to known linear

repair schemes of these codes.

We first consider the well known [14, 10]F28
GRS code

deployed at the Facebook Hadoop Analytic cluster (see, e.g.,

[5, Sec. V.C] and references therein). Using Proposition 21,

we construct C(U, s) code over F28 with U = F24 , s = 2
and r = 4. The code C(U, s) is a [16, 12]28 code. We then

shorten this code to obtain a [14, 10]F28
code with a linear

repair scheme in which r = 4 and the bandwidth is b = 52.

This construction was also given in [8]. A naive decoding of an

RS code over with F28 with dimension 10 has bandwidth 80,

while the linear repair scheme from [2] achieves a bandwidth

of 54, where not all surviving node transmitting the same

number of bits.

The second code we consider is C(U, s = 4), where U is

an F23-subspace of F215 of dimension two. Hence, U is an

F2-subspace of dimension 6 and from Theorem 17, C(U, s)
has a linear repair scheme in which r = 5. This code is a

[64, 48]215 RS code. The bandwidth of a naive approach and

the main scheme from [2] are presented in Table I.

Lastly, we consider the case q = 2, r ≥ 2, s = 1, and

ms = d(m − r), where gcd(m, d) > 1. A linear repair

scheme for these parameters is guaranteed by Theorem 17.

The constructed RS codes have two parity symbols. Since

m = d(m − r), it follows that r = m(d − 1)/d and the

bandwidth is (n−1)m(d−1)/d, where n = qd. A construction

of linear repair schemes for RS codes of codimension 2 over

F2m is also given in [5, Thm. 10], with repair bandwidth

3(n−1)m/4, where n ≤ 2m/2+1 is the length of the code. This
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shows that in general, the bandwidth of the scheme of Theorem

18 is not minimal. Note that, the scheme of [5, Thm. 10] is

imbalanced, in the sense that about half of the surviving nodes

transmit half of their content, while the remaining surviving

nodes transmit their entire content. Moreover, the evaluation

set in this scheme is not a linear subspace.

VII. CONCLUSION

In this work we studied the repair problem for RS codes,

evaluated on an Fq-linear subspace U ⊆ Fqm of dimension

d. For this class of RS codes, we showed the existence of

linear repair schemes, in which each surviving node transmits

at most r Fq-symbols for the repair of the erased node, for a

wide range of parameters. This result relies on the existence

of an Fq-linear subspace V ⊆ Fqm of dimension r for which

the pair (U, V ) is good. It also yields a practical probabilistic

construction of a linear repair scheme. We also showed that

if r < m − s, where qs is the codimension of the RS code,

and if V is chosen uniformly at random, then the probability

that (U, V ) is good is strictly less than one. Thus, in this case,

the probabilistic construction is not trivial in the sense that

not every pair (U, V ) is good. Our results expand the Dau–

Milenkovich scheme and one of the schemes of Li et al., for

a wide range of parameters, where r < m− s.

Another contribution of this paper is that the presented

scheme as a duality property in the following sense; A good

pair (U, V ) of Fq-linear subspaces of dimensions d and r can

be used to construct a good pair of Fq-linear subspaces of di-

mensions m−r and m−d,
(

V ⊥, Ũ
)

, where Ũ =
(

U∧qs+1
)⊥

.

This duality property is useful for explicit constructions.

For a wide range of parameters, our scheme provides RS

codes of codimension qs, where the minimal value of s is

d(m − r)/m. For future research, it will be interesting to

understand if the this scheme is optimal for RS codes evaluated

on linear subspaces.

APPENDIX

The purpose of this Appendix is to prove Proposition 16.

That is, to show that if 1 ≤ s < d < m and ms ≥ d(m− r),
then for every Fq-linear subspace U ⊆ Fqm of dimension d,

there exists an Fq-linear subspace V ⊆ Fqm of dimension r
for which the pair (U, V ) is not good if and only if r < m−s.

In fact, we prove a somewhat stronger result, namely that for

r < m − s, there exists a pair (U, V ) that is not good even

in the weaker sense, as the corresponding matrices M1,M2

defined in Proposition 7 satisfy that the column space of M1

does not contained in the column space of M2. Similarly, if

r ≥ m− s, every pair (U, V ) is good in the weaker sense.

We first prove the first part of Proposition 16, that is, the

case r ≥ m − s. The proof follows the lines of the proof of

the DM scheme stated in Theorem 6.

Proof of Proposition 16 Part (1). First notice that, it is suffi-

cient to prove the claim for r = m− s, since every Fq-linear

subspace V of dimension r > m − s contains an Fq-linear

subspace, W , of dimension m−s, and if (U,W ) is good then

(U, V ) is good (this holds even in the weaker sense).

As shown in the proof of Proposition 7, if the column space

of M1 is contained in the column space of M2 (over Fq), then

for every a0 ∈ Fqm , there exist a1, a2, . . . , as ∈ Fqm , such

that the Fq-linearized polynomial f(X) = a0X + a1X
q +

· · ·+ asX
qs maps U to V . The other direction also holds.

Let V be an Fq-subspace of dimension r = m − s. The

image polynomial of V , f Im
V (X) = b0X + b1X

q + · · · +
bsX

qs ∈ Fqm [X ] is an Fq-linearized polynomial of degree qs

that maps Fqm onto V . In particular f Im
V (U) ⊆ V . Notice that,

there exists a unique image polynomial of V , for all V (see

[1] and the references therein). The kernel of f Im
V (X) is an

Fq-linear subspace of Fqm of dimension s. This implies that

all the roots of f Im
V (X) are distinct, i.e., f Im

V (X) is separable,

and hence b0 6= 0.

Now, for a0 ∈ Fqm , let fa0(X) = f Im
V (a0 · b−1

0 X). Then

fa0(X) = a0X+a1X
q+ · · ·+asX

qs , for some a1, . . . , as ∈
Fqm , and fa0(X) maps Fqm to V . In particular, fa0(U) ⊆
V .

Next, we prove the second part of Proposition 16, namely,

the case r < m− s. But first, we need the following lemma.

Lemma 22. For a pair (U, V ) of Fq-linear subspaces of Fqm

of dimensions d and r, respectively, and for the corresponding

matrices M1 and M2 as defined in Proposition 7, the following

are equivalent.

1) The column space of M1 is contained in the column space

of M2.

2) For every basis {u1, . . . , ud} of U and for all

v′1, . . . , v
′
d ∈ V ⊥ such that,

T (u1, u2, . . . , ud; s) · (v
′
1, v

′
2, . . . , v

′
d)

T = 0 (13)

we have that
∑d

i=1 uiv
′
i = 0.

3) For every basis B′
2 = {b′1, . . . , b

′
m−r} of V ⊥ and for all

w1, . . . , wm−r ∈ U , such that

T (w1, w2, . . . , wm−r; s) · (b1, b
′
2, . . . , b

′
m−r)

T = 0 (14)

we have that
∑m−r

j=1 wjb
′
j = 0.

Proof. We first prove that conditions (1) and (2) are equiva-

lent. Let u1, u2, . . . , ud be a basis for U . Note that, the column

space of M1 in contained in the column space of M2 if and

only if the left kernel of M2 is contained in the left kernel of

M1. Equivalently, for all x ∈ F
d(m−r)
q for which xM2 = 0,

we have that xM1 = 0.

The proof proceeds along the lines of the proof of Proposi-

tion 11, by representing the equations xM2 = 0 and xM1 = 0

as equation (13) and
∑d

i=1 v
′
iui = 0, respectively.

To prove that conditions (2) and (3) are equivalent, we

follow the lines of the corresponding part of the proof of

Proposition 11.

Proof of Proposition 16 Part (2). By Lemma 22, given an Fq-

linear subspace U ⊆ Fqm of dimension d, we need to show

the existence of an Fq-subspace V ⊆ Fqm of dimension r,

such that for some w1, w2, . . . , wm−r ∈ U and for some basis

B′
2 = {b′1, b

′
2, . . . , b

′
m−r} of V ⊥ we have that

T (w1, . . . , wm−r; s) · (b
′
1, b

′
2, . . . , b

′
m−r)

T = 0
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and
m−r∑

j=1

wjb
′
j 6= 0.

Let τ = min{d,m − r} and let w1, . . . , wτ ∈ U be any

Fq-linearly independent elements. Consider the matrix T1 =
T (w1, . . . , wτ ; τ − 1). By Proposition 10, we have that the

rank of T1 is τ − 1. Hence there exist b′1, b
′
2, . . . , b

′
τ ∈ Fqm ,

not all zeros, such that T1 · (b′1, b
′
2, . . . , b

′
τ )

T = 0.

Next, we will show that b′1, . . . , b
′
τ are Fq-linearly indepen-

dent. Assume to the contrary that b′τ =
∑τ−1

i=1 aib
′
i, for some

a1, . . . , aτ−1 ∈ Fq . Then,

0 = T1 · (b
′
1, b

′
2, . . . , b

′
τ )

T

= T1 · (b
′
1, b

′
2, . . . , b

′
τ−1,

τ−1∑

i=1

aib
′
i)

T

= T (w1, w2, . . . , wτ−1; τ − 1) · (b′1, . . . , b
′
τ−1)

T

+ T (wτ ; τ − 1)(a1b
′
1, a2b

′
2, . . . , aτ−1b

′
τ−1)

T

= T (w′
1, w

′
2, . . . , w

′
τ−1; τ − 1) · (b′1, . . . , b

′
τ−1)

T ,

where w′
i = wi + aiwτ , 1 ≤ i ≤ τ − 1. Since w1, . . . , wτ

are Fq-linearly independent, it follows that w′
1, . . . , w

′
τ−1 are

also Fq-linearly independent. By Proposition 10 we have that

T (w′
1, w

′
2, . . . , w

′
τ−1; τ − 1) is non-singular, hence b′1, . . . , b

′
τ

must all be zeros and we derived a contradiction.

Define wτ+1 = · · · = wm−r = 0 and choose

b′τ+1, . . . , b
′
m−r such that B′

2 = {b′1, b
′
2, . . . , b

′
m−r} is a basis

for some Fq-linear subspace V ⊥ of dimension m− r.

Then, since r < m − s, it follows that s < m − r, and

hence, recalling that s < d, we have s < τ . Thus,

T (w1, w2, . . . , wm−r; s) · (b
′
1, b

′
2, . . . , b

′
m−r)

T =

T (w1, w2, . . . , wτ ; s) · (b
′
1, b

′
2, . . . , b

′
τ ) = 0.

Finally, we need to show that
∑τ

i=1 wib
′
i 6= 0. Let

σ−1 : Fqm → Fqm be the inverse of the Frobenius map,

σ : Fqm → Fqm (σ(x) = xq , for all x ∈ Fqm ).

Let zi = σ−1(wi), for 1 ≤ i ≤ τ . We have that

z1, z2, . . . , zτ are Fq-linearly independent and hence, by

Proposition 10, T (z1, z2, . . . , zτ ; τ) is non-singular over Fqm .

Thus, T (z1, z2, . . . , zτ ; τ) · (b′1, b
′
2, . . . , b

′
τ )

T 6= 0. Writing the

equations, we have that for some 0 ≤ ℓ ≤ τ − 1,

τ∑

i=1

wi
qℓb′i 6= 0.

However, b′1, . . . , b
′
τ satisfy that for all 1 ≤ ℓ ≤ τ − 1,

τ∑

i=1

wi
qℓb′i = 0,

and thus
∑τ

i=1 wib
′
i 6= 0, which concludes the proof.
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