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Abstract—Braided convolutional codes (BCCs) are a class of
spatially coupled turbo-like codes that can be described by a
(2, 3)-regular compact graph. In this paper, we introduce a family
of (dv, dc)-regular GLDPC codes with convolutional code con-
straints (CC-GLDPC codes), which form an extension of classical
BCCs to arbitrary regular graphs. In order to characterize the
performance in the waterfall and error floor regions, we perform
an analysis of the density evolution thresholds as well as the finite-
length ensemble weight enumerators and minimum distances of
the ensembles. In particular, we consider various ensembles of
overall rate R = 1/3 and R = 1/2 and study the trade-off
between variable node degree and strength of the component
codes. We also compare the results to corresponding classical
LDPC codes with equal degrees and rates. It is observed that for
the considered LDPC codes with variable node degree dv > 2, we
can find a CC-GLDPC code with smaller dv that offers similar
or better performance in terms of BP and MAP thresholds at
the expense of a negligible loss in the minimum distance.

I. INTRODUCTION

Turbo codes and low-density parity-check (LDPC) codes
are widely used forward error correction techniques in many
communication applications. For LDPC convolutional codes
[1], [2], also known as spatially coupled LDPC (SC-LDPC)
codes, it has been proved that the threshold of efficient belief
propagation (BP) decoding saturates to the threshold of an
optimal maximum a-posteriori probability (MAP) decoder [3],
[4]. Spatially coupled turbo-like codes were introduced in [5],
where it was proved that threshold saturation also occurs for
this class of codes. It was observed that turbo-like codes
with good BP thresholds tend to have weaker MAP thresh-
olds and minimum distance [5], [6]. Braided convolutional
codes (BCCs) [7], which are characterized by (2, 3)-regular
graphs, have better MAP thresholds and distances than parallel
concatenated convolutional codes that suffer from degree-
one variable nodes. In combination with spatial coupling,
ensembles with good MAP thresholds and low error floors are
able to simultaneously approach capacity and achieve very low
error floor thanks to the threshold saturation phenomenon [6].

In principle, it is possible to improve the threshold and
minimum distance of an SC-LDPC ensemble by increasing
the variable node degree. For finite block lengths, however, en-
sembles with stronger component codes can have advantages
[8], since larger variable node degrees increase the number of
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Fig. 1. Classical BCCs as (2,3)-regular ensemble: (a) BCC encoder (b)
compact graph.

short cycles in the factor graph, which negatively impacts the
performance of a BP decoder. On the other hand, it has been
observed in [6] that, due to the stronger component codes at
the constraint nodes, spatially coupled turbo-like ensembles
can achieve excellent decoding thresholds and minimum dis-
tances with low variable node degrees.

In this work, our aim is to gain a better understanding of the
general trade-off between increasing the variable node or the
strength of the component codes. For this purpose, we intro-
duce a family of (dv, dc)-regular generalized LDPC codes with
convolutional code constraints (CC-GLDPC codes), which
form an extension of classical BCCs to arbitrary regular graphs
and allow for a one-to-one comparison with the correspond-
ing (dv, dc)-regular LDPC code ensembles. As examples we
consider (2, 3), (4, 6) and (6, 9) graphs of rate R = 1/3 as
well as (2, 4), (3, 6) and (4, 8) graphs of rate R = 1/2, based
on component code trellises with 2, 4 and 8 states. For these
ensembles we determine the BP thresholds (with and without
spatial coupling), MAP thresholds and minimum distances and
compare them with the corresponding LDPC code ensembles.

II. CODE ENSEMBLES

A. An Ensemble of (dv, dc)-regular GLDPC Codes with Con-
volutional Code Constraints

Braided convolutional codes can be viewed as a class of
turbo-like codes with parity-feedback between the component
encoders, as illustrated in Fig. 1(a). Since the parity symbols
enter the other encoder after a delay of one block of N
symbols, BCCs are inherently spatially coupled. An uncoupled
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Fig. 2. Factor graph representation of a constraint node trellis.

version of BCCs can be obtained by removing this delay.
Fig. 1(b) shows a compact graph representation of the uncou-
pled BCCs, in which the variable nodes represent the different
blocks of code symbols and the constraint nodes represent
the length N component encoder trellises of rate 2/3. The
permutations occur along the edges of the compact graph.

Observe that the compact graph of the original BCCs is a
fully connected (2, 3)-regular graph, analogous to the proto-
graph of a (2, 3)-regular LDPC code. In order to generalize
BCCs to larger variable node degrees, we can increase the
number of component encoders as well as their number of
inputs, resulting in (3, 4)-regular graphs with overall rate
R = 1/4, (4, 5)-regular graphs with rate R = 1/5, and so
on. These ensembles, however, are hard to compare due to
their different rates. Alternatively, we can add edges to the
(2, 3)-regular graph, obtaining (4, 6) or (6, 9)-regular graphs
without changing the original rate R = 1/3. In general, using
dv component encoders of rate (dc − 1)/dc we can construct
arbitrary (dv, dc)-regular CC-GLDPC codes. Moreover, these
codes can be directly compared to the corresponding (dv, dc)-
regular LDPC codes, which have the same overall design rate
R = 1 − dv/dc and the same length if their lifting factor is
set equal to the number of sections in the trellises.

B. Punctured Trellises for Degree dc Constraint Nodes

Consider a degree dc constraint node in the compact graph.
Each edge represents a length N sequence of code symbols
that are represented by the connected variable node. One
of these sequences will correspond to the parity sequence
vp = (vp,1, . . . , vp,N ) of the component convolutional code
and the other dc − 1 to the information sequences u(i) =

(u
(i)
1 , . . . , u

(i)
N ), i = 1, . . . , dc − 1.

In order to construct a component code of rate (dc−1)/dc,
for any dc ≥ 2 we can use a rate-1/2 mother code with

a trellis of (dc − 1)N sections. A factor graph of such a
trellis is shown in Fig. 2. The desired code rate is achieved
by puncturing dc − 2 of the parity bits in each segment of
dc − 1 trellis sections, as shown by white circles in the factor
graph. For example, the degree dc = 3 constraint node of
the classical BCC graph in Fig. 1(b) can be implemented
by a trellis of length 2N in which every second parity bit
is punctured to achieve a rate-2/3 component encoder. In
general, the puncturing patterns in different segments of the
trellis can be time-varying, and finding patterns that optimize
the thresholds or the distance spectrum of the resulting codes
is an open problem. In our threshold analysis, we will assume
uniform random puncturing within each segment, such that a
parity bit remains unpunctured with probability 1/(dc − 1).

The strength of the constraint nodes can be flexibly changed
without altering their degree by simply increasing the number
of states in the component code trellis. In this work, we
consider recursive systematic convolutional encoders with gen-
erator polynomials (1, 1/3), (1, 5/7) and (1, 13/15) in octal
notation, with 2, 4 and 8 trellis states, respectively.

C. Single-Edge Type Ensembles

N N N

(a) Structured

6N

N N N

(b) Single-edge type

Fig. 3. Graph represenations of (3,6)-regular ensembles.

The compact graph of a (3, 6)-regular ensemble is shown
in Fig. 3(a). Since the edges define a clear assignment from
outputs of the constraint nodes to the variable nodes, this is an
example of a structured graph. In order to simplify analysis,
when computing ensemble weight enumerators and thresholds,
we will instead consider single-edge type ensembles like
shown in Fig. 3(b).

III. FINITE-LENGTH ENSEMBLE WEIGHT ENUMERATORS

A weight enumerator analysis for different ensembles of
turbo-like codes, including uncoupled BCCs, was carried out
in [6]. Considering the (2, 3)-regular ensemble in Fig. 1(b), let
A

(j)
i1,i1,p

denote the number of code sequences of input weights
i1, i2 and parity weight p for the length N convolutional code
at constraint node j. Assuming uniform random permutations,
it is then possible to compute the average number of code-
words ĀBCCi,p over all codes in the ensemble as follows:

ĀBCCi,p =
∑
p1

A
(1)
i,p1,p−p1 ·A

(2)
i,p−p1,p1(

N
i

)(
N
p1

)(
N

p−p1

) . (1)



In principle, a generalization to general structured (dv, dc)
ensembles, like illustrated in Fig. 3(a), is possible1. Unfor-
tunately, this approach becomes numerically infeasible for a
given N when the variable node degree increases. In this
work, we consider unstructured single-edge type ensembles,
like illustrated in Fig. 3(b), and generalize Gallager’s weight
enumerator analysis for LDPC codes [10], [11] to our ensem-
bles:

Ā(dv,dc)
w =

(
A

(j)
w

)dv
(
dc·N
w

)dv−1 , (2)

where w is the total weight of information and parity bits.
A bound on the minimum distance dmin of codes in an

ensemble can be obtained by computing the largest positive
integer d̂ that satisfies the expression

d̂−1∑
w=1

Ā(dv,dc)
w < 1− α (3)

for a given α < 1. Then a fraction α of all codes in the
ensemble must have a minimum distance dmin ≥ d̂.

IV. CONVERGENCE THRESHOLDS FOR THE BEC

We assume that the BP decoder of a CC-GLDPC code is
based on optimal bitwise a-posteriori probability (APP) decod-
ing at the constraint nodes2. The MAP decoding threshold,
on the other hand, refers to the optimal bitwise decoding
of the overall code, which is computationally infeasible. For
the BEC it is possible to find analytical expressions for the
input/output transfer functions of the component decoders
[13]. By means of these it is possible to derive exact DE
equations for the ensembles introduced in Section II, which
capture the evolution of erasure probabilities of messages
being passed back and forth along the edges in the graph.

A. Density Evolution Equations for Uncoupled Ensembles

Consider a (dv, dc)-regular graph and let ej,k denote the
edge connecting variable node j to constraint node k, where
j ∈ {1, . . . , dv} and k ∈ {1, . . . , dc}. The DE update at a
constraint node in iteration i can be expressed as

p(i)(ej,k) = fk

(
q(i−1)(ej,1), . . . , q(i−1)(ej,dc)

)
, (4)

where q(i)(ej,k) and p(i)(ej,k) denote the probabilities that
messages passed from variable to check nodes and from
check nodes to variable nodes are erased, respectively. fk
denotes the (extrinsic) transfer function of the constraint node,
corresponding to the trellis output message type associated
with edge ej,k. For conventional LDPC codes this transfer

1As pointed out in [6], the weight enumerator expression in (1) is equivalent
to protograph-based GLDPC code ensembles analyzed in [9].

2This is the equivalent to the classical turbo decoder [12].

function is independent of k and reduces to the well-known
expression

p(i)(ej,k) = 1−
∏
k′\k

(
1− q(i−1)(ej,k′)

)
(5)

= 1−
(

1− q(i−1)
)dc−1

. (6)

Before the first iteration i = 1, all input erasure probabilities
are initialized to q(0)(ej,k) = ε, which is the erasure proba-
bility of the BEC. At a variable node, the DE update can be
written as

q(i)(ej,k) = ε ·
∏
j′\j

p(i)(ej′,k) = ε ·
(
p(i)
)dv−1

. (7)

In this work we consider single-edge type regular graphs,
as illustrated in Fig. 3(b), for which the trellis outputs of
the constraint nodes are distributed uniformly over all code
symbols of the variable node. In this case p(i) and q(i−1) are
equal along all edges of the graph.

B. Transfer Functions for Punctured Trellises

In order to compute the transfer functions of the constraint
nodes of the graph, a rate-1/2 trellis is punctured to match
the constraint node degree of the graph. The mother code
transfer functions for the considered generator polynomials
can be derived as shown in [5]. Let fs and fp denote these
transfer functions for systematic and parity bits, respectively.
Then we can write

p(i)s = fs

(
q(i)s , q(i)p

)
, (8)

p(i)p = fp

(
q(i)s , q(i)p

)
, (9)

where p(i)s and p
(i)
p denote the extrinsic output erasure prob-

abilities, and q(i)s and q(i)p the erasure probabilities of incom-
ing messages to the constraint node. Assuming that random
puncturing of parity bits is used for achieving a target rate
(dc − 1)/dc, these input erasure probabilities are given by

q(i)s = q(i−1) , (10)

q(i)p =
dc − 2

dc − 1
· 1 +

1

dc − 1
· q(i−1) =

q(i−1) + dc − 2

dc − 1
.

(11)

The average erasure probability of messages sent from the
constraint nodes to the variable node is equal to

p(i) =
(dc − 1)

dc
· p(i)s +

1

dc
· p(i)p . (12)

DE iteration i is then completed by a variable note update
according to (7), resulting in q(i).

C. Density Evolution Equations for Coupled Ensembles

For spatially coupled ensembles, as illustrated in Fig. 4,
we have a sequence of L graphs whose constraint nodes and
variable nodes are placed at time instants t = 1, . . . , L. We
consider ensembles with uniform coupling, i.e., every edge
from a variable node at time t is connected to a constraint node
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Fig. 4. Spatially coupled (2, 3)-regular ensemble: single-edge type represen-
tation with coupling memory m = 1.

at time t′ ∈ {t, t+ 1, . . . , t+m} with probability 1/(m+ 1),
where m is called the coupling memory.

For conventional SC-LDPC codes a constraint node repre-
sents a rate (dc−1)/dc single parity-check code and the update
equation becomes

p
(i)
t = 1−

(
1− 1

m+ 1

m∑
`=0

q
(i−1)
t−`

)dc−1
. (13)

For CC-GLDPC codes with punctured component code trel-
lises, we update the transfer functions (8)–(9) with the input
erasure probabilities

q
(i)
s,t =

1

m+ 1

m∑
`=0

q
(i−1)
t−` , (14)

q
(i)
p,t =

q
(i)
s,t + dc − 2

dc − 1
(15)

and obtain p(i)t analogously to (12) for each t. Before the first
iteration i = 1, the input erasure probabilities are initialized to
q
(0)
t = ε for t ∈ {1, . . . , L}. For all other t, the code symbols

are known to be zero by definition and q(0)t = 0.
At the variable nodes, the DE update can be written as

q
(i)
t = ε ·

(
1

m+ 1

m∑
`=0

p
(i)
t+`

)dv−1
, t = 1, . . . , L . (16)

D. BP and MAP Thresholds

The BP threshold εBP is defined as the largest channel
erasure probability ε for which the a-posteriori erasure proba-
bilities p(i)a at the output of the BP decoder converge to zero for
all variable nodes as the number of iterations i tends to infinity.
The probabilities p

(i)
a = ε ·

(
p(i)
)dv can be computed by

repeated use of the density evolution equations for different ε.
The (bitwise) MAP threshold εMAP can obtained by applying
the area theorem [13], [14], which makes it possible to connect
the performance under BP decoding to that of MAP decoding.
Let p̄e(ε) = limi→∞ p̄a(ε)(i)/ε denote the average extrinsic
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Fig. 5. Bound on the minimum distance: a fraction α = 1/2 of codes in an
ensemble have dmin ≥ d̂: (a) R = 1/3 (b) R = 1/2.

probability of erasure. An upper bound on the MAP threshold
can be computed by the equation∫ 1

εMAP

p̄e(ε)dε = R , (17)

where R is the rate of the considered code.

V. RESULTS AND DISCUSSION

A. Minimum Distance Bounds

The minimum distance bounds, computed using (3) with
α = 0.5 for the ensembles of rate R = 1/3 and R = 1/2,
are shown in Fig. 5(a) and (b), respectively. It follows from
the bound that half of the codes in an ensemble must have
minimum distance dmin ≥ d̂. From the figure, it is ob-
served that in general the minimum distance improves when
the component code gets stronger. Furthermore, for a given
component code the distance improves if the variable node
is increased. Interestingly, for R = 1/3, the weakest CC-
GLDPC codes with 2-state components appear to have better
minimum distance than classical LDPC codes. The results
show that we indeed can reduce the variable node degree if we
increase the number of states of the component encoder. For
example, codes from the (3, 6) ensemble with 4 states have
better minimum distance than those of the (4, 8) ensemble with
2 states and the (4, 8) LDPC ensemble. As expected [10], the



TABLE I
THRESHOLDS OF UNCOUPLED ENSEMBLES.

Thresholds States Graph rate 1/3
(2, 3) (4, 6) (6, 9)

εBP 2 0.6086 0.5339 0.4698
εMAP 2 0.6213 0.6564 0.6610
εBP 4 0.5618 0.4464 0.3853
εMAP 4 0.6647 0.6662 0.6664
εBP 8 0.5352 0.4041 0.3401
εMAP 8 0.6659 0.6665 0.6666
εBP LDPC 0.2570 0.5061 0.4034
εMAP LDPC 0.5089 0.6658 0.6667

Graph rate 1/2
(2, 4) (3, 6) (4, 8)

εBP 2 0.3234 0.4110 0.3916
εMAP 2 0.3444 0.4557 0.4737
εBP 4 0.4426 0.3929 0.3555
εMAP 4 0.4890 0.4958 0.4976
εBP 8 0.4249 0.3638 0.3225
εMAP 8 0.4955 0.4985 0.4991
εBP LDPC 0.1725 0.4294 0.3834
εMAP LDPC 0.4002 0.4883 0.4978

minimum distances of LDPC ensembles with variable node
degree 2 are very poor, which is also observed for the 2-state
CC-GLDPC ensembles.

B. Thresholds

Table I shows the BP thresholds and MAP thresholds for
the uncoupled ensembles of rate R = 1/3 and R = 1/2. It is
observed that BP thresholds tend to decrease with increasing
variable node degree and increasing number of trellis states.
However, MAP thresholds tend to increase with increasing
variable node degree and increasing number of trellis states.
An exception from this behavior is observed for 2-state en-
sembles and LDPC ensembles with variable node degree 2 at
rate R = 1/2.3

In order to understand the trade-off between variable node
degree and number of trellis states, we compare the minimum
distances, BP thresholds and MAP thresholds of the (2, 3)
ensemble with 4 states and 8 states, the (4, 6) ensemble with
4 states, and the (6, 9) ensemble with 2 states. The (2, 3)
ensemble with 8 states has better BP and MAP thresholds
than the (6, 9) ensemble with 2 states, but the minimum
distance is clearly worse. If a comparable minimum distance is
a requirement, but it is desired to keep the variable node degree
as low as possible, then the (4, 6) ensemble with 4 states can
be used instead. In terms of the BP decoding performance,
this ensemble is not as good as the (2, 3) ensemble with 8
states or the (6, 9) ensemble with 2 states, but it has the
best MAP threshold among these three ensembles. The strong
MAP threshold of the (4, 6) ensemble with 4 states makes it
a compelling candidate for spatial coupling.

The BP thresholds of the spatially coupled ensembles are
shown in Table II for different coupling memories m, until

3These ensembles are poor and not of practical interest. As shown in [15],
regular GLDPC ensembles with dv < 3 require component codes with
minimum distance dmin > 2 in order to guarantee that the block error
probability tends to zero at the BP threshold.

TABLE II
THRESHOLDS OF SC ENSEMBLES.

States/SC Graph
memory (2, 3) (4, 6) (6, 9) (2, 4) (3, 6) (4, 8)
2/1 0.6212 0.6532 0.6294 0.3345 0.4556 0.4715
2/2 - 0.6563 0.6586 - 0.4557 0.4736
2/3 - 0.6563 0.6608 - - -
2/4 - 0.6564 0.6609 - - -
4/1 0.6581 0.6351 0.5822 0.4885 0.4911 0.4829
4/2 0.6645 0.6639 0.6510 0.4890 0.4956 0.4967
4/3 0.6647 0.6661 0.6643 - 0.4957 0.4975
4/4 - 0.6662 0.6662 - - -
4/5 - - 0.6663 - - -
8/1 0.6479 0.6029 0.5364 0.4917 0.4825 0.4644
8/2 0.6643 0.6560 0.6271 0.4953 0.4974 0.4947
8/3 0.6658 0.6651 0.6570 0.4954 0.4983 0.4987
8/4 0.6659 0.6664 0.6645 - 0.4984 0.4991
8/5 - - 0.6662 - - -
8/6 - - 0.6664 - - -
8/7 - - 0.6665 - - -
LDPC/1 0.5014 0.6611 0.6118 0.3348 0.4880 0.4943
LDPC/2 - 0.6655 0.6622 - 0.4881 0.4977
LDPC/3 - 0.6655 0.6664 - - -
LDPC/4 - 0.6655 0.6665 - - -
LDPC/5 - 0.6656 - - - -

saturation to the MAP threshold occurs. Due to the threshold
saturation phenomenon, the BP thresholds approach the MAP
thresholds as m increases and the (4, 6) ensemble with 4 states
from our example above has now a better BP threshold than
the other considered ensembles.

VI. CONCLUSION

We have introduced a family of GLDPC codes with convo-
lutional code constraints, which allows a one-by-one compar-
ison with corresponding LDPC code ensembles of arbitrary
variable node and check node degrees. Although we have
focused in this work on regular graphs only, the ensembles can
easily be extended to irregular codes by removing some edges
in the graphs. Furthermore, it is possible to use component
codes of lower rate at the constraint nodes, but then the rate
of the resulting ensembles will be different from the LDPC
code ensembles defined by the same graphs. An advantage
of using convolutional codes at the constraint nodes is that
the strength of the component codes can be altered without
changing the node degrees in the graph.

The considered ensembles permit us to study the trade-off
between variable node degree and component code strength in
terms of their minimum distance, BP decoding thresholds and
MAP decoding thresholds. A larger number of trellis states is
shown to yield better minimum distances and MAP thresholds
but degraded BP thresholds. This degraded BP performance
is avoided by applying spatial coupling to the underlying
uncoupled ensembles. It can also be seen from the threshold
results that for a regular LDPC ensemble with dv > 2, there is
an alternative CC-GLDPC ensemble, having a lower variable
node degree than the LDPC ensemble, that has a better BP
threshold and almost similar or better MAP threshold than the
LDPC ensemble.
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