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Abstract—Given a large wireless network consisting of ran-
domly deployed nodes, where each of the nodes wants to transmit
to a random destination node within the network at some equal
rate, how fast can the sum rate grow as the number of nodes
scales up at fixed density? This question is important because it
captures the bottleneck of message exchanging among randomly
deployed Internet-of-Things (IoT) devices, and it models nicely
the wireless backhaul communication among access points or
within airborne communication systems. Previous work has
shown that, given an extended network with fixed density, multi-
hop routing based approach provides sum rate that scales at most
as the square root of network size, where as hierarchical cooper-
ation protocols have the potential to support linear scaling. With
limited power, the SNR decreases at least inverse proportional
to the network size, and therefore the benefit of hierarchical
cooperation will be curbed by the combined effects of path loss
and local communication cost. We show in this paper how the
path loss and local cooperation cost reshape the capacity scaling
law results.

Index Terms—Scalability, distributed cooperation, wireless net-
works, virtual MIMO, massive IoT

I. INTRODUCTION

Internet-of-Things (IoT) devices that are capable of trans-

mitting and receiving information through wireless links have

the potential to transform the way we live and work. In the past

few years, the proliferation of IoT devices and applications

in wearable electronics, healthcare, environmental monitoring,

and industrial environments has called the attention to the

underlining communication infrastructure to support the com-

munication demand of the massive IoT devices [1]–[3]. Given

an area with many randomly deployed IoT devices where

information exchange are carried out using device-to-device

communication (i.e., without dedicated communication infras-

tructure), how will the information exchange rate scale as the

number of IoT devices increases? This question is especially

relevant for the design and deployment of wide area sensor

networks for environmental/industrial monitoring, sensing, and

localization services [4], [5]. On the other hand, the wireless

communication infrastructure itself is facing big challenges

to provide high-speed wide-area coverage in a cost effective

manner. Some high potential solutions, such as deploying

wireless access points or airborne communication networks,
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would require massive amount of data/channel/control infor-

mation exchange among the access/anchor points, which itself

is a big challenge [6]–[8]. How does the aggregate throughput

of such network increase as the coverage area increases?

To provide tractable performance analysis and closed-form

scalability evaluation for the aforementioned two problems, we

turn to a powerful model that was established in the last decade

for evaluating wireless Ad-hoc and mesh networks [9]. In this

model a large wireless network contains N randomly deployed

nodes, each of which wants to transmit at some equal rate R to

a random destination node within the network. We revisit this

powerful model because it captures the message exchanging

network of randomly deployed IoT devices, and it models

nicely the wireless backhaul communication among access

points. We are interested in the scalability of the sum rate

as the number of nodes N scales up but the density of nodes

is fixed. i.e., the extended networks. In the last decade the

scalability of the sum rate has been extensively investigated.

Xie and Kumar [10], [11] provided an upper bound on the

capacity scaling and showed that the multiple-hop point-to-

point transmission strategy proposed by Gupta and Kumar [9]

is essentially order-optimal, approaching O(
√
N), when the

path loss attenuation factor is high (path loss attenuation factor

α>4). A hierarchical cooperation scheme proposed by Özgür

et al. [12] employs local communication among neighboring

nodes to create virtual multiple-input multiple-output (MIMO)

connections between source-destination pairs. It was shown in

[12] that, with perfect channel state information at all nodes,

the maximal sum rate can scale as O(N2−α/2) for 2≤α<3.

This hierarchical cooperation scheme was later refined in [13]–

[15] to maximize the achievable rate. The tradeoff between

capacity and delay scaling was investigated [16] and a com-

prehensive survey of research on the capacity and delay issues

can be found in [17] .

The hierarchical cooperation protocol rests on a layered

structure, where the transmission on each layer is divided

into three stages: two local cooperation stages among the

transmit cluster and the receive cluster, respectively, and one

virtual MIMO transmission between the two clusters. The local

cooperation tasks of an upper layer in the hierarchy are treated

as the communication problem to be solved by the lower layer,

which itself also consists of three stages partitioned in the

same fashion. Such recursion is applied repeatedly until the
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communication task for the lower layer becomes trivial or can

be solved by local transmission. The cost of local cooperation,

which is inevitable to establish the virtual MIMO transmission,

is shown in [18] to grow exponentially with the number of

layers in the cooperation hierarchy, and an upper bound for

the sum rate scaling shows that, linear scaling of sum rate

is out of reach even when the number of nodes within the

network is extremely large. For example, scaling of O(N0.7)
requires a network of N=109 nodes and scaling of O(N0.8)
requires N=1024.

In extended networks the distance between source and

destination nodes grows as O(
√
N), the received signal to

noise ratio (SNR) becomes inevitably low and the channel

knowledge can no longer be assumed available for free, which

hinders the feasibility of quantization based joint detection

in the distributed receivers [19]. Therefore the number of

nodes N cannot be too large, and the benefit of hierarchical

cooperation will be curbed by the combined effects of path

loss and local cooperation cost. We show in this paper how

the combined effect of path loss and local cooperation cost

reshapes the capacity scaling law results.

II. SYSTEM MODEL

We inherit the grid topology from [12] such that there

are N nodes evenly distributed in a square1. Every node

wants to transmit the same amount data to a destination node

randomly chosen from the rest of the N−1 nodes, and the

aggregate throughput of all the N source-destination pairs is

referred as the sum rate. As illustrated in Fig. 1, for a virtual

MIMO transmission between two clusters, each of M nodes,

in Stage I the source node si distributes Qs bits to all its

M−1 neighboring nodes via local communication. In Stage

II all the M nodes in the transmit cluster transmit to all the

M nodes in the destination cluster using the same channel

(i.e., in the same time and frequency resource block). In

Stage III all nodes in the destination cluster first independently

quantize their observation into Qd bits and then forward them

to the destination node dj via local communication. The virtual

MIMO transmission is assumed to be capacity achieving in the

sense that we can recover the transmitted message successfully

if decoding is done based on the original observations (without

quantization) of all the receiving nodes in the cluster.

The SNR for the transmission between node i in the transmit

cluster and node j in the receive cluster can be written as

γi,j , Pi(dij)d
−α
ij E[|hi,j |2] ≈ γ(dst), ∀i, j, (1)

where dst is the average distance between the two clusters, dij
is the actual distance between node i and node j, α≥2 is the

path loss attenuation factor, and Pi(dij) accounts for all other

factors such as the transmit power of node i, the noise power

at node j, antenna gains, and other loss. We assume that all

channels hi,j are i.i.d. with E[|hi,j |2]=1. The approximation

in (1) is due to minor variation of SNR, after proper power

1The scaling law gap between random networks and regular-grid networks
is closed by [20] using percolation theory.

si dj

(I)

(II)

(III)

Fig. 1. Illustration of the hierarchical virtual MIMO transmission proposed
by [12] between a source node si and a destination node dj , where in Stage
I the local cooperation among the transmit cluster creates a virtual multiple-
antenna transmitter, Stage II is dedicated for the virtual MIMO transmission
between the transmit cluster and the receive cluster, and in Stage III all the
nodes in the receive cluster conveys their observation to the destination node
for joint processing. Such virtual MIMO technique is then applied recursively
to solve the local communication problems by formulating new virtual MIMO
connections at a smaller scale.

control, across different transmit-receive pairs from the two

clusters that are dst apart, as we are aiming at the capacity

scaling behavior rather than the exact capacity.

For the M×M virtual MIMO transmission with average

SNR γ, its cut-set bound C(M,M, γ), established in [18], is

maximized by choosing

Qs & R∗(Mγ), Qd & R∗(Mγ), (2)

where

R∗(Mγ) ,
1

M
C(M,M, γ)≃ log(1 +Mγ). (3)

Assuming at the initial stage there exists a scheme that can

support N0 source-destination pairs at an aggregate throughput

C0=
1
S0
N b0

0 within a cluster of N0 nodes, where S0>0 and

b0≥0 are two parameters depending on the scheme. The

aggregate throughput (i.e., the sum rate) at layer ℓ (with cluster

size Mℓ and network size Nℓ) can be written as [18]

Cℓ =
MℓR

∗(Mℓγℓ)

1+Sℓ−1(Qs+Qd)
=
Mℓ

Sℓ
, (4)

where γℓ is the inter-cluster SNR at layer ℓ, and

Nℓ = N
(ℓ+1)−ℓb0
0 , Mℓ = Nℓ−1 = N

ℓ−(ℓ−1)b0
0 . (5)

III. CAPACITY SCALING FOR EXTENDED NETWORKS

As network size Nℓ scales up, the inter-cluster SNR γℓ
scales down proportional to N

α/2
ℓ , i.e.,

γℓ = γ0N
−α/2
ℓ , (6)

where α≥2 is the path loss attention factor for most wireless

channels, and γ0 is some constant chosen to meet the power

constraint. From (3) we have

R∗

ℓ , R∗(Mℓγℓ) ≃ log(1 +Mℓγℓ)

(a)
= log(1 +Mℓγ0N

−α/2
ℓ )

(b)
= log(1 + γ0N

b0−α/2
0 N

ℓ(1−b0)(1−α/2)
0 )

(c)
= R∗

AN
ℓ(1−b0)(1−α/2)
0 , (7)
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where equation (a) is obtained from (6), (b) is by substitution

of (5), and (c) by defining

R∗

A =

{

γ0N
b0−α/2
0 log2(e), low SNR;

log(1 + γ0N
b0−α/2
0 ), peaky+duty cycle.

(8)

Now the cut-set upper bound can be written as

C(Mℓ,Mℓ, γℓ) = MℓR
∗

ℓ = R∗

AN
ℓ(1−b0)(1−α/2)
0 N

ℓ−(ℓ−1)b0
0

= R∗

AN
b0
0 N

ℓ(1−b0)(2−α/2)
0 . (9)

Although the capacity upper bound in (9) increases exponen-

tially with the number of hierarchy layers ℓ when the path loss

exponent α<4, the per-node rate R∗

ℓ shown in (7) decreases

exponentially with ℓ for all α>2, which is the case for almost

all the outdoor wireless channels. For high loss channels with

α>4, the upper bound decreases exponentially with ℓ.
Remark 1: For extended networks consisting of many IoT

devices which are power limited, even if we assume perfect

CSI for free, large path loss exponent2 (α>4) will make the

virtual MIMO cooperation counter-productive.

To maximize the capacity upper bounds for each of the

virtual MIMO sessions at all levels, we choose

Qs,ℓ = Qd,ℓ = (1 + η)R∗

ℓ ,

where η > 0 is the overhead as compared the minimum re-

quired rate for local communications. From (4), the aggregate

throughput at layer ℓ can be written as

Cℓ =
MℓR

∗

ℓ

1 + 2(1 + η)R∗

ℓSℓ−1
=

N
ℓ(1−b0)+b0
0

Sℓ
, (10)

where

Sℓ = 2(1 + η)Sℓ−1 +
1

R∗

A

N
ℓ(1−b0)(

α
2 −1)

0 (11)

= S0(2+2η)ℓ +
1

R∗

A

ℓ
∑

k=1

(2+2η)ℓ−kN
k(1−b0)(

α
2 −1)

0 (12)

= (2+2η)ℓS0+
1

R∗

A

N
ℓ(1−b0)(

α
2 −1)

0

ℓ−1
∑

k=0

(2 + 2η)k

N
k(1−b0)(

α
2 −1)

0

.

(13)

Theorem 1: For extended networks with large but finite

network size N , the sum rate scales at most as O(Nβ∗

), with

the optimal scaling factor

β∗=

{

1+ logN (2+2η)
1−b0

−2
√

logN (2+2η), α0<α<α1;

2−α
2−

2−α
2 −b0

(1−b0)(
α
2 −1) logN (2+2η), otherwise;

(14)

where

α0 , 2+2(1−b0) logN (2), α1 , 2 + 2
√

logN (2 + 2η).

Proof: See Appendix A.

Although the first scaling factor in (14) converges to 1 as

the network size N→∞, this is not contradicting with the

2It is very likely to have α>4 in scenarios where neither the transmitter
nor the receiver is elevated above the propagation clutter.
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Fig. 2. The upper and lower bounds of path loss α0<α<α1 as a function
of network size to support the first scaling factor in (14).
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Fig. 3. The optimal scaling factor β∗ as a function of the size of the
extended networks, with path loss exponent α=2.5. The multi-hop scaling
factor β=1/2 and the hierarchical virtual MIMO scaling factor β=2−α are
also plotted as reference. The impact of the initial rate scaling factor b0 and
the local communication overhead η are also shown.

asymptotic scaling results O(N2−α/2) established by [12]

since the condition α0<α<α1 of the first optimal scaling

factor in (14) holds up to network size

N < (2 + 2η)1/(α/2−1)2 , (15)

beyond which the second exponent factor in (14) applies,

and it converges to 2−α
2 as N→∞. Since both α0 and

α1 monotonically decrease to 2 as N increases, as shown

in Fig. 2, for small network size as defined in (15), the

local cooperation cost dominates the scaling factor. For larger

networks, the path loss is dominant.

To provide a quantitative sense of how local communication

cost may degrade the overall performance, in Fig. 3 we plot

optimal capacity scaling exponent β∗ specified in (14) as

a function of the total number of nodes N . For illustra-

tion purpose, we choose path loss exponent α=2.5, and the

multi-hop scaling factor β=1/2 and the hierarchical virtual

MIMO scaling factor β=2−α are also plotted as reference.
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We can see that better message exchanging methods at the

initial stage (i.e., larger b0) helps to improve the scaling

exponent β∗, With local communication overhead η=0.5,

i.e.,
Qs,ℓ+Qd,ℓ

R∗

ℓ
= 2(1+η) = 3, the scaling factor will be

reduced considerably as compared to the “ideal” case with no

overhead (η=0), which is unlikely since channel/controlling

information are essential to ensure the delivery of desired

data. In all three cases, we observe the clear transition of

β∗ from regime α0<α<α1 (in red) to {α≤α0} ∪ {α≥α1}
(in blue). As network size increases, the combined impact of

path loss and local cooperation imposes a smooth transition of

the scaling factor, and their dependence for any finite network

size is characterized in (14). The convergence of β∗ to its

upper bound 2−α/2 is very slow.

IV. CONCLUSION

In this paper we investigate the cost of path loss and local

cooperation in the capacity scaling law of wireless networks

under the extended network model where the density of nodes

is fixed and the number of nodes scales up. For small networks,

the penalty on capacity scaling factor β is first dominated by

the cost of local cooperation. As network size increases, it

becomes increasingly challenging to deliver power/information

to longer distances and the penalty on capacity scaling is

dominated by path loss. The combined impact of path loss and

local cooperation imposes a smooth transition of the scaling

factor between these two regimes, and their dependence for

any finite network size is well characterized. Although the

capacity scaling factor will converge to its upper bound as

N→∞, the convergence speed is very slow and the gap

between the actual scaling and its upper bound is large even

for networks of extremely large size.

The desire to have high throughput among large number

of wireless nodes without dedicated communication infras-

tructure is appealing, but the reward each node can get from

such collaboration within ad-hoc networks might be too small

to make sense, as the per-node throughput scales as Nβ−1.

Infrastructure assisted collaboration among wireless nodes

might be the way to achieve better trade-off.

APPENDIX A

PROOF OF THEOREM 1

Sℓ contains the ℓ-th partial sum of a series whose value

depends on the ratio between N
(1−b0)(α/2−1)
0 and 2(1 + η),

and we have

N
(1−b0)(

α
2 −1)

0

2 + 2η







= 1, only if α > 2;
> 1, only if α > 2;
< 1, α ≤ 2 or small N0;

(16)

where the last condition is due to b0<1. We will analyze the

scaling exponents for each of these three scenarios.

A. Case I: When N
(1−b0)(α/2−1)
0 = 2(1 + η)

Since N
(1−b0)(α/2−1)
0 = 2(1+η), we must have α > 2 and

N0 fixed. We can rewrite Sℓ in (13) as

Sℓ = N
ℓ(1−b0)(α/2−1)
0

(

S0 +
ℓ

R∗

A

)

, (17)

and the capacity scaling exponent can be obtained as

βℓ =
logN0

(Cℓ)

logN0
(Nℓ)

=
ℓ(1− b0) + b0 − logN0

(Sℓ)

ℓ(1− b0) + 1
(18)

= 2−α

2
−

2−α
2−b0+ logN0

(S0+
ℓ

R∗

A
)

ℓ(1− b0) + 1
. (19)

Since N0 is fixed (determined by b0, α, and η), for large

but finite network size N , we get

ℓ =
logN0

(N)− 1

1− b0
= (

α

2
−1) log2+2η(N)− 1

1− b0
,

where the first equality is due to N
ℓ(1−b0)+1
0 =N and the

second step is from N
(1−b0)(

α
2 −1)

0 =2+2η. Substituting ℓ into

(19), we obtain

β =2− α

2
−

2−α
2−b0+ logN0

(S0+
logN0

(N)−1

R∗

A(1−b0)
)

logN0
(N)

(20)

≃2− α

2
− 2−α

2−b0

(1 − b0)(
α
2−1)

logN (2 + 2η), (21)

where the last step is due to S0+
ℓ

R∗

A
≪ N .

B. Case II: When N
(1−b0)(α/2−1)
0 > 2(1 + η)

From N
(1−b0)(α/2−1)
0 > 2(1 + η) we must have α > 2.

Then Sℓ can be rewritten as

Sℓ = N
ℓ(1−b0)(

α
2 −1)

0 Ωℓ, (22)

where

Ωℓ ,
S0(2+2η)ℓ

N
ℓ(1−b0)(

α
2 −1)

0

+
1

R∗

A

1− (2+2η)ℓ+1

N
(ℓ+1)(1−b0)(α/2−1)
0

1− (2+2η)

N
(1−b0)( α

2
−1)

0

. (23)

Note that Ωℓ can be upper bounded by

Ωℓ <
S0(2+2η)ℓ

N
ℓ(1−b0)(

α
2 −1)

0

+
1

R∗

A

1

1− 2+2η

N
(1−b0)( α

2
−1)

0

, (24)

and lower bounded by (applying the AM–GM inequality to

the partial sum of the series)

Ωℓ >
S0(2+2η)ℓ

N
ℓ(1−b0)(

α
2 −1)

0

+
ℓ

R∗

A

(2+2η)
ℓ−1
2

N
( ℓ−1

2 )(1−b0)(
α
2 −1)

0

. (25)

We can obtain from (19) that

βℓ = 2− α

2
− 2−α

2−b0

ℓ(1− b0) + 1
− logNℓ

(Ωℓ). (26)

Since N=N
ℓ(1−b0)+1
0 and N0>(2+2η)

1
(1−b0)(α/2−1) , we have

ℓ < (
α

2
− 1) log2+2η(N)− 1

1− b0
. (27)

By substitution of (27) into (26) and and dropping the small

term logN (Ωℓ), we can obtain the optimal scaling factor β∗

for each finite network size N as

β∗(N) ≃ 2− α

2
− 2−α

2−b0

(1− b0)(
α
2−1)

logN (2 + 2η). (28)
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C. Case III: When N
(1−b0)(α/2−1)
0 < 2(1 + η)

When N
(1−b0)(α/2−1)
0 < 2(1 + η), we have

Sℓ = (2+2η)ℓΘℓ, (29)

where

Θℓ , S0 +
1− N

ℓ(1−b0)(α/2−1)
0

(2+2η)ℓ

R∗

A(
(2+2η)

N
(1−b0)(α/2−1)
0

− 1)
. (30)

Similarly, we can upper and lower bound Θℓ as follows

Θℓ < S0 +
1

R∗

A(
(2+2η)

N
(1−b0)(α/2−1)
0

− 1)
, (31)

Θℓ > S0 +
ℓ

R∗

A

N
(1−b0)(α/2−1)(ℓ+1)/2
0

(2 + 2η)(ℓ+1)/2
. (32)

We obtain from (19) that

βℓ = 1− logN0
(2+2η)

1− b0
−
1−b0− log

N
1−b0
0

(2+2η)

ℓ(1− b0) + 1
− logNℓ

(Θℓ)

= 1− ℓ logNℓ
(2+2η)− 1−b0

ℓ(1−b0)+1
− logNℓ

(Θℓ). (33)

For large but finite N , we can obtain the optimized scaling

factor β∗ by dropping the small term logN (Θℓ) from (33) and

optimizing over ℓ, which reaches its maximum at

ℓ∗ =
√

log2+2η(N)− 1

1− b0
. (34)

When α > 2, we have 2 ≤ N0 < (2 + 2η)
1

(1−b0)(α/2−1) and

(
α

2
− 1) log2+2η(N)− 1

1− b0
< ℓ ≤ log2(N)− 1

1− b0
. (35)

As long as

2 < α < 2 + 2
√

logN (2 + 2η), (36)

the optimal cooperation layer ℓ∗ falls within the constraint (35)

and therefore the optimal scaling factor is

β∗(N) ≃ 1 +
logN (2 + 2η)

1− b0
− 2

√

logN (2 + 2η). (37)

When the path loss exponent α ≥ 2 + 2
√

logN (2 + 2η),
the optimal ℓ∗ in (34) falls on the left outside the constraint

(35). Therefore, the optimal scaling factor becomes

β∗(N) ≃ 2− α

2
− 2− α

2 − b0

(1 − b0)(
α
2 − 1)

logN(2 + 2η), (38)

with the optimal cooperation layer

ℓ∗ = (
α

2
− 1) log2+2η(N)− 1

1− b0
. (39)

For α≤2, we have N
(1−b0)(α/2−1)
0 <2(1+η) for all feasible

N0. Therefore, the constraint on ℓ reduces to ℓ ≤ log2(N)−1
1−b0

,

and the optimal cooperation layer ℓ∗ is given by (34) and the

optimal scaling factor β∗ is given by (37).

Although the exact expressions of scaling factor βℓ stated

in (20), (26), and (33) are chosen based on the conditions in

(16), the optimized scaling factor β∗(N) (after dropping small

terms) given in (21), (28), (37) and (38) are mainly determined

by the path loss exponent α and the local communication

overhead η. Therefore, for extended networks with large but

finite network size N , the optimal scaling factor can be written

as (14), and the consolidation of results comes from the fact

that, for α0<α<α1, one can adjust the value of N0 to switch

between conditions specified in (16).
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