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Abstract

Estimation of functions of d variables is considered using ridge combinations of the form
∑m

k=1
c1,kφ(

∑d

j=1
c0,j,kxj−bk) where the activation function φ is a function with bounded value

and derivative. These include single-hidden layer neural networks, polynomials, and sinusoidal
models. From a sample of size n of possibly noisy values at random sites X ∈ B = [−1, 1]d,
the minimax mean square error is examined for functions in the closure of the ℓ1 hull of ridge
functions with activation φ. It is shown to be of order d/n to a fractional power (when d is of
smaller order than n), and to be of order (log d)/n to a fractional power (when d is of larger
order than n). Dependence on constraints v0 and v1 on the ℓ1 norms of inner parameter c0
and outer parameter c1, respectively, is also examined. Also, lower and upper bounds on the
fractional power are given. The heart of the analysis is development of information-theoretic
packing numbers for these classes of functions.

Index terms— Nonparametric regression; nonlinear regression; neural nets; penalization; ma-
chine learning; high-dimensional data analysis; learning theory; generalization error; greedy algo-
rithms; metric entropy; packing sets; polynomial nets; sinusoidal nets; constant weight codes

1 Introduction

Ridge combinations provide flexible classes for fitting functions of many variables. The ridge ac-
tivation function may be a general Lipschitz function. When the ridge activation function is a
sigmoid, these are single-hidden layer artificial neural nets. When the activation is a sine or cosine
function, it is a sinusoidal model in a ridge combination form. We consider also a class of poly-
nomial nets which are combinations of Hermite ridge functions. Ridge combinations are also the
functions used in projection pursuit regression fitting. What distinguishes these models from other
classical functional forms is the presence of parameters internal to the ridge functions which are
free to be adjusted in the fit. In essence, it is a parameterized, infinite dictionary of functions from
which we make linear combinations. This provides a flexibility of function modeling not present in
the case of a fixed dictionary. Here we discuss results on risk properties of estimation of functions
using these models and we develop new minimax lower bounds.

For a given activation function φ(z) on R, consider the parameterized family Fm of functions

fm(x) = fm(x, c0, c1, b) =
∑m

k=1 c1,kφ(
∑d

j=1 c0,j,kxj − bk), (1)
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where c1 = (c1,1, . . . , c1,m)′ is the vector of outer layer parameters and c0,k = (c0,1,k, . . . , c0,d,k)
′ are

the vectors of inner parameters for the single hidden-layer of functions φ(c0,k ·x−bk) with horizontal
shifts b = (b1, . . . , bm), k = 1, . . . ,m. For positive v0, let

Dv0 = Dv0,φ = {φ(θ · x− t), x ∈ B : ‖θ‖1 ≤ v0, t ∈ R} (2)

be the dictionary of all such inner layer ridge functions φ(θ ·x− t) with parameter restricted to the
ℓ1 ball of size v0 and variables x restricted to the cube [−1, 1]d. The choice of the ℓ1 norm on the
inner parameters is natural as it corresponds to ‖θ‖B = supx∈B |θ · x| for B = [−1, 1]d.

Let Fv0,v1 = Fv0,v1,φ = ℓ1(v1,Dv0) be the closure of the set of all linear combinations of functions
in Dv0 with ℓ1 norm of outer coefficients not more than v1. These v0 and v1 control the freedom in
the size of this function class. They can either be fixed for minimax evaluations, or adapted in the
estimation (as reflected in some of the upper bounds on risk for penalized least square estimation).
The functions of the form (1) are in ℓ1(v1,D) when ‖c0,k‖1 ≤ v0 and ‖c1‖1 ≤ v1. Indeed, let
Fm,v0,v1 = ℓ1(m, v1,Dv0) be the subset of such functions in ℓ1(v1,Dv0) that use m terms.

Data are of the form {(Xi, Yi)}ni=1, drawn independently from a joint distribution PX,Y with
PX on [−1, 1]d. The target function is f(x) = E[Y |X = x], the mean of the conditional distribution
PY |X=x, optimal in mean square for the prediction of future Y from corresponding input X. In
some cases, assumptions are made on the error of the target function ǫi = Yi−f(Xi) (i.e. bounded,
Gaussian, or sub-Gaussian).

From the data, estimators f̂(x) = f̂(x, {(Xi, Yi)}ni=1) are formed and the loss at a target f is
the L2(PX ) square error ‖f − f̂‖2 and the risk is the expected squared error E‖f − f̂‖2. For any
class of functions F on [−1, 1]d, the minimax risk is

Rn,d(F) = inf
f̂

sup
f∈F

E‖f − f̂‖2, (3)

where the infimum runs over all estimators f̂ of f based on the data {(Xi, Yi)}ni=1.
It is known that for certain complexity penalized least squares estimators [4], [6], [17], [1] the

risk satisfies
E‖f − f̂‖2 ≤ inf

fm∈Fm

{‖f − fm‖2 + cmd logn
n }, (4)

where the constant c depends on parameters of the noise distribution and on properties of the
activation function φ, which can be a step function or a fixed bounded Lipschitz function. The
d log n in the second term is from the log-cardinality of customary d-dimensional covers of the
dictionary. The right side is an index of resolvability expressing the tradeoff between approximation
error ‖f −fm‖2 and descriptive complexity md log n relative to sample size, in accordance with risk
bounds for minimum description length criteria [7], [8], [9], [5]. When the target f is in Fv1,v0 , it is
known as in [19], [3], [13] that ‖f − fm‖2 ≤ v21/m with slight improvements possible depending on
the dimension ‖f − fm‖2 ≤ v21/m

1/2+1/d as in [22], [20], [26]. When f is not in Fv0,v1 , let fv0,v1 be
its projection onto this convex set of functions. Then the additional error beyond ‖f − fv0,v1‖2 is
controlled by the bound

inf
m
{v2

1

m + c1md logn
n } = 2v1(

c1d logn
n )1/2. (5)

Moreover, with f̂ restricted to Fv0,v1 , this bounds the mean squared error E‖f̂ − fv0,v1‖2 from the
projection. The same risk is available from ℓ1 penalized least square estimation [17], [8], [9], [20]
and from greedy implementations of complexity and ℓ1 penalized estimation [17], [20]. The slight
approximation improvements (albeit not known whether available by greedy algorithms) provide
the risk bound [20]

Rn,d(Fv0,v1) ≤ c2(
dv2

0
v2
1

n )1/2+1/(2(d+1)) , (6)
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for bounded Lipschitz activation functions φ, improving a similar result in [14], [26]. This fact can
be shown through improved upper bounds on the metric entropy from [23].

A couple of lower bounds on the minimax risk in Fv0,v1 are known [26] and, improving on [26],
the working paper [20] states the lower bound

Rn,d(Fv0,v1) ≥ c3v
d/(d+2)
1 ( 1

d4n
)1/2+1/(d+2)) (7)

for an unconstrained v0.
Note that for large d, these exponents are near 1/2. Indeed, if d is large compared to log n,

then the bounds in (6) and (7) are of the same order as with exponent 1/2. It is desirable to have
improved lower bounds which take the form d/n to a fractional power as long as d is of smaller
order than n.

Favorable performance of flexible neural network (and neural network like) models has often
been observed as in [21] in situations in which d is of much larger order than n. Current develop-
ments [20] are obtaining upper bounds on risk of the form

Rn,d(Fv0,v1) ≤ c4(
v2
0
v4
1
log(d+1)
n )γ , (8)

for fixed positive γ, again for bounded Lipschitz φ. These allow d much larger than n, as long as
d = eo(n). We have considered two cases. First with greedy implementations of least squares with
complexity or ℓ1 penalty, such upper bounds are obtained in [20] with γ = 1/3 in the noise free case
and γ = 1/4 in the sub-Gaussian noise case (which includes the Gaussian noise case). The rate
with γ = 1/3 is also possible in the sub-Gaussian noise setting (as well as the noise free setting)
via a least squares estimator over a discretization of the parameter space.

It is desirable likewise to have lower bounds on the minimax risk for this setting that show
that is depends primarily on vα0 v

2α
1 /n to some power (within log d factors). It is the purpose

of this paper to obtain such lower bounds. Here with γ = 1/2. Thereby, this paper on lower
bounds is to provide a companion to (refinement of) the working paper on upper bounds [20].
Lower bounding minimax risk in non-parametric regression is primarily an information-theoretic
problem. This was first observed by [18] and then [11], [12] who adapted Fano’s inequality in
this setting. Furthermore, [26] showed conditions such that the minimax risk ǫ2n is characterized
(to within a constant factor) by solving for the approximation error ǫ2 that matches the metric
entropy relative to the sample size (logN(ǫ))/n, where N(ǫ) is the size of the largest ǫ-packing set.
Accordingly, the core of our analysis is providing packing sets for Fv0,v1 for specific choices of φ.

2 Results for sinusoidal nets

We now state our main result. In this section, it is for the sinusoidal activation function φ(z) =√
2 sin(πz). We consider two regimes: when d is larger than v0 and visa-versa. In each case, this

entails putting a non-restrictive technical condition on either quantity. For d larger than v0, this
condition is

d
v0

+ 1 > (c4
v2
1
n

v0 log(1+d/v0)
)1/v0 , (9)

and when v0 is larger than d,
v0
d + 1 > (c5

v2
1
n

d log(1+v0/d)
)1/d, (10)

for some positive constants c4, c5. Note that when d is large compared to log n, condition (10)

holds. Indeed, the left side is at least 2 and the right side is e
1
d log(

v2
1
n

d log(1+v0/d)
)
, which is near 1.
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Likewise, (9) holds when v0 is large compared to log n.

Theorem 1. Consider the model Y = f(X) + ε for f ∈ Fv0,v1,sine, where ε ∼ N(0, 1) and X ∼
Uniform[−1, 1]d. If d is large enough so that (9) is satisfied, then

Rn,d(Fv0,v1,sine) ≥ c6(
v0v21 log(1+d/v0)

n )1/2, (11)

for some universal constant c6 > 0. Furthermore, if v0 is large enough so that (10) is satisfied,
then

Rn,d(Fv0,v1,sine) ≥ c7(
dv2

1
log(1+v0/d)

n )1/2. (12)

for some universal constant c7 > 0.

Before we prove Theorem 1, we first state a lemma which is contained in the proof of Theorem
1 (pp. 46-47) in [15].

Lemma 1. For integers M,L with M ≥ 10 and 1 ≤ L ≤M/10, define the set

S = {ω ∈ {0, 1}M : ‖ω‖1 = L}.

There exists a subset A ⊂ S with cardinality at least
√

(M
L

)

such that the Hamming distance between

any pairs of A is at least L/5.

Note that the elements of the set A in Lemma 1 can be interpreted as binary codes of length
M , constant Hamming weight L, and minimum Hamming distance L/5. These are called constant
weight codes and the cardinality of the largest such codebook, denoted by A(M,L/5, L), is also

given a combinatorial lower bound in [16]. The conclusion of Lemma 1 is A(M,L/5, L) ≥
√

(M
L

)

.

Proof of Theorem 1. For simplicity, we henceforth write Fv0,v1 instead of Fv0,v1,sine. Define the
collection Λ = {θ ∈ Z

d : ‖θ‖1 ≤ v0}. Without loss of generality, assume that v0 is an integer
so that M := #Λ =

(

2d+v0
2d

)

. Consider sinusoidal ridge functions
√
2 sin(πθ · x) with θ in Λ.

Note that these functions (for θ 6= 0) are orthonormal with respect to the uniform probability
measure P on B = [−1, 1]d. This fact is easily established using an instance of Euler’s formula
sin(πθ · x) = 1

2i (
∏d

k=1 e
iπθkxk −

∏d
k=1 e

−iπθkxk).
For an enumeration θ1, . . . , θM of Λ, define a subclass of Fv0,v1 by

F0 = {fω = v1
L

∑M
k=1 ωk

√
2 sin(πθk · x) : ω ∈ A},

where A is the set in Lemma 1. Any distinct pairs fω, fω′ in F0 have L2(P ) squared distance at
least ‖fω − fω′‖2 ≥ v21‖ω − ω′‖22/L2 ≥ v21/(5L). A separation of ǫ2 determines L = (v1/(

√
5ǫ))2.

Depending on the size of d relative to v0, there are two different behaviors of M . For d > v0, we
use M ≥

(d+v0
v0

)

≥ (1 + d/v0)
v0 and for d < v0, M ≥

(d+v0
d

)

≥ (1 + v0/d)
d.

By Lemma 1, a lower bound on the cardinality of A is
√

(

M
L

)

with logarithm lower bounded by

(L/2) log(L/M). To obtain a cleaner form that highlights the dependence on L, we assume that L ≤√
M , giving log(#A) ≥ (L/4) logM . Since L is proportional to (v1/ǫ)

2, this condition puts a lower
bound on ǫ of order v1M

−1/4. If ǫ > v1/(1+d/v0)
v0/4, it follows that a lower bound on the logarithm

of the packing number is of order logNd>v0(ǫ) = v0(v1/ǫ)
2 log(1 + d/v0). If ǫ > v1/(1 + v0/d)

d/4, a
lower bound on the logarithm of the packing number is of order logNv0>d(ǫ) = d(v1/ǫ)

2 log(1+v0/d).
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Thus we have found an ǫ-packing set of these cardinalities. As such, they are lower bounds on the
metric entropy of Fv0,v1 .

Next we use the information-theoretic lower bound techniques in [26] or [25]. Let pω(x, y) =
p(x)ψ(y − fω(x)), where p is the uniform density on [−1, 1]d and ψ is the N(0, 1) density. Then

Rn,d(Fv0,v1) ≥ (ǫ2/4) inf
f̂

sup
f∈F0

P(‖f − f̂‖2 ≥ ǫ2),

where the estimators f̂ are now restricted to F0. The supremum is at least the uniformly weighted
average over f ∈ F0. Thus a lower bound on the minimax risk is a constant times ǫ2 provided the
minimax probability is bounded away from zero, as it is for sufficient size packing sets. Indeed, by
Fano’s inequality as in [26], this minimax probability is at least

1− α log(#F0)+log 2
log(#F0)

,

for α in (0, 1), or by an inequality of Pinsker, as in Theorem 2.5 in [25], it is at least

√
#F0

1+
√
#F0

(1− 2α−
√

2α
log(#F0)

),

for some α in (0, 1/8). These inequalities hold provided we have the following

1
#F0

∑

ω∈AD(pnω||q) ≤ α log(#F0),

bounding the mutual information between ω and the data {(Xi, Yi)}ni=1, where q is any fixed joint
density for {(Xi, Yi)}ni=1. When suitable metric entropy upper bounds on the log-cardinality of
covers Fω′∈A′ := {f : ‖f − fω′‖ < ǫ′} of F0 are available, one may use q as a uniform mixture of pnω′

for ω′ in A′ as in [26], as long as ǫ and ǫ′ are arranged to be of the same order. In the special case
that F0 has small radius already of order ǫ, one has the simplicity of taking A′ to be the singleton
set consisting of ω′ = 0. In the present case, since each element in F0 has squared norm v21/L = 5ǫ2

and pairs of elements in F0 have squared separation ǫ2, these function are near f0 ≡ 0 and hence
we choose q = pn0 . A standard calculation yields

D(pnω||pn0 ) ≤ n
2‖fω‖

2 ≤ nv2
1

2L = (5/2)nǫ2.

We choose ǫn such that this (5/2)nǫ2n ≤ α log(#F0). Thus, in accordance with [26], if Nd>v0(ǫn)
and Nv0>d(ǫn) are available lower bounds on #F0, to within a constant factor, a minimax lower
bound ǫ2n on the L2(P ) squared error risk is determined by matching

ǫ2n =
logNd>v0

(ǫn)

n ,

and
ǫ2n =

logNv0>d(ǫn)

n .

Solving in either case, we find that

ǫ2n = (
v0v21 log(1+d/v0)

n )1/2,

and
ǫ2n = (

dv2
1
log(1+v0/d)

n )1/2.

These quantities are valid lower bounds on Rn,d(Fv0,v1) to within constant factors, providedNd>v0(ǫn)
and Nv0>d(ǫn) are valid lower bounds on the ǫn-packing number of Fv0,v1 . Checking that ǫn >
v1/(1 + d/v0)

v0/2 and ǫn > v1/(1 + v0/d)
d/2 yields conditions (9) and (10), respectively.
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3 Implications for neural nets

The variation of a function f with respect to a dictionary D [2], also called the atomic norm of f
with respect to D, denoted Vf (D), is defined as the infimum of all v such that f is in ℓ1(v,D). Here
the closure in the definition of ℓ1(v,D) is taken in L∞.

Define φ(z) =
√
2 sin(πz). On the interval [−v0, v0], it can be shown that φ(z) has variation

Vφ = 2
√
2πv0 with resepct to the dictionary of unit step activation functions ±step(z′ − t′), where

step(z) = I{z > 0}, or equivalently, variation
√
2πv0 with respect to the dictionary of signum

activation functions with shifts ±sgn(z′ − t′), where sgn(z) = 2step(z) − 1. This can be seen
directly from the identity

sin z = v
2

∫ 1

0
cos(vt)[sgn(z/v − t)− sgn(−z/v − t)]dt,

for |z| ≤ v. Evaluation of
∫ 1
0 | cos(vt)|dt gives the exact value of φ with respect to sgn as

√
2πv0 for

integer v = v0. Accordingly, Fv0,v1,φ is contained in F1,
√
2πv0v1,sgn

.
Likewise, for the clipped linear function clip(z) = sgn(z)min{1, |z|} a similar identity holds:

sin z = z + v2

2

∫ 1

0
sin(vt)[clip(−2z/v − 2t− 1)−

clip(2z/v − 2t− 1)]dt,

for |z| ≤ v. The above form arises from integrating

cosw = cos v − v
2

∫ 1

0
sin(vt)[sgn(−w/v − t)+

sgn(w/v − t)]dt,

from w = 0 to w = z. And likewise, evaluation of
∫ 1
0 | sin(vt)|dt gives the exact variation of φ with

respect to the dictionary of clip activation functions ±clip(z′ − t′) as Vφ =
√
2π(v20 + 1) for integer

v = v0. Accordingly, Fv0,v1,φ is contained in F2,
√
2π(v2

0
+1)v1,clip

and hence we have the following

corollary.

Corollary 1. Using the same setup and conditions (9) and (10) as in Theorem 1, the minimax
risk for the sigmoid classes F1,

√
2πv0v1,sgn

and F2,
√
2π(v2

0
+1)v1,clip

have the same lower bounds (11)

and (12) as for Fv0,v1,sine.

4 Implications for polynomial nets

It is also possible to give minimax lower bounds for the function classes Fv0,v1,φℓ
with activation

function φℓ equal to the standardized Hermite polynomialHℓ/
√
ℓ!, whereHℓ(z) = (−1)ℓe

z2

2 dℓ

dzℓ
e−

z2

2 .
As with Theorem 1, this requires a lower bound on d:

d
v2
0

> (c8
v2
1
n

v2
0
log(d/v2

0
)
)2/v

2

0 . (13)

for some constant c8 > 0. Moreover, we also need a growth condition on the order of the polynomial
ℓ:

ℓ > c9 log(
v2
1
n

v2
0
log(d/v2

0
)
), (14)

6



for some constant c9 > 0. In light of (13), condition (14) is also satisfied if ℓ is at least a constant
multiple of v20 log(d/v

2
0).

Theorem 2. Consider the model Y = f(X) + ε for f ∈ Fv0,v1,φℓ
, where ε ∼ N(0, 1) and X ∼

N(0, Id). If d and ℓ are large enough so that conditions (13) and (14) are satisfied, respectively,
then

Rn,d(Fv0,v1,φℓ
) ≥ c10(

v2
0
v2
1
log(d/v2

0
)

n )1/2, (15)

for some universal constant c10 > 0.

Proof of Theorem 2. By Lemma 1, if d ≥ 10 and 1 ≤ d′ ≤ d/10, there exists a subset C of {0, 1}d

with cardinality at least M :=
√

( d
d′

)

such that each element has Hamming weight d′ and pairs

of elements have minumum Hamming distance d′/5. Thus, if a and a′ belong to this codebook,
|a · a′| ≤ (9/10)d′. Choose d′ = v20 (assuming that v20 is an integer less than d), and form the
collection B = {θ = a/v0 : a ∈ C}. Note that each member of B has unit ℓ2 norm and ℓ1 norm v0.
Moreover, the Euclidean inner product between each pair has magnitude bounded by 9/10. Next,
we use the fact that if X ∼ N(0, Id) and θ, θ

′ have unit ℓ2 norm, then E[φℓ(θ ·X)φℓ(θ
′ ·X)] = (θ ·θ′)ℓ.

For an enumeration θ1, . . . , θM of B, define a subclass of Fv0,v1,Hℓ
by

F0 = {fω = v1
L

∑M
k=1 ωkφℓ(θk · x) : ω ∈ A},

where A is the set from Lemma 1. Moreover, since each θk has unit norm, ‖ω − ω′‖1 ≥ L/5, and
‖ω − ω′‖21 ≤ 2L‖ω − ω′‖1,

‖fω − fω′‖2 = v2
1

L2 [‖ω − ω′‖1+
∑

i 6=j(ωi − ω′
i)(ωj − ω′

j)(θi · θj)ℓ]

≥ v2
1

L2 [‖ω − ω′‖1 − ‖ω − ω′‖21(9/10)ℓ]

≥ v2
1

L2‖ω − ω′‖1(1− 2L(9/10)ℓ)

≥ v2
1

L (1− 2L(9/10)ℓ)

≥ v2
1

10L ,

provided ℓ > log(4L)
log(10/9) . A separation of ǫ2 determines L = (v1/(

√
10ǫ))2. If L ≤

√
M , or equivalently,

ǫ ≥ v1M
−1/4, then log(#F0) is at least a constant multiple of logNd>v0(ǫ) = (v0v1/ǫ)

2 log(d/v20).
As before in Theorem 1, a minimax lower bound ǫ2n on the L2(P ) squared error risk is determined
by matching

ǫ2n =
logNd>v0

(ǫn)

n ,

which yields

ǫ2n = (
v2
0
v2
1
log(d/v2

0
)

n )1/2.

If conditions (13) and (14) are satisfied, Nd>v0(ǫn) is a valid lower bound on the ǫn-packing number
of Fv0,v1,φℓ

.

Remark. It is possible to obtain similar lower bounds with Hℓ(z) replaced by a clipped version,
in which it is extended at constant height for |z| > ζℓ,δ, where E[φ2ℓ(Z)I{|Z| > ζℓ,δ}] ≤ δ and
Z ∼ N(0, 1). Then corollary conclusions follow also for sigmoid classes using the variation of φℓ(z)
on {z : |z| ≤ ζℓ,δ}. Thereby, we obtain lower bounds for sigmoid nets for Gaussian design as well
as for the uniform design of Corollary 1.
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5 Discussion

Our risk lower bound of the form (
v0v21 log(1+d/v0)

n )1/2 shows that in the very high-dimensional case,
it is the v0v

2
1/n to a half-power that controls the rate (to within a logarithmic factor). The v0 and

v1, as ℓ1 norms of the inner and outer coefficient vectors, have the interpretations as the effective
dimensions of these vectors. Indeed, a vector in R

d with bounded coefficients that has v0 non-
negligible coordinates has ℓ1 norm of thin order. These rates confirm that it is the power of these
effective dimensions over sample size n (instead of the full ambient dimension d) that controls the
main behavior of the statistical risk. Our lower bounds on packing numbers complement the upper
bound covering numbers in [10] and [20].

Our rates are akin to those obtained by the authors in [24] for high-dimensional linear regression.
However, there is an important difference. The richness of Fv0,v1 is largely determined by the sizes
of v0 and v1 and Fv0,v1 more flexibly represents a larger class of functions. It would be interesting
to see if the 1/2 power in the lower minimax rates in (11) could be further improved to match or
get near (8).
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