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Abstract—Optical switching has been considered as a natural
choice to keep pace with growing fiber link capacity. One key
research issue of all-optical switching is the design of optical
queues by using optical crossbar switches and fiber delay lines
(SDL). In this paper, we focus on the construction of an optical
priority queue with a single (M+2)×(M+2) crossbar switch and
M fiber delay lines, and evaluate it in terms of the buffer size of
the priority queue. Currently, the best known upper bound of the
buffer size is O(2M ), while existing methods can only construct
a priority queue with buffer O(M3).

In this paper, we make a great step towards closing the above
huge gap. We propose a very efficient construction of priority
queues with buffer 2Θ(

√
M). We use 4-to-1 multiplexers with

different buffer sizes, which can be constructed efficiently with
SDL, as intermediate building blocks to simplify the design. The
key idea in our construction is to route each packet entering the
switch to some group of four 4-to-1 multiplexers according to its
current priority, which is shown to be collision-free.

I. INTRODUCTION

All-optical packet switching is very attractive for making
good use of the enormous bandwidth of optical networks
since it eliminates the complicated and quite expensive optical-
electronic-optical conversions. One main issue for implement-
ing the all-optical packet switching is the construction of op-
tical queues for conflict resolutions among packets competing
for the same resources. As optical-RAM is not available yet,
a common approach for constructing the optical queues is
to use a combination of bufferless optical crossbar Switches
and fiber Delay Lines (SDLs) [1]–[3], where fiber delay lines
act as storage devices for optical packets. However, fiber
delay lines are much more inflexible than traditional electronic
memories since one packet entering a fiber delay line can only
be retrieved after a fixed amount of time. Such inflexibility
makes the design of SDL-based optical queues with the same
throughput and delay performance as that of the electronic
ones quite challenging. In the past many years, great efforts
have been made on constructing various kinds of optical
queues, such as first-in-first-out (FIFO) multiplexers (e.g., [4]–
[11]), FIFO queues (e.g., [12]–[15]), last-in-first-out (LIFO)
queues (e.g., [14], [16], [17]), priority queues (e.g., [18]–[21]),
shared queues (e.g., [22], [23]), etc.

In this paper, we focus on the design of optical prior-
ity queues with SDLs. In a priority queue, each packet is
associated with a priority, and the packet with the highest

Fig. 1. A construction of an optical priority queue with an (M+2)×(M+2)
crossbar switch and M fiber delay lines with delays d1, . . .dM .

priority is always sent to the output link when a departure
request comes, whereas the packet with the lowest priority
will be dropped when buffer overflow happens. Sarwate and
Anatharam presented the first construction of optical priority
queues in [18], where they considered a feedback system
consisting of an (M + 2) × (M + 2) crossbar switch and
M fiber delay lines as illustrated in Fig. 1. Let B∗ be the
maximum achievable buffer size of this feedback system acting
as a priority queue. In [18], Sarwate and Anatharam showed
that B∗ = O(2M ). They also gave an explicit construction of
a priority queue using a sorting-based routing policy, which
shows that B∗ = Ω(M2). A simpler proof for this result is
given in [19]. Later, Chiu et al. [20] showed that B∗ = Ω(M3)
by improving the Sarwate-Anatharam’s sorting-based routing
policy. Despite the huge gap between the best known upper
bound O(2M ) and the best known lower bound Ω(M3), little
progress has been made on the bounds for almost ten years.

In this paper, we make a great step towards closing the
above gap by giving a very efficient construction of optical
priority queues, which leads to B∗ = 2Ω(

√
M). Instead of

considering fiber delay lines as basic building elements, we use
(FIFO) multiplexers with different buffer sizes as intermediate
building blocks, which simplifies our design significantly. An
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n-to-1 multiplexer has n input links and one departure link.
It always has a departure packet whenever it is nonempty and
packets depart in the FIFO order. Our main idea is to let the
packets with priorities currently belonging to a same properly
chosen interval enter a corresponding group of multiplexers,
and to introduce multiple multiplexers for each group and
enough input links for each multiplexer to handle possible
packet collisions. In particular, we show that using four 4-
to-1 multiplexers in each group is enough for the system
to be collision-free. Fortunately, a 4-to-1 multiplexer can be
constructed by concatenating three 2-to-1 multiplexers with
the same buffer size, whereas it has been proved in [9] that an
(M + 2)× (M + 2) crossbar switch and M fiber delay lines
are enough for constructing a 2-to-1 multiplexer with buffer
O(2M ). By further combining all the switches used into one,
we finally have a construction of a priority queue with buffer
2Θ(
√
M) using an (M + 2)× (M + 2) crossbar switch and M

fiber delay lines.

II. PRELIMINARIES

In this section, we first introduce the basic assumptions and
network elements adopted in this paper and then introduce the
definition of priority queues.

A. Assumptions and Network Elements

As in most work about the SDL-based optical queue de-
signs [7], [12], [18], [21], we assume that all packets have the
same size, and time is slotted and synchronized so that every
packet can be transmitted within one time slot. Since there
is at most one packet in a link, we can use 0-1 variables to
characterize the state of a link. We say that a link is in state
1 at time t if there is a packet in the link at time t, and the
link is in state 0 at time t otherwise.

Switches and fiber delay lines are defined as follows.

Definition 1 (Switch). An M ×M (optical) crossbar switch
is a network element that has M input links and M output
links, which can realize all the M ! permutations between its
inputs and outputs.

Definition 2 (Fiber delay line). A fiber delay line with delay
d (a non-negative integer) is a network element that has one
input link and one output link, through which d time slots are
required for a packet to traverse.

B. Priority Queues

In this paper, we focus on the design of optical priority
queue with switches and fiber delay lines. A priority queue
with buffer B is a network element with certain properties,
which has one input link, one controller, and two output links,
one for departing packets and the other for loss packets. See
Fig. 2 for an illustration. To formally define the properties
of a priority queue, we first introduce some basic notations
describing the state of the priority queue at each time t (i.e.,
the t-th time slot).
• Let a(t), d(t) and l(t) denote the states of the input link,

the departure link and the loss link at time t, respectively.

a1(t) 

aN(t) 

d1(t) 

dN(t) 

B 

optical buffer queue

l1(t) lN(t) 
…

… …

a(t) 
d(t) 

B 

optical priority buffer
l(t) 

Controller

Fig. 2. An optical priority queue with buffer size B

• Let c(t) = 1 if the controller sends a departure request
at time t or c(t) = 0 otherwise.

• Denote by q(t) the number of packets in the queue at
time t.

Definition 3 (Priority). When a packet arrives at the queue,
it is assigned with a priority, which indicates the expected
departure order of this packet among all the buffered packets.
Let i be an arriving packet or a packet buffered in the queue
at time t. Let ri(t) denote the priority order of i among all the
packets buffered in the queue and the arriving packet (if any)
at time t, i.e., if i has the j-th highest priority, then ri(t) = j.

Based on the aforementioned notations, a discrete-time
priority queue can be defined as follows.

Definition 4 (Priority queue [18]). The network element shown
in Fig.2 is called a priority queue with buffer B if it satisfies
the following properties:

(P1) Flow conservation: arriving packets are either stored in
the queue or transmitted through the departure link or
the loss link, i.e.,

q(t) = q(t− 1) + a(t)− d(t)− l(t). (1)

(P2) Non-idling: There is always a packet departing from
the queue if and only if the controller sends a departure
request, and there are packets in the queue or there is
an arriving packet. In other words,

d(t) =

{
1 if c(t) = 1 and q(t− 1) + a(t) > 0

0 otherwise.
(2)

(P3) Maximum buffer usage: There is a lost packet if and
only if there is no departure request, the buffer is full
and there is an arriving packet, i.e.,

l(t) =

{
1 if c(t) = 0, q(t− 1) = B and a(t) = 1

0 otherwise.
(3)

Also arriving packets are dropped only when the queue
is full, i.e.,

l(t) = [q(t− 1) + a(t)− d(t)−B]+ (4)

where [x]+ = x if x > 0 and is otherwise 0.
(P4) Priority departure: If there is a departure packet i at time

t, then i has the highest priority among all the packets



buffered in the queue and the arriving packet (if any) at
time t, i.e.,

ri(t) = 1. (5)

(P5) Priority loss: If there is a loss packet i at time t, then
i has the lowest priority among the packets buffered in
the queue and the arriving packet at time t, i.e.,

ri(t) = B + 1. (6)

III. A CONSTRUCTION OF PRIORITY QUEUES

In this section, we present a very efficient construction of
priority queues where 4-to-1 FIFO multiplexers are used as
intermediate building blocks.

A. Multiplexers

Definition 5 (Multiplexer [7]). An n-to-1 (FIFO) multiplexer
with buffer B is a network element with n input links and n
output links. Among the n output links, one is for departing
packets and the others are for lost packets. Let ai(t), i =
1, 2, . . . , n, be the state of the i-th input link, d(t) be the state
of the departure link and li(t), i = 1, 2, . . . , n − 1, be the
state of the i-th loss link, and q(t) be the number of packets
buffered at the multiplexer at time t. The n-to-1 multiplexer
with buffer B satisfies the following four properties.

(M1) Flow conservation: arriving packets from the n input
packets are either stored in the buffer or transmitted
through the n input links, i.e.,

q(t) = q(t− 1) +

n∑
i=1

ai(t)− d(t) +

n∑
i=1

li(t). (7)

(M2) Non-idling: there is always a departing packet if there
are packets in the buffer or there are arriving packets,
i.e.,

d(t) =

{
1 if q(t− 1) +

∑n
i=1 ai(t) > 0

0 otherwise.
(8)

(M3) Maximum buffer usage: arriving packets are lost only
when the buffer is full, i.e., for i = 1, . . . , n− 1,

li(t) =

{
1 if q(t− 1) +

∑n
i=1 ai(t) ≥ B + i + 1

0 otherwise.
(9)

(M4) FIFO: packets depart in the FIFO order.

See Fig. 3 for an illustration of a 2-to-1 multiplexer with
buffer B.

B. The Construction

To ease the presentation, we first define some notations. Let
m be a positive integer. For j = 1, . . . ,m, let Ψj be the set
of consecutive integers 2j−1, 2j−1 + 1, , . . . , 2j − 1, and for
j = m + 1, . . . , 2m − 1, let Ψj be the set of consecutive
integers 3 × 2m−1 − 22m−j , . . . , 3 × 2m−1 − 22m−j−1 − 1.
For example, Ψ1 = {1}, Ψ2 = {2, 3}, and Ψ3 = {4, 5, 6, 7}.
Clearly, for each j = 1, . . . ,m, both Ψj and Ψ2m−j have the
same size of 2j−1.

a1(t) d(t)

B

multiplexer buffer
l(t)a2(t) 

Fig. 3. A 2-to-1 multiplexer with buffer B.

In our construction, an optical priority queue, as illustrated
in Fig. 4, consists of a (32m−14)×(32m−14) crossbar switch
and 2m− 1 groups of multiplexers. For each j = 1, 2, . . . ,m,
the j-th group of multiplexers consists of four parallel 4-to-1
multiplexers with buffer Bj , where

Bj =

{
1 i = 1

2j−2 i = 2, 3, . . . ,m,
(10)

and its main purpose is to store the packets with priority order
in Ψj , although the priority orders of packets may change
slowly over time. The (2m − j)-th group of multiplexers
is the same as the j-th group of multiplexers, and its main
purpose is to store the packets with priority order in Ψ2m−j .
The construction of 4-to-1 multiplexers with switches and fiber
delay lines is deferred to Sec. III-D.

The routing policy performed by the switch at the beginning
of time t, t = 1, 2, . . . , is as follows.
(R) After handling the departure packet and the loss packet,

if any, according to the requirement of priority queues,
every other packet i in the switch with priority order ri(t)
will be pushed into one of the 4-to-1 multiplexers in the
j-th group such that

ri(t) ∈ Ψj , (11)

via a separate input link while guaranteeing that all the
four buffers of the 4-to-1 multiplexers in this group are
almost the same used (i.e., differing by at most one
packet).

For example, the packets with priority order 4,5,6,7 are always
sent to the third group of multiplexers.

C. Analysis
Now we show that the system constructed above emulates

a priority queue with buffer 3× 2m−1 − 2 exactly.
We first establish the correctness of the routing policy by

showing that there is no packet collision under the routing
policy, i.e., the number of packets entering every group of 4-
to-1 multiplexers at the same time is not more than 16, the
total number of input links of the group of 4-to-1 multiplexers.
We begin with the following property.

Lemma 1. For any packet i buffered in the j-th group of
multiplexers at time t, if j ≤ m, then

2j−2 + 1 ≤ ri(t) ≤ 2j + 2j−2 − 2, (12)

otherwise,

3×2m−1−5×22m−j−2+1 ≤ ri(t) ≤ 3×2m−1−22m−j−2−2.
(13)
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Fig. 4. Left: the construction of an optical priority queue with a switch and 2m− 1 groups of 4-to-1 multiplexers. Right: A group of 4-to-1 multiplexers.
All the loss links of multiplexers are omitted.

Proof: We only prove the result for the case j ≤ m. The
result for the other case can be shown very similarly.

Suppose that j ≤ m and a packet i is buffered in some 4-to-
1 multiplexer in the j-th group at time t. Let t0 ≤ t be the time
when i entered this multiplexer for the last time. During the
time interval between t0 and t, since the multiplexer is non-
empty, there is always a packet departing from the multiplexer
in the FIFO order according to (M2) and (M4). So we have
t − t0 ≤ Bj − 1. Otherwise, i should leave the multiplexer
before t. Another key observation is that the priority order of
any packet can only change by one in a time slot. This implies
that

|ri(t)− ri(t0)| ≤ t− t0 ≤ Bj − 1. (14)

Since 2j−1 ≤ ri(t0) ≤ 2j − 1 according to the routing policy
(R), we have (12) immediately.

Lemma 2. No collision can happen under the proposed
routing policy (R).

Proof: According to (11) and Lemma 1, it is straight-
forward to check that every packet entering the j-th group
of multiplexers can only come from the input link of the
switching system, the output links of the (j − 1)-th group of
multiplexers, the output links of the j-th group of multiplexers,
or the output links of the (j + 1)-th group of multiplexers, if
any. So there are at most 13 packets entering the j-th group
of multiplexers at the same time under the routing policy (R).
Clearly, there is no collision as the j-th group of multiplexers
has 16 input links in total.

Now we establish the main result.

Theorem 3. Starting with an empty buffer, the proposed
switching system is an optical priority queue with buffer
3× 2m−1 − 2.

Proof: We first show that the proposed system satisfies

the flow conservation property (P1). According to Theorem 2,
we only need to show that no packet is dropped by any 4-to-
1 multiplexer in the system. Consider an arbitrary j-th group
of multiplexers such that 2 ≤ j ≤ m (the case j = 1 is
trivial while the case j > m can be shown similarly). Since
the buffers of the four 4-to-1 multiplexers are almost equally
used, according to the routing policy (R), if there is a packet
dropped by some 4-to-1 multiplexer in the group, then all the
four buffers must be full at that time. However, this could not
happen as the four buffers have a total size of 4 × Bj = 2j

but there are at most 2j − 2 packets that can be stored in this
group according to Lemma 1. Therefore, (P1) always holds.

Now we prove this result by induction. Suppose that the
proposed system emulates the priority queue with buffer 3×
2m−1 − 2 up to time t. Trivially, this holds for t = 0. We
will show that it also emulates the priority queue with buffer
3× 2m−1 − 2 at time t + 1.

We first show that (P2) and (P4) hold at time t+1. Without
loss of generality, we suppose that c(t + 1) = 1. By the
induction hypothesis, we can assume that there is a departure
packet at time t. If there is only one packet in the system at
time t, then (P2) and (P4) hold at time t+1 directly. Otherwise,
there is a packet i such that ri(t) = 2. If there is an arriving
packet with higher priority than i at time t+1, then the packet
will depart immediately according to the routing policy, so
(P2) and (P4) are satisfied. Otherwise, ri(t+1) = 1. According
to Lemma 1, i must be stored in the second group or the third
group of multiplexers at time t. For the former case, i will
depart from the second group at t+1 and thus depart from the
switching system according to (R). For the latter case, i will
also depart from the third group at t+ 1. Otherwise, i should
have a priority order of at most 3 at the time it entered the
third group for the last time since B3 = 2, which contradicts
with the routing policy (R). In all cases, we have shown that
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Fig. 5. A simplified 4-to-1 multiplexer. Here we omit all the loss links.

(P2) and (P4) hold at time t + 1. By conducting a similar
argument, we can show that (P3) and (P5) also hold at time
t + 1. The proof is accomplished.

D. Design of 4-to-1 Multiplexers and The Complexity

The design cost of our construction depends on how to
construct 4-to-1 multiplexers with SDL. As demonstrated in
the above analysis, some requirements of the used 4-to-1
multiplexers could be relaxed. First, any 4-to-1 multiplexer
with buffer Bj could be replaced by a 4-to-1 multiplexer with
buffer larger than or equal to Bj . Second, as no packet would
be dropped by any 4-to-1 multiplexer, we may use simplified 4-
to-1 multiplexer instead, for which it is unnecessary to satisfy
the property (M3) strictly. A simplified 4-to-1 multiplexer with
buffer B can be constructed by concatenating three 2-to-1
multiplexers with buffer B. See Fig. 5 for an illustration. Due
to the space limitation, we omit the details here. In [9], Chou
et al. proposed an efficient construction of 2-to-1 multiplexers
with buffer at least B with an (M + 2) × (M + 2) crossbar
switch and M fiber delay lines, where M = dlog2(B + 1)e.
Based on this, we can have the following construction cost.

Theorem 4. A priority queue with buffer size B = 3×2m−1−
2 can be constructed with a (32m−14)×(32m−14) crossbar
switch, forty-eight 3×3 switches, twenty-four (j+1)×(j+1)
switches for each j = 3, . . . ,m−1, twelve (m+ 1)× (m+ 1)
switches, and 12(m2 − 2m + 3) fiber delay lines.

Despite we use many switches in our construction, one can
combine all these switches into one for the possible reduction
of the hardware cost. We thus have the following theorem.

Theorem 5. A priority queue with buffer B = 3×2m−1−2 can
be constructed with a (12m2 +56m−2)× (12m2 +56m−2)
crossbar switch and 12(m2 − 2m + 3) fiber delay lines.

In other words, a priority queue with buffer size B can be
constructed with an (M + 2)× (M + 2) crossbar switch and
M fiber delay lines where M = O(log2 B), or equivalently,
B = 2Ω(

√
M).

Remark 1. The construction cost of our priority queues
can be reduced by, e.g., replacing the first/last group of
multiplexers by a single fiber delay line, or replacing one of
the 4-to-1 multiplexers in each group by a 2-to-1 multiplexer
with the same buffer size (see the proof of Lemma 2), but our
result will not change in the order sense.
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