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Abstract

Node failures are inevitable in distributed storage systems (DSS). To enable efficient repair when faced with such
failures, two main techniques are known: Regenerating codes, i.e., codes that minimize the total repair bandwidth;
and codes with locality, which minimize the number of nodes participating in the repair process. This paper focuses
on regenerating codes with locality, using pre-coding based on Gabidulin codes, and presents constructions that utilize
minimum bandwidth regenerating (MBR) local codes. The constructions achieve maximum resilience (i.e., optimal
minimum distance) and have maximum capacity (i.e., maximum rate). Finally, the same pre-coding mechanism
can be combined with a subclass of fractional-repetition codes to enable maximum resilience and repair-by-transfer
simultaneously.

I. BACKGROUND
A. Vector Codes

An [n, K, dwin, o] vector code over a field I, is a code C of block length n, having a symbol alphabet [y for
some « > 1, satisfying the additional property that given c,c’ € C and a,b € F, ac + bc’ also belongs to C. As a
vector space over [Fy, C has dimension K, termed the scalar dimension (equivalently, the file size) of the code and
as a code over the alphabet F f;, the code has minimum distance dp;y,.

Associated with the vector code C is an F,-linear scalar code C(®) of length N = na, where C(*) is obtained
by expanding each vector symbol within a codeword into « scalar symbols (in some prescribed order). Given a
generator matrix G for the scalar code C(®), the first code symbol in the vector code is naturally associated with
the first o columns of G etc. We will refer to the collection of o columns of G associated with the i™ code symbol

c; as the 7™ thick column and to avoid confusion, the columns of G themselves as thin columns.

B. Locality in Vector Codes

Let C be an [n, K, dmin, @] vector code over a field F,, possessing a (K x na) generator matrix G. The i code
symbol, ¢;, is said to have (r,d) locality, § > 2, if there exists a punctured code C; := C|g, of C (called a local
code) with support S; C {1,2,--- ,n} such that

e 1 €5,

. |Sz’ <np:=r+4d—1, and

b dmin (C|S7) > J.

The code C is said to have (r,d) information locality if there exists | code symbols with (r,d) locality and
respective support sets {S;}!_, satisfying

o Rank(G|y_s,) = K.

The code C is said to have (r,d) all-symbol locality if all code symbols have (r,d) locality. A code with (r,0)
information (respectively, all-symbol) locality is said to have full (r, d) information (respectively, all-symbol) locality,
if all local codes have parameters given by |S;| =7+ 6 — 1 and dyn (C;) =6, fori =1,--- L.

The concept of locality for scalar codes, with § = 2, was introduced in [1]] and extended in [2]] and [3] to scalar
codes with arbitrary §, and vector codes with § = 2, respectively. This was further extended to vector codes with
arbitrary ¢ in [4] and [5]], where, in addition to constructions of vector codes with locality, authors derive minimum
distance upper bounds and also consider settings in which the local codes have regeneration properties.
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Consider now a vector code C with full (r, §) locality whose associated local codes C; have parameters [nr,, K1, d].
In this paper, we are interested in local codes that have the uniform rank accumulation property, in particular, local
MBR codes and local fractional-repetition codes.

Definition 1 (Uniform rank accumulation (URA) codes). Let G be a generator matrix for a code C, and S; be an
arbitrary subset of i thick columns of G, for some i = 1,--- ,n. Then, C is an URA code, if the restriction G|s, of
G to S;, has rank p; that is independent of the specific subset S; of i indices chosen and given by p; = 2}21 a;
for some set of non-negative integers {a;}.

We will refer to the sequence {a;,1 < i < n} as the rank accumulation profile of the code C.
We now present the minimum distance upper bound given in [4] for the case when local codes are URA codes.

Consider the finite length vector (ai,az,--- ,an, ), and its extension to a periodic semi-infinite sequence {a;}>°,
of period ny, by defining a;4jn, = a;, 1 <i<ng, j>1. Let P(-) denote the sequence of partial sums,
S
> ai, s>1 1)
i=1

Then, given integers uy > 0, 1 < wug < ng, Pluing + up) = u1 K + P(ug). Next, let us define the function
P(m) by setting PU™) (), for v > 1, to be the smallest integer s such that P(s) > v. It can be verified that for
vlzoandlgvogKL,

P(inv) (UlKL + 1}0) = wuinyg + P(inv) (Uo),

where P™)(vg) < ras 1 <wvg < K.
The minimum distance of a code C whose local codes C; are URA codes can be bounded as follows.

Theorem L.1 (Theorem 5.1 of [4]). The minimum distance of C is upper bounded by
dpin < n— P(inv) (K) + 1. )

The codes achieving the bound in (2)) are referred to as codes having optimal locality. For such locality optimal
codes, one can then analyze whether the code allows for efficient data storage in DSS. Towards this end, file size
bound for codes with locality are given in [3] using the min-cut techniques similar to that of [3]]. As noted in [4]],
when URA codes are used as local codes, the file size bound for d,j,-optimal codes can be represented in the
form

K < Pn—dpn+1)

_ U - “““Jrl-‘—l)KLJrP(lo), 3)

where [y € {1,--- ,nz} is such that

— Umin 1
n— dmin +1 = (’Vnd—i_—‘ —1>TLL—|—Z().
nrL

We note that P(ly) = P(r), for r < .

C. MBR Codes

n ((n,k,d), (o, 8), K) minimum-bandwidth regenerating (MBR) code is an [n, K, dynin = n — k + 1, a] vector
code satisfying additional constraints described below. The code is intended to be used in a distributed storage
network in which each code symbol is stored within a distinct node. The code is structured in such a way that
the entire file can be recovered by processing the contents of any k, 1 < k < n nodes. Further, in case of a
single node failure, the replacement node can reconstruct the data stored in the failed node by connecting to any
d, k <d < n—1, nodes and downloading 8 = % symbols from each node. The scalar dimension (or file size)

parameter K can be expressed in terms of the other parameters as:

- o ()



as proved in [6]. A cut-set bound derived from network coding shows us that the file size cannot be any larger, and
thus, MBR codes are example of regenerating codes that are optimal with respect to file size. A regenerating code
is said to be exact if the replacement of a failed node stores the same data as did the failed node, and functional
otherwise. We are concerned here only with exact-repair codes. Constructions of MBR codes forall k < d =a <n
and 8 = 1 are presented in [7]. MBR codes with repair by transfer and d = n — 1 are presented in [8]].

It can be inferred from the results in [§]] that MBR codes are URA codes. In particular, for an ((n, k, d), («, 8), K)
MBR code, the rank accumulation profile is given by

%—{ 0, k+1<j<n. @

D. MBR-Local Codes
Let C be an [n, K, dyin, & vector code with

o full (7, 0)-information locality with § > 2, and
o all of whose associated local codes C;,i € £ are MBR codes with identical parameters ((ny = r + 0 —

L,r,d), (o, B), Kr).
Then, the dimension of each local code is given by

Kp = Y a; = ar- <;>57 ®)

where {a;,1 <1i <mnp} is the rank accumulation profile of the MBR code C.
1) Minimum distance bound for MBR-Local Codes: As MBR codes are URA codes, from Theorem .1, we have

dinin <1 — POV(K) 41, (6)

where, for MBR codes we have .
PU™ (0 K +vp) = ving, + v (7N

for some v; >0, 1 < vy < K, and v is uniquely determined from o (v — 1) — (”51)5 <vg < oav— (;)B
2) File size bound for MBR-Local Codes: From (3)), the file size bound for an optimal locality code with MBR

local codes is given by
- dmin 1
nr 2

where = min{ly,r} with [y as defined in Subsection Note that (§) follows from the rank accumulation
profile of MBR codes, i.e., from ().

E. Linearized Polynomials
A polynomial f(x) over the field Fy, is said to be linearized of g-degree t, if

t

flx) = Zuixqi , Uy € Fgm, uy # 0. )

i=0
A linearized polynomial f(x) over Fym satisfies the following property [9]:
Fb1 + Xala) = Aif(6h) + Aaf(02)
V01,00 € Fgm, A\, A2 € Fy. (10)

A linearized polynomial f(x) over Fym of ¢g-degree ¢, m > t, is uniquely determined from its evaluation at a set
of (t+ 1) points g1,- -, g¢4+1 € Fgm, that are linearly independent over F,.



F. Gabidulin Maximum Rank Distance Codes

Now, we present a construction of maximum rank distance codes, provided by Gabidulin in [10]. This codes can
be viewed as a rank-metric analog of Reed-Solomon codes.

The rank of a vector v € I N , denoted by rank(v) is defined as the rank of the m x N matrix V over F,
obtained by expansion of every entry of v to a column vector in F¢*, based on the isomorphism between Fym and
[Fy". Similarly, for two vectors v,u € IFAL, the rank distance is deﬁned by dr(v,u) = rank(V — U).

An NV, K, D]gm rank-metric code C C IE‘/\C is a linear block code over Fym of length A, dimension K and
minimum rank distance D. A rank-metric code that attains the Singleton bound D <N — K +1 in rank-metric is
called a maximum rank distance (MRD) code. For m > N, a construction of MRD codes, called Gabidulin codes
is given as follows [10].

A codeword in an [N, K, D = N — K + 1], Gabidulin code C?*, m > N, is defined as

¢ = (f(61), f(62),.... f(Ow)) € FJ, (11)
where f(z) is a linearized polynomial over Fyn of g-degree at most K — 1 with the coefficients given by the
information message, and where the 01,...,0x € [Fyn are linearly independent over I, [10].

II. CONSTRUCTION OF CODES WITH MBR LOCALITY

In this section, we will present two constructions of codes with local regeneration. In both cases, the local
codes are MBR codes with identical parameters and both codes are optimal, i.e., they achieve the upper bound of
Theorem on minimum distance. The first construction is an all-symbol locality construction, while the second
has information locality.

The constructions presented in this paper, adopt the linearized polynomial approach made use of in [L1], [12],
[S]. In particular, similar to the constructions proposed in [12], [S]], the constructions of this paper have a two-step
encoding process with the first step utilizing Gabidulin codes, which in turn, are based on linearized polynomials.
The first code construction given below also proves the tightness of the bound on minimum distance of codes with
URA derived in [4] (Theorem 5.1) for the case when K, 1 K, where K, is the scalar dimension of the local MBR
code.

Consider a code Cgagc that is simply the concatenation of ¢ local MBR codes having identical parameters
((ng,k,d), (c, 8), K1). Thus a typical codeword ¢ € Cgagc looks like

c = (crlnbr CI211b1' Ciﬂbr),

where each vector ¢ mbr is a codeword belonging to the MBR code. The generator matrix Gpg,gc of the code will

clearly have a block diagonal structure. It is straightforward to show that the smallest number p, such that any p
thick columns of Gpagc have rank > K is given by P(i“V)(K), for any 1 < K <tK7.

Construction ILI.1. We will describe the construction by showing how encoding of a message vector takes place.
The encoding is illustrated in Fig. Given the message vector u € Fé{m we first encode u to a tKj long
Gabidulin codeword using tKy, linearly independent points (over Fy) {01,0s,...,0k, } C Fym, ie., by applying
an [tKy, K, tKj — K 4 1]g» Gabidulin code, assuming m > tKy. We then partition tKy, symbols of the Gabidulin
codeword, (f(01), f(02),...,f(0ik,)), into t disjoint sets of K1 symbols each. Each of these sets is then fed in
as a message vector to a bank of t identical MBR encoders whose outputs constitute ((nr,,r,d), (o, 8), K1) MBR
codes. If {c?‘br li=1,2,... ,t} is the resulting set of t codewords, these codewords are then concatenated to
obtain the desired codeword c. The code C thus constructed has:

o length n =tny,

o tlocal ((ng,r,d),(c,B), K1) MBR codes with disjoint supports

e full (r,0) all-symbol locality where ¢ is defined from np, =r +§ — 1.

Theorem IL.2. Given any set of parameters n,r,d, K, such that n = tn; and K < tKy, the construction
yields an optimal MBR-local code with full (r,¢) all-symbol locality whose minimum distance is given by

dmin =n — P™(K)+1.
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Fig. 1. Illustrating the two-step construction of the all-symbol MBR-local code.

We first present a useful lemma on codes that are obtained by concatenating a Gabidulin code (over F,~) with
a vector code (over F,).

Lemma IL3. Let G be the generator matrix of an [n, J, dwmin, ] vector code over the field F,. Let J be an integer
such that J < J. Let p be the smallest integer;, such that the submatrix of G obtained by selecting any p thick
columns of G results in a matrix of rank > J. Let

J-1
flz) = Zuiqu,ui €Fym, m>J,
=0

be a linearized polynomial of q-degree at most J — 1 over the extension field Fym, for m > J. Let {91-};7:1 be any
collection of J elements of Fym that are linearly independent over F,. The mapping

(u(]vulv"' au]_l) - (f(el)mf(g?)a vf(eJ))G

defines a linear code C over Fym having message vector (ug,ui,- - ,u jfl)‘ Then C has minimum distance D
given by
Dmin = n—p+ 17

i.e., Cis an [n,J, Duin] code over Fym.

Proof: Since f(-) is linearized, we can interchange linear operations with the operation of evaluation:

(f(01) f(02) -~ f(00)G = [f((61b2---0,)G).

We have extended here the definition of f(-) to vectors through termwise application. Consider next, the matrix
product

I = [0 6 0)]G.

In writing this, we have abused notation and identified elements in F,~ with their representations as vectors over
Fq lying in Fi*. The m x J matrix [01 O2---0;] on the left has the property that all of its columns are linearly
independent. Hence linear dependence relations amongst columns of I' are precisely those inherited from the matrix
G. It follows that p is also the smallest number, such that any p thick columns of the product matrix I" have rank
> J. Since f (+) is uniquely determined by its evaluation at a collection of J linearly independent vectors lying in
', it follows that the maximum number of erasures that the code C can recover from is given by n — p. Then,
we have

Dpin = n—p+1.



Proof: (of Thm. Let Gpagic be the generator matrix of the code that is simply the disjoint union of the
t MBR codes. As it was explained previously, the smallest number p of thick columns of Gy,gc such that any p
columns of Ggsgc have rank > K is given by P(i“V)(K ). It follows therefore from Lemma (by substituting
J=K , J = tK and also assuming that G, is over ;) that the code has minimum distance given by

dmin = n — P™(K)+1,
hence the code attains the bound of Theorem and thus, optimal. [ ]

Remark 1. We note that whenever K = v1 Ky, + vy, v1 > 0, 1 <wvg < Ky, is such that vg = va — (;)Bfor some
1 < v < 1, then the code constructed by Construction has maximum possible scalar dimension given in (8)).
This observation holds for the code we will construct using Construction as well.

Construction I1.4. We describe here a method by which we construct a code of length n = tnp + A, with
(r,0) information locality for scalar dimension K < tK|. Given the message vector u € Fgfn, we first encode
u to a tKy, + Aa long Gabidulin codeword using a [tKy + Ao, K, tK, + Aa — K + 1]g» Gabidulin code, for
m > tKp + Aa. We then divide the first tKy symbols of the Gabidulin codeword into t disjoint groups of equal
size and encode each of these t groups using an ((np,r,d), («, 3), K1) MBR code (similar to the second step of
encoding in Construction [[I1). This gives us a code of length tny, with MBR all-symbol locality, whose elements

are {C;»nbr li=1,2,..., t}. We then partition the remaining Ao symbols of the Gabidulin codeword into A equal
sets and denote the i set by cy,, +i. The construction outputs (crlnbr, e CPT L Cin, 1 A) as a final

codeword. The resultant vector code C has:
o Lengthn=tny + A
e tlocal ((ng,r,d), (e, B), K1) MBR codes with disjoint support
e full (r,0) information locality

Theorem IL.5. Given any set of parameters n,r, 6, K, such that n = tny, + A and K < tKy, Construction
results in an optimal MBR-local code with (r,0) information locality whose minimum distance is given by

dmin =n — P™(K) +1.

Proof: The proof follows along the same lines as the proof of Theorem [I1.2 [ ]

III. FRACTIONAL-REPETITION CODES AS LOCAL CODES

In this section, we discuss the usage of fractional repetition (FR) codes as local codes in Constructions [II.1
and FR codes can be viewed as a generalization of repair-by-transfer MBR codes, where a repair process is
uncoded and table-based, i.e., FR codes have a “’repair-by-transfer” property, while only specific sets of nodes of size
d participate in a node repair process. For the sake of completeness, we provide an overview of the ¢-design-based
construction for FR codes presented in [13

Let ¢,n,w, \ be integers with n > w > ¢t and A > 0. A ¢-(n,w, A) design is a collection B of w-subsets (the
blocks), of an n-set X (the points), such that every t-subset of X’ is contained in exactly A blocks. Let x1,...,xy € X
be a set of ¢ points. We denote by A the number of blocks containing x1,...,zs, 1 < s <t. Then,

(i=2) .

(+22)

the number of blocks in the ¢t-design is b = A\g = )\(?) / (1:), and each point in X is contained in A\; blocks where
A=A/ (65 Bl

Construction IIL.1. Let By,..., By € BB be the blocks and x1, ... ,x, € X the points of a t-(n,w, \) design. Then

the n nodes of a FR code C' are given by the points of the design, i.e., a node N contains o = \; symbols given
by N; = {j : x; € Bj}. Note that the cardinality of an intersection of any s < t nodes are given by the numbers ),

As = A

"The construction in [13]] sets t = 2 and A\ = 1; and the corresponding codes are called transposed codes.



Node A |1 3 4

NodeB |1 2 5
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[7,5,3] g ~m > NodeD (3 5 7
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Fig. 2. Fractional Repetition Code based on 2 — (7,3, 1) design.

Fig. 3. Fano Plane, a 2 — (7,3, 1) design.

and hence the cardinality of a union of any s <t nodes can be easily derived by the inclusion-exclusion formula.
Let k, K be two integers such that k <t and

k—1 k
U Nl < K <Nl (12)
=1 =1

Then we have an FR code over an alphabet of size b, with the property that there exists a set of d nodes which
can repair a failed node and from any set of k nodes one can reconstruct the original K symbols.

Given a message vector [mj mo ---mg|, we encode the message symbols first by using an [b, K,b — K + 1]
MDS code to produce b coded symbols (c1, co---cp) and then by employing the FR code based on the t-design
to produce n nodes each containing A\ symbols.

This family of FR codes based on ¢-designs is also an example of codes with uniform rank accumulation, and
thus the bound of Theorem |I.1| can be used here as well. Thus, we have the following result.

Theorem IIL.2. When FR codes based on a t-design obtained by Construction are used as the local codes

in Constructions and then the resulting code with locality attains the bound of Theorem [I.1| on minimum
distance.

An example of an encoding is shown in Fig. |2, where the encoding is done using 2-(7, 3, 1) design, also known
as the Fano plane (see Fig. [3). When we replace a local MBR code with the FR code based on Fano plane in
Fig. |1} we obtain a code with locality which has the optimal minimum distance.
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