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Abstract—This paper considers the queueing performance of exponential rate at which the error probability decays with
a system that transmits coded data over a time-varying erase  plock length, known as the error exponent, as a function of
channel. In our model, the queue length and channel state jhormation rate. The concept of a reliability function can

together form a Markov chain that depends on the system . .
parameters. This gives a framework that allows a rigorous also be extended to variable-length codes in the presence of

analysis of the queue as a function of the code rate. Most prio feedbackl[4]. More recently, consideration has been gigen t
work in this area either ignores block-length (e.g., fluid malels) or the reliability function for bits with fixed delay, as oppas®
assumes error-free communication using finite codes. Thisark  coded blocks, in the presence of feedback [5].

enables one to determine when such assumptions provide good  \yjle remarkable, these results remain asymptotic in eatur

or bad, approximations of true behavior. Moreover, it offers a dd t i t I h behavi d
new approach to optimize parameters and evaluate performate. and do not necessarily capture overall system behavior ade-

This can be valuable for delay-sensitive systems that empishort ~ quately. For delay-sensitive applications and short coddsy
block lengths. three interrelated effects come into play. The probabitity

decoding failure for every codeword is not negligible. Reck
retransmissions lead to queue buildups at the source and,
Forward error-correcting codes have played an instrumenjgereby, induce longer latencies. Channel correlation tive
role in the many successes of d|g|t_al_c0mml_m|cat|ons OVgltroduces dependencies among successive decoding &temp
the past decades|[1]. The fact that it is possible to transmjhich further perturb queueing behavior and end-to-endydel
digital information reliably at a positive rate over an uokm  This is especially true when decoding failures are likely to
noisy channel is now universally acknowledged [2]. The magcur in sequencé[6]. Thus, a queueing analysis is negessar
cost of improving reliability is the use of increasingly ®n when considering the behavior of communication systems
codewords|[[B]. One situation where the valuable lessons s‘lfbject to very stringent delay requirements.
classical coding theory may not apply directly is the gehera por delay-sensitive systems with short codewords, the nat-
area of delay-constrained communications. If system spegja| tradeoff between code-rate and probability of decgdin
fications dictate that almost all information bits should bgjure is hard to characterize [7]. In a non-asymptotidres
made available at the destination shortly after they aiirivgyhere information is queued at the source, transmitting dat
at the transmitter, it may not be possible to aggregates@ a rate slightly below Shannon capacity may lead to poor
large number of them before encoding and transmission. darformance. Recent results in the literature hint at te fa
some cases, stringent delay requirements will force a systehat, for delay-constrained communication, optimal coate-
designer to resort to short block codes or short constraigkiection depends heavily on block-length and channekeorr
length convolutional codes. lation [8], [9]. These findings are especially importantfeal-
From a coding perspective, using short codewords on Chafie traffic and live interactive sessions, as these apjiics
nels with memory creates two impediments. First, decodefg sensitive to latency and require the use of short codsvor
are designed to correct the most-likely error patterns andgyigelines for code-rate selection in the context of delay-
the probability of seeing atypical error patterns cannot R@sitive traffic were previously obtained for an erasumneh
neglected for short block lengths. Second, if the coherenggy \ith memory [10]. The approach favored therein, which
time of the channel is longer than a codeword transmissigarmits a complete characterization of queueing behavior,
interval, then optimal code rate may depend heavily on thgnsists in building a Markov model for the evolution of
channel state, which is unknown to the transmitter. Togethg,e system. Crucial assumptions that facilitate analyais c
these factors impair the rapid transmission of information pe symmarized as follows: the packet arrival process at the
Coding performance as a function of block-length and codggrce is Bernoulli, the packet lengths are i.i.d. geomgtiie

rate has been assessed in the information theory literatgrgy, protection uses random codes, and the channel evoluti
using the reliability function[[3]. This criterion focuses the g governed by a Markov chain.

This material is based upon work supported, in part, by théioNal In this article, we adopt a similar formulation and extend
Science Foundation (NSF) under Grant No. 0830696, by thasTédorman results that were obtained for the correlated erasure caae t
Hackerman Advanced Research Program under Grant No. O@ESE2 mgre encompassing Gilbert-Elliot framework. This lattkass
2007, and by Qatar Telecom (Qtel). Any opinions, findings)abasions, and . .
recommendations expressed in this material are those duti®rs and do Of. erasure channels is common tq the literature on Cha.'n'?]els
not necessarily reflect NSF's, THECB's or Qtel's views. with memory, and subsumes earlier work based on similar
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’ 1 1 A. Distribution of Erasures
3
e 2 © A quantity that is of fundamental importance in our analysis

is the conditional probability of decoding failure at thestie
nation. An intermediary step in identifying this probatyilis

1 1 to derive an expression fdr, the number of erasures within a
° b e codeword of lengthV. This, in turn, depends on the number
‘ 0 0 of visits to each state withitN consecutive realizations of the

channel. More specifically, we are interested in conditiona
Fig. 1. A Gilbert-Elliot bit erasure channel is employed tmdel the probabilities of the form
operation of a communication link with memory. This modeptcaes both
the uncertainty associated with transmitting bits over &y@hannel and Pr(E =e.C —dlc, =¢ 2
correlation over time typical of several communication raels. ( PN+ | 1 )’ ( )

wheree € Ny and ¢, d € {b,g}. The generating function

concepts. We also present an in-depth analysis of systéhthese conditional probabilities is based on generajizhe
performance using different criteria that reflect the neefls €ntries ofP to the vector space of real polynomialsanwith
various contemporary applications. This research is Bagmit [ (=)l —ep+ep) a(l — ey + epx)
because it offers a new perspective on the selection of codBs = B(1 — g4+ 42) (1-8)(1—¢g,4+e42)

rate and block-length for delay-sensitive systems andigesv
a rigorous investigation into the effects of time-corrielaton

the queued performance of real-time wireless connections.

Let [27] be the operator which maps a polynomialinto
the coefficient ofx?. Then, the conditional probability](2) is
given, in terms of thevth power of P, by

Pr(E =e,Cny1 = d|C) = ¢) = [«°] [PY

II. CHANNEL ABSTRACTION AND CODING }
z leyd”

Throughout, we assume that coded bits are sent from the o _
transmitter to the destination over a Gilbert-Elliot emasu It is worth mentioning that one can employ this method or
channel. This channel can be in one of two stategoad alternative combinatorial means to obtain closed-fornresp
Stateg in which every bit is erased with probab”ﬁyg and sions for the desired conditional probabilities [1'.] [10]

a bf_;ld stateb in which every bit is erase_d with proba_bilityB_ Probability of Decoding Failure
ey, independently of other bits. Our naming scheme implies : o . .
o . During every transmission, a segment/ofinformation bits
€y > €4. Transitions between channel states occur accord'ggencoded using a code defined by a random paritv-check
to a Markov process. The probability of transitioning taeta 9 y pary

given that the Markov chain is currently in stdtés denoted matrix H.Of size (N —K) x K, .where each matrix entry is
by «. The likelihood of the reverse transition fromto b selected independently and uniformly frof, 1}. Maximum

: : . . likelihood decoding is used at the destination.
is symbolized bys. Under alphabetical state ordering, the Random coding has the benefit that the probability of

parameters of this Markov chain can be expressed in the fo(%]coding failure depends only on the number of erasures

of a probability transition matrix, and not on the locations of the erasures. Consequently, the
P— { l-a « ] L decoding failure probability is a function of the number of
g 1-p erasurest in the block. Once the value df is known, we
A graphical interpretation of the communication channelem ¢an derive the desired probability as follows. Conditiomed
consideration appears in Fig. 1. E =e, deco_dlng at the destination \_NlII succeed if and only if
The state of the channel at timeis a random variable, the submatrix ol formed by choosing the erased columns
which we denote byC,,. Moreover, the succession of state§aS ranke [12]. Furthermore, the probability that a random
over time, {C,, : n € N}, forms a Markov process. Finding¢ * P matrix over 5, wherep = N—K:tlands for the
the conditional probabiliPr(C,+; = d|C,, = ¢) amounts to Number of parity bits, has rankis equal to] [;~, (1 — 2'77).
selecting an entry i®. Likewise,Pr(Cy .,y = d|C,, = ¢) can Thus, givene erasures W|_th|n a codeword of length, the
be obtained by locating the corresponding entryPiff, the Probability of decoding failure can be written as

Nth power of P. We note that this Markov chain converges to el _
its stationary distribution at an exponential rate thatetefs R(N-K.e)21-]] (1 - 21*(N*K)) .
on the second eigenvalue Bf (i.e. 1 — a — f3). i=0
In our analysis, a packet of length is sectioned into\/ The average probability of decoding failure at the destina-

data segments each containig information bits. Packing tion is therefore equal td?(N — K) £ E[P; (N—K, E)],

loss is treated implicitly since the last data segment oheawhere the expectation ovéf depends implicitly on all pos-
packet is zero padded t& bits. Every segment is encodedsible channel realizations within a block. While the averag
separately into a codeword of lengtf, which is subsequently probability of decoding failure offers a good measure of-per
stored in the queue for eventual transmission over the @&ilbeformance, it alone does not capture the queueing behavior of
Elliot erasure channel. Decoding failures are handledutino the system. Indeed, correlation among decoding-failuemisv
immediate retransmission of the missing data. may also alter the behavior of the queue at the transmitter.



Il1. ARRIVAL AND DEPARTUREPROCESSES IV. QUEUEING BEHAVIOR

Having introduced a precise model for the physical layer, we The number of data packets in the queue at the onset of
turn to the description of the arrival and departure progesslock s is denoted byQ,. The state of the Gilbert-Elliot
at the queue. In our framework, the block-length, which wehannel at this same instant is represente@ly. ;. Together,
denote byN, remains fixed throughout and every codeworthese two quantities form the state of our Markov process,
transmission requiresV consecutive uses of the channel/, = (Csyy1,Qs). We emphasize that the cardinality of this
Each data packet is broken into length-data segments state space is countable, with, belonging to{b, g} x No.
that are separately encoded into blocks. In terms of syst@urthermore, the Markov chain underlying the evolution of
characterization)N is fundamental in that it determines thepur system possesses a special structure; it forms an aestan
sampling period of our Markov chain. of a discrete-timejuasi-birth-death process. Fortunately, there
We assume that the packet arrival process is i.i.d. Bemoulke many established techniques to study such mathematical
with parametery. This implies that, during each codewortbbjects. We present one possible approach in SeEfionl IV-A.

transmission interval, a new packet arrives at the sourceThe transition probability froni/, to U, is given by
with probability v. The number of bits in each data packet
is assumed to be an i.i.d. random process whose marginal P¥(Us+1 = (d: 4s+1)|Us = (¢,5))

distribution is geometric with parameter. Therefore, the = Z Pr(Qs+1 = gs+1|F =€,Qs = qs5) X 3)
probability that a packet contains exacthpits becomes e€Ng
Pr(L=0)=(1-p)"1p (=1,2,... Pr(E =e,Clynyns1 = d|Cini1 =)

wherep € (0,1). These assumptions on the structure of thidecall that a methodology was introduced in Secfionlll-A to
arrival process and the packet-length distribution areciatu derive the distribution of £, C(.y1)v 1) conditioned on the
for the construction of a tractable Markov model for ouvalue ofCsy1. Obtaining expressions for probabilities of the
communication system. They enable a rigorous analysiseof #P€ Pr (Qs11 = ¢s41|E = e, Qs = ¢5) remains.
queue and lead to meaningful guidelines for system design an We first consider conditional even{); = ¢} for which
optimization. gs > 0; admissible values fo€),; are then limited to values

Departures from the queue are governed by the underlyifig{¢s — 1,¢s,¢s + 1}. Two factors can affect the length of
Gilbert-Elliot channel and the design-rate= K/N of our the queue, the arrival of a new data packet and the completion
random linear code. The number of information bits cont@in@f a packet transmission. The latter occurrence will onketa
in every codeword is therefod€ = N. A low-rate code will, place if a codeword is successfully decoded at the destimati
in general, have a smaller probability of decoding failurart and the head packet has no additional data segment left at the
the same system with a higher rate code. Still, the sucdessfaurce. Keeping these facts in mind, we get
decoding of a Codeyvo_rd associated with a high-rate co_dpr (Qus1 = gs + 1|E = €,Qs = gs)
leads to the transmission of a larger amount of data bits.
These competing considerations create a natural tradeeff b~ V(B(N=K,e) + (1 - B(N=K,e)(1 = pr))
tween information content and probability of decodingufedl.  Pr(Qs+1 = ¢s|E =¢,Qs = ¢5) = v (1 — (N —K,¢)) pr
Acf:cordi?gly,b?thech_)de—rate, or teql:::/atler;]tly It:% numtpe_r OL + (1 =) (PA(N-K,e)+ (1 - P(N—-K,e))(1— p,))
information bitsK, is a parameter that should be optimized. _ _ _

Once a code rate ispselected, the number of SFL)JCCGSSfU|]|§Ir(Qs+1 =t 1P =eQ=q)
decoded codewords needed to complete the transmission of a — (1 =71 = B(N-K,e))p.
given packet isM = [L/rN]. SinceL is geometric, we find when the queue is emptyQ, = 0}, only two possibilities
that M also has a geometric distribution, albeit with parametean occur,

rIN
o = Z(l ) lp=1-(1-p)V. Pr(Qst1 =1|E=¢,Qs=0) =7
-1 Pr(Qs4+1 =0E=¢,Qs=0)=1—1.

The probability that a data packet requires the success&g

. . . llecting th findi d usirld (3), tth bili
transmission ofn data segments of sizeV is equal to ecting these findings and usirid (3), we get the probigbili

transition matrix of the Markov procesd/;}. A graphical
Pr(M =m) = (1—p)" ' p, m=1,2,... rendition of the state transitions appears in Eig. 2.

For a head packet to depart from the queue, the destinatior;rO proceed with _the analysis Qf_ our q“e“efj, .sy.stem, a
must successfully decode the most recent codeword it reateiv.comngt representation of the conditional probap|l|t|eﬁ;rcdad
and this codeword must carry the final segment of informatiéﬁ @ IIIS a_propost.hFoq te NI an;:i i_’ d € {b, g}, we introduce
corresponding to this packet. Implicit to our system model fhe following mathematical notation,

the ability of the defstination to acknowledge the recepttiba_ _ frea = Pr(Usi1 = (d,q — 1)|Us = (¢,q))

codeword through instantaneous feedback. Based on thas sid Ked = Pr(Ussr = (d,q)|Us = (¢,9))

information, the transmitter is able to remove data segment ed = s+ = WD Ys =169

and packets from the queue after successful transmission. Acd = Pr(Uss1 = (d, g + 1)|Us = (¢, q)).



When the queue is empty, the relevant submatrices become

0 0 0 0
| e /\bg _ | Kop  Kog
Cy= N0 )\ C = R

gb 99 gb 99

Note that the Markov chain associated wiff (4) belongs to
the class of processes with repetitive structure. The atig
theorem characterizes its stationary distribution.

Theorem 4.1: Consider a positive recurrent Markov chain
on a countable state space with transition mairixgiven by
(4). Let the positive matribR. be defined as the limit, starting
from Ry = 0, of the matrix recursion

Fig. 2. State space and transition diagram for the aggrepgstaed process
{Us},; self-transitions are intentionally omitted.

Similarly, when the queue is empty, we usl, = Pr(Us 41 =
(d,0)|Us = (¢,0)) and X, = Pr(Usy1 = (d,1)|Us = (c,0)). Rjt1=(Ao+ R?Ag)(l - AL
Collec_twely, th_ese labels define the 12 transition proltits ..Then, thegth-level stationary distributiom, satisfiesry; =
associated with a non-empty queue, and the 8 transmonR for o > 1 with 1 — 7 and

probabilities subject to the non-negativity constrainzaito. Ta 1= =70

We are ready to derive the equilibrium distribution of our Z=(I1-Cp)A;"
system. We note that, if the channel state is ergodic and 5 1
- > WO:{— L}(H—Z(I—R) )

the queue is stable, then the Markov chéiii;} is positive atf ot

recurrent and possesses a unique stationary distribld@jn [ Corollary 4.2: The decay rate of the complementary cumu-

Let U = (C,Q) be a random vector with the following |ative distribution function of the queue satisfies

probability distribution, .
. - S ) —
Pr(U = (¢,q)) = lim Pr(U, = (c,q)) Jxg,7 " logPr(Q 2 7) =log o(R),

We employ the semi-infinite vectar as a convenient notationWhereQ(R) is the spectral radius .

for the equilibrium distribution of our system, with V. PERFORMANCE EVALUATION
_ Pr(C=bQ=¢q) ifi=1 This mathematical characterization makes it possible to
m(2q +1i) = . : o
Pr(C=g9,Q=q) ifi=2, compute a wide range of advanced performance criteria for

, the system under consideration, including average pactat e
for i € {1,2} andg¢ € No. The states{(b,q),(g,4)} are rate and outage capacity. Herein, we focus on two measures
known as thegth level of the Markov chain andry = 4t are most relevant to delay-sensitive communicatieinst,
[(2¢ +1) m(2q +2)] is the stationary distribution associatedye ook at the probability that the queue exceeds a threshold
with the gth level. _ _ Pr(Q > 1), wherer is relatively small. Second, we examine
Using this compact notation, we can write the Chapmagse jecay rate of the complementary cumulative distrilbutio

Kolmp_gorov equations-asT = whereT is th? probability function, as discussed in Corolldry 4.2. Again, we empleasiz
transition matrix associated wifi/; }. One possible approach hat the tail decay in buffer occupancy is given by the domina
to solve for the stationary distribution of our Markov mode igenvalue ofR.

is to employ spectral representation and ordinary gemgyati For illustrative purposes, we select the following parasreet

functions [10]. _In this articlle, we adopt an alternate megams The Gilbert-Elliot erasure channel is defineddy- 0.02, 3 —
apply the matrix geometric method [14]. [15]. 0.005, &, = 0.49, ande, = 0.0025. This generates an average

A. Matrix Geometric Method erasure probability 00.1. The channel memory decays at an
We can represent the probability transition mafiixas a €xponential rate of1 —a — §) = 0.975. The blocklength
semi-infinite matrix of the form is fixed at N = 114 and the arrival process is defined by

C, C, 0 0 -- the arrival probabilityy = 0.25 and average packet length

Ay, A, Ay, O --. p~1 = 195. If codewords are transmitted every 4.615 ms, then

0 Ay, A, Ay --- this corresponds to an arrival rate of roughly 10.6 Kbits/se
T= 0 0 Ay, A, -- ) and an ergodic channel capacity of roughly 22.2 Kbits/sec.

These parameters are selected to loosely match the operatio
of a wireless GSM relay link.

where the submatrice€;, Co, Ao, Ay, and Ay are 2 x 2 System performance as a function of the number of infor-

real matrices. More specifically, we have mation bits per codewordy, is shown in Fig[[B. Each curve
A\ A\ ok represents the complementary cumulative distributioction
Ay = [ /\bb bg ] A, = [ bbby ] evaluated at a different threshold vald(Q > 7).
gb Agg Kgb  kgg

As expected, the probability of the queue exceeding a pre-
Ay = [ Hob  Hbg } . scribed threshold decreasesramcreases. More interestingly,
Hgb  Hgg it is instructive to notice that’ = 83 appears uniformly



Tail Probability, Pr(Q > 7)
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Fig. 3. This figure shows tail probabilities in the equiliom packet distribu-
tion of the queuePr(Q > 7), for threshold values € {5, 10, 15, 20, 25}.
The minimums occur uniformly at/N = 83 for all threshold values.

VI. CONCLUSIONS

This work provides a unified approach that links queueing
performance with the operation of a communication system at
the physical layer. The methodology and results are deeelop
for the Gilbert-Elliot erasure channel, but can be geneedlto
more intricate finite-state channels with memory. For eXamp
the simple performance characterization of random codes ov
erasure channels extends naturally to hard-decision degod
of BCH codes over Gilbert-Elliot error channels. For fixed
parameters, the optimal code rate appears relatively sitsen
to target threshold in the queue. Still, channel memory and
cross-over probabilities can affect this optimal opepoint.
More generally, the optimal code rate seems to be linked to
ratio between the codeword time and the coherence time of
the channel.
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