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Abstract—The covariance evolution is a system of differential solve the covariance evolution analytically, we can detiee
equations with respect to the covariance of the number of eds  variance of the number of check nodes of degree one in the

connecting to the nodes of each residual degree. Solving theyggiqyal graph for alk wheree is the channel parameter for
covariance evolution, we can derive distributions of the nmber the BEC

of check nodes of residual degree 1, which helps us to estineat
the block error probability for finite-length LDPC code. Amr aoui In this paper, we show an analytical solution of the covari-
et al. resorted to numerical computations to solve the cova@nce ance evolution for regular LDPC code ensembles.
evolution. In this paper, we give the analytical solution ofthe
covariance evolution.
1. COVARIANCE EvOLUTION [3]
I. INTRODUCTION . . . . . .
In this section, we briefly review the covariance evolution
Gallager invented low-density parity-check (LDPC) codegndinitial covariance in [3].

[1] in 1963. LDPC codes are linear codes defined by sparsewe consider the transmission over the BEC with channel
bipartite graphs. Luby et al. introduced theeling algorithm  erasure probability using LDPC codes in ab{ d)-regular
(PA) [2], [4] for the binary erasure channel (BEC). PA is apppC code ensemble. Létdenote the iteration round argd

iterative algorithm which is defined on Tanner graphs. PA amk the total number of edges in the original graph. We define
brief propagation (BP) decoder have the same decodingtresgat

As PA proceeds, edges and nodes are progressively removed. t

The residual graphs consist of nodes and edges that are still = ¢ 1)
unknown at each iteration. The decoding successfully lifalts

the graph vanishes. Define a parametey such thatdy/dr = —1/(ey*~!) and

Amraoui [3] showed that distributions of the number off = 1 whenr = 0. Let [,; denote a random variable
check nodes of degree one in the residual graph convergenuasesponding to the number of edges connecting to variable
weakly to a Gaussian as blocklength tends to infinity. Amraonodes of degrekin the residual graph at the iteration round
also showed that block and bit error probability of finitedéh Letr, ; denote a random variable corresponding to the number
LDPC codes are derived by the average and the varianceobfdges connecting to check nodes of dedr@ethe residual
the number of check nodes of degree one in the residgghph at the iteration round Those random variables depends
graph. The average number of check nodes of degree on@inthe choice of the graph fromb,{d)-regular LDPC code
the residual graph is determined from a system of diffeaéntensemble, the channel outputs and the random choices made
equations, which was derived and solved by Luby etlal. [2)y PA. We define
The variance of the number of check nodes of degree one
in the residual graph is also determined from a system of Dy = {lpt, 71,6, 72,85+ s Td—1,¢}-
differential equations calledovariance evolution, which was
derived by Amraoui et al.[[3]. Since analytical solution off© simplify the notation, we drop the subscript~ori € D,
covariance evolution has not been known so far, we ha¢ definei(y) by
to resort to numerical computations to solve the covariance
evolution. i(y) == —.

An alternative way to determine the variance of the number 3

of check nodes of degree one was proposedlin [3]. T (i) . , L
variance of the number of check nodes of degree one in t s also definé *(y) by the covariance afand; (i, j € D)

residual graph can be computed by determining the varian%'g'ded by the total number of edges in the original graph i.e
of the number of erased messages of BP for BEC with - Covli, j]

parametee* wherec* is the threshold of the ensemble under 5(”)(?%) = T

BP decoding. This method is a valid approximation for the

erasure probability close td. Moreover, Ezri et al. extendedIn [3], Amraoui showed these parameters satisfy the folhgwi

to this method to more general channéls [5]. However, if waystem of differential equations in the limit of the blockdgh.
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This system is referred to as covariance evolution. Theorem 1. Let 7 be the normalized iteration round of PA as
. ” " defined in [(1). For ay(d)-regular LDPC code ensemble and
(6:9) (ON @ 4 -

A () = _w) [ E (af—zS(J*’“) + 8‘(;—];5(““)) j,k € {1,2,...,d — 1}, in the limit of the code length, we

dy y Lzt ok obtain the following.
+ f“-ﬂ’(zﬂ] , (@ O =be ®)
5 = —Gi{ee(b— 1)y =" + éx} + Iyj—1ybee, (4)
where srers) b— lG G Lei(h — 1)y—2 o1 2
ojw ojt = GG {eEb — 1y = (- eyt + 0%}
__—0 =0
Ol ’ or; ’ B d(d - 1) (d —~ 1) i z2d—k—j
af(rs) ' Fiy1 — 7 E—1/\j—1
iy, —ib=1 Z o d=1\, j-d- -
o ’ + Lir=5) k—1 ka2 + Iy j—1y (be€ — x2)
af(rs) b—1 ) B ,
o~ 977, (s ~ Ti=sy): — (Ip=1y G + Ij=1y G ) {eé(b — 1)y~ —ex + 2%}, (5)
8f(’”d*1> —(d—1)(b—1 l_b +T4-1—Tq Whel'eGj = (?:i)w‘-j_ljd_-j_l(dl' — ]) + I{j:l} andy is
o, (d=1)-1) 12 ’ defined bydy/dr = —1/(ey®~!) with y = 1 whenr = 0.
af(ra-) a1, )(d—l)(b—l) A. scaling parameter o
or; ==t} Iy ’ In [3], scaling parameter « is given by
f(lblb) -0, f(lbrk) -0, oo _ 5(r1,rlz(e*, y*)7 ©)
/G ey

Firers) = kjb —1 {_ (Fes1 — 71) (Fjp1 — 75)
I Iy

wheree* is the threshold of the ensemble under BP decoding ,

7 _ _ I s ~ y* is the non-zero solution af; (y) at the threshold » is the

F Hmy T 4 73) = Ly Tie = {j:kﬂ}rj}’ blocklength and is the total number of edges in the original
herex = ey !, 7:=1—2, €:=1—c¢, _ 1, — G9raph. _

w x €Y X xTr, € € e(y) b We definez* = E*(y*)b71 and #* = 1 — 2*. Since

xy, T; = (?:i)xj:i:d’j, 7= a2y — 14+ 3971 and I¢j—qy
is the indicator function which equals to 1 #f = s and 0

fl(e*,y*) =0 and%zl |€*;y* =0, we see thaﬂ]* _ 1_(j*)d—l

otherwise. andy* = (b—1)(d—1)z*(#*)%~2. Using those equations, we
The initial conditions of the covariance evolution are givehave from[(5)
by initial covariances. The initial covariances are thearov o) e ey By *
g€ y*) = ==y — @),
ances of the number of edges of each degree at the start of the b—1

decoding divided by the total number of edges in the originghote thatG; = ~24*). Recall thatr (e,y) = x(y — 1 +
graph. Forj, k € {1,2,...,d}, initial covariances are derivedjd_1)_ We see thg&l

in [3]], as follows.

oy _ @y
6(lb-,lb)(1) = bee, De lymier 6*(1) — 1)-
d—1\ . 4 s i
6(zb,rj)(1) _ _b(j B 1)6J€d_3(d6 — ), From [8), we can obtain
b—1,1 1
, fd—=1\ . _,_. R e S
8 (1) = ey (j - 1)6‘76d ' TV F—
d—1\ /d—1\ . , This is the same result as inl[3] for regular LDPC code
_ €]+k€2d—]—k bl
j—1)\k-1 ensembles.
h-1) (d — 1) <d — 1) ko1 22d—j—k—1 B. Example of Solution of Covariance Evolution
— € € :
J—1)\k-1 Figure[1 shows the solution of the covariance evolution

- (de — §)(de — k). §rimi)(e,y), j € {1,2,...,5}, as a function ofy for (3,6)-

regular LDPC code ensemble. Figlrk 2 shows the solution

of the covariance evolutiod(™"1) (e, y), j € {1,2,3}, as a
We show in the following theorem the analytical solutiofunction of y for (2,4)-regular LDPC code ensemble.

of the covariance evolution, for &,{)-regular LDPC code

ensemble. The proffis given in Sectiof II-C.

IIl. ANALYTICAL SOLUTION OF COVARIANCE EVOLUTION

C. Outline of proof

1) Proof for §(»): From [2), we get%ﬁjb)(y) = 0.

_ . oidy) — o= .
1 Taking the derivative of both sides dfl (3] (4) afid (5) witspect toy, FTOM initial covariance, we havé>:l») = bee. This leads to
we can check that those equations fulfill (2).



o8 T — AlD (1) = 97160 (1) = bee — bdede. We see that
5(7"31"3) o Clb.E = —de%é. We have
S(rayra) ’
3(rs:ms) 1 AW — Gaf(b—1)ecy™ " + éx} + bec. (8)
From [2) and[(B), we get foj € {1,...,d — 1}
] dster)  p—1
s =2~ risWri) 4 plesry)
/// ) dy {j + }7
S where
7 // | Do) . — {Mb ¢ — sWsrit) ], .
_ o ] = L {j7d—1}
0 ] 0‘.1 OL.2 0.3 0.4 O.yg 0..6 0.7 0‘.8 0‘.9 1 + (A(ZI”E) _ bﬁg)l{j:dfl}}.

Fig. 1. The solution of the covariance evolutiéfis-73), j € {1,2,...,5}, Those equations are first order linear differential equmstio
as a function of the parametgrfor the (3,6)-regular LDPC code ensemble.The solutions are given by

The channel parameter is= 0.4294398 = ¢*.
. : b—1)Drs)
§Ubors) — yJ(bfl){/ ( ) —dy + Clb,rj},

0.45 - S O I yI (b= D+l
04} gE:ﬁ::i; o with constants’;, ., determined from the initial covariances.
ossk ] Those equations can be solved by mathmatical induction for
- jef{2,3,...,d—1}.

o3l We show thag(s>ra-1) fulfill (£). From (8), we can write
L0172 1 T
02 ’ ] D(lbyrdil) :(d - 1)€$Gd
il ’ +eéy HbGy 1+ (b—1)(d — 1)Gyq}.
o1l ] Using the same way in the induction step, we can obtain
0.05f slora—1) — Gy {(b—1)ecy™ ! + éx}.

0 01 02 08 04 0F 06 07 08 09 1 We show that ifs(»75+1) fulfill (&), then alsos»:s) fulfill

@) . Assumesle-mi+t) = —G. 1 {eé(b — 1) + éx}. Using the
Fig. 2. The solution of the covariance evolutié'i-73), j € {1,2,3}, as  induction hypothesis, we can write
a function of the parametey for the (2,4)-regular LDPC code ensemble. The

channel paramete is 0.333333 = . D) = jerGyon + ey {bG; + (b= 1)jGyra}. (9)

Using#* = % (%) (—x)®, we see that

S

2) Proof for §(»7): In order to solves(>"i), we de- .
- 1)]61‘Gj+1

. b
fine A(lb;E) = S>471 o), which gives dA(dL;’E) = /Y / ( i1 dy
iy d‘s(d”y’” . From [2), we see that d d—1\_
:—ngj—i—i_(, )éxj. (10)
dAGS b1 ) ) d—j—1\j—-1
__ by bs
dy (da +D ): ") Similarly, we have
where iy [(b— 1)e€y_1bdo
Y gio—nr Y

D) = d(zd 1y~ — 1)5(ld’ld).

d—j .
fd—1\ . d—7j\,. .
This equation is a first order linear differential equatiorda =(b — 1)b66( . 1>:EJ > ( . J) (G +8) (=€) 'Ky,
the solution is given by s=0 1)

_ (1p,X) 2 ~ 1.
W3 _ ap-nf [(0=1DD } o1 [(0—1)2eey G
4 Y {/ A1+ dy + Cl,,x y 1)/ yIO—DF1 —dy

= Gaee(b— 1)y~ + bee + Cy, wy?®—Y,

d—1
. . L , ——«b—lﬁé<, )ﬂ}j( ])qj+sx_ale5h
with a constant’;, > determined from the initial covariance j—1 = S

whereG; := ({_1)a/ =134/ (dx — j) + Iy;—1y. Note that (12)

d—j



where
ys(b—l)—l
K= Sy =g ez Hlogylse-n=1)-
Note that

{s(b—1) =b}K,1 = yU D — Ly 1y pon)my.
From [11) and[(12), we have

sy [(b=Deey{dG, + (b — 1)jGj+1}d
4 yiO-1)F1 Y

=—(b— 1)656: 1) 2’

i (d X j) (G +s){sb—1) = b} K,

=—(b—1)eéy 'G; + (b — 1)eér’! P},

s=0
(13)

where

d—1\ 2 (d-7Y,. -1
Pi=( )2, )0+ Iamne-n-1)-

J s=0
From [9),[10) and[{13), we have

d  (d-1\_

ilio0)®

+ (b= 1)eéx? Py + Cy, 7 7Y,

§tomi) = — Gi{(b—1)eéy™! + éx} +

From initial covariance, we have
d d—1\_ . .
—m (] . 1)66J — (b — 1)€€€JPJ‘.
Hence we obtain
§tomi) = —Gi{(b—1)ecy™ + éx}.
This lads to[(#) forj € {2,3,...,d — 1}.
Note that§(s:m1) = A(lb,z)_z;l;; §ri) and that-G; =
2?22 G,;. We have

Clb,’l‘j =

5 m) = — G {(b—1)ety™ ! + éx} + bee.

Hence we obtain{4).
3) Proof for B(>): In order to solves(s:"+) | we define

Bri®) .= S 1 (i) and BE®) = Z;l;ll B(3:%) From
@), we get forj € {1,2,...,d — 1}
dB®>  p-1
=—— (D& 4 2dB>2), (14)
dy y
dB®)  p—1
— == DD 4 (d4 j )BT, (15)
L =D @4 )
where
D) ::dfdi_ b (dig +2A")),
b
D% ;:jLﬂ,_ i (drg + A2y 1 a1 sty
lb lb

_ jB(Tj“’E)I{j#d,l}

+ (d — 1)(3(2’2) —drg — A(lb’z))f{j:d,l}.

The solution of [(I4) is given by

B(ED) :y2d(b—1){/(b ~1)

LG - 1)y — (- )
+2Ga{(b—1)eéy™* + éx}

+ da? 4 beé 4 Cx 5y?d0—D),

DEY)
21+ dy + Cz,z}

with a constanC's, s which determined from the inital covari-
ance. From the initial covariance, we get

BE®) (1) = bee — 2bdete + de? — de*® + (b — 1)d?e?? e,
We see thats s = b_TldQEQd — de??®. Hence we have

=22 LG (b~ e — (e~ ay %)

+2G{(b—1)eey™ ! + éx}
+ da? — da? + bee.

B(va)

(16)
From [I5), we get

B :y<d+j><b71>{ /

with constant<”;., =. Forj € {2,3,...,d—1}, those equation
are solved by mathmatical induction as the proof 6r"4).
From the initial covariances, note that

C’l— 1> HHI—1gd=i (de — §)
j—1

d—1 , . d—1\ . .
+d| . edtigd=i _p( " eled—i (de — 7).
j—1 j—1
We have

(b—1)D(ri>)

S+ G

Bri¥) (1) = d(b — 1)<

b_TlGde{(b —Deey 2 — (e — &zy ' + 2%}

1) dadtizd=i,

B(zjz) — —

- Gi{(b— Deey ™' + éx} + (

17)
Using B = B — 5797 B3 | we have
b—1
Bro®) — _ TGdGl{(b —1eey™? — (e — &zy~ ' + 2%}
— G {(b— ety " +éx} + da*Tz4!
+ Ga{(b—1)eey™ ' + éx} + dz?z + bee.  (18)
4) Proof for §"+73): From [2), we get fork,j €
(1,2,...,d—1}
dstremi)  p—1
= k+j §(reri) 4 plreri)y,
T = A +) )
where
L -
D) i= Hyj + Hp = 5 : - flre),
Hyj = EIRAL T TR s(ry) k(s(rk“"rj)l{k;&d—l}

ly
(@ 1)) = B,



The solutions of those differential equations are given by 08
06}
ThyTi) k4+5)(b—1 (b B 1)D(Tk’rj)
§rkrs) — ki) >{/mdy+cwj}, 0al
with constantsC,., ;. Using [1T), we can solve those equa- . SR .
tions by mathmatical induction fof, k € {2,3,...,d — 1}. 0 4
We have 02} R
b—1 0.4}
(i) :TGij{eé(b Dy 2= (e —ay ' + 22} sl
' (I2yr1)
g d—1\/d-1 R+ p2d—k—j 08} gé,m
E—1)\j—-1 i §lra,ra) ___

d—1\ . . 4. , , .
+ Iik=j} ( 1>3$'7$d 7. 125 02 0.4 06 038 1
J— €
Note thatd("m) = BOw>) — $°97150w.75), We have for g : : e ; :
j=2 : Fig. 3. Solution of covariance evolutlorlnmyﬁo6(”1)(6731), j €

ke {2, v, d— 1} {la,r1,7r2}, as a function of the channel parametefor the (2,4)-regular
LDPC code ensemble.

b—1

§(reom) =——GrGr{eé(b - Dy~ 2= (e — oy~ + 22}
d—1
- d(k: _ 1) A we obtain
_ CDyeay-l 2 1, if Ipeo(d—1)e<1
Gr{(b—1)eéy exr + a7} plyr (€) = { L I{b 2}(d 1) X (19)
Sinces(mr) — BrLE) _ Zd;; 5(rir) | we have =1, 1 {b:2}( —1le>1.

b1 ' Note that/,—,) (d—1)e < 1 agree with the stability condition

§rem) :TGf{eg(b 1)y 2= (e— oy " + 2%} for regular LDPC code ensembles.

9-9d—9 d—1 Figure [3 shows the solution of covariance evolution
—dz°z + xx . (1) . .
lim,_,o 6" (¢,y), j € {l2, 71,72}, as a function of the chan-

—2G{(b—1)eey™" —ex +a®} + (bee —xF).  nel parameter for the (2,4)-regular LDPC code ensemble.

Thus, we can obtair15). From Figurd B, we see that™>") > 0 andé(>"1) > 0 when
(d—1)e < 1. Also we see tha§(">") < 0 and s> < 0
V. RELATIONSHIP TO STABILITY CONDITION when(d — 1)e > 1.

In this section, we consider the relationship between the
stability condition [6], [4] and lim, o 6¢> ") (e, y).

For a (b, d)-regular LDPC code ensemblé ¢ 3), we see N this paper, we have solved analytically the covariance
from @) and () that evolution for regular LDPC code ensembles. Moreover we
have derived the relationship between stability condition

As a future work, we will derive an analytical solution of
the covariance evolution for irregular LDPC code ensembles

V. CONCLUSION AND FUTURE WORK

; ly,r;5 — beeTs -
7}1_)1110 5( b )(Evy) - bEEI{]:l}v

;i_r)% §rami) (e, y) = be€lyj—1}.
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If we define the correlation coefficient faér; € D by
(i:3)
= tim 0 (00) ,
y—0 \/5(1-,1) (57 y)(S(J-,J) (57 y)

pij(€) :
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