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Abstract—The covariance evolution is a system of differential
equations with respect to the covariance of the number of edges
connecting to the nodes of each residual degree. Solving the
covariance evolution, we can derive distributions of the number
of check nodes of residual degree 1, which helps us to estimate
the block error probability for finite-length LDPC code. Amr aoui
et al. resorted to numerical computations to solve the covariance
evolution. In this paper, we give the analytical solution ofthe
covariance evolution.

I. I NTRODUCTION

Gallager invented low-density parity-check (LDPC) codes
[1] in 1963. LDPC codes are linear codes defined by sparse
bipartite graphs. Luby et al. introduced thepeeling algorithm
(PA) [2], [4] for the binary erasure channel (BEC). PA is an
iterative algorithm which is defined on Tanner graphs. PA and
brief propagation (BP) decoder have the same decoding result.
As PA proceeds, edges and nodes are progressively removed.
The residual graphs consist of nodes and edges that are still
unknown at each iteration. The decoding successfully haltsif
the graph vanishes.

Amraoui [3] showed that distributions of the number of
check nodes of degree one in the residual graph convergences
weakly to a Gaussian as blocklength tends to infinity. Amraoui
also showed that block and bit error probability of finite-length
LDPC codes are derived by the average and the variance of
the number of check nodes of degree one in the residual
graph. The average number of check nodes of degree one in
the residual graph is determined from a system of differential
equations, which was derived and solved by Luby et al. [2].
The variance of the number of check nodes of degree one
in the residual graph is also determined from a system of
differential equations calledcovariance evolution, which was
derived by Amraoui et al. [3]. Since analytical solution of
covariance evolution has not been known so far, we had
to resort to numerical computations to solve the covariance
evolution.

An alternative way to determine the variance of the number
of check nodes of degree one was proposed in [3]. The
variance of the number of check nodes of degree one in the
residual graph can be computed by determining the variance
of the number of erased messages of BP for BEC with
parameterǫ∗ whereǫ∗ is the threshold of the ensemble under
BP decoding. This method is a valid approximation for the
erasure probability close toǫ∗. Moreover, Ezri et al. extended
to this method to more general channels [5]. However, if we

solve the covariance evolution analytically, we can derivethe
variance of the number of check nodes of degree one in the
residual graph for allǫ whereǫ is the channel parameter for
the BEC.

In this paper, we show an analytical solution of the covari-
ance evolution for regular LDPC code ensembles.

II. COVARIANCE EVOLUTION [3]

In this section, we briefly review the covariance evolution
and initial covariance in [3].

We consider the transmission over the BEC with channel
erasure probabilityǫ using LDPC codes in a (b, d)-regular
LDPC code ensemble. Lett denote the iteration round andξ
be the total number of edges in the original graph. We define
that

τ :=
t

ξ
. (1)

Define a parametery such thatdy/dτ = −1/(ǫyb−1) and
y = 1 when τ = 0. Let lb,t denote a random variable
corresponding to the number of edges connecting to variable
nodes of degreeb in the residual graph at the iteration roundt.
Let rk,t denote a random variable corresponding to the number
of edges connecting to check nodes of degreek in the residual
graph at the iteration roundt. Those random variables depends
on the choice of the graph from (b, d)-regular LDPC code
ensemble, the channel outputs and the random choices made
by PA. We define

Dt := {lb,t, r1,t, r2,t, . . . , rd−1,t}.

To simplify the notation, we drop the subscriptt. For i ∈ Dt,
we definēi(y) by

ī(y) :=
E[i]

ξ
.

We also defineδ(i,j)(y) by the covariance ofi andj (i, j ∈ Dt)
divided by the total number of edges in the original graph i.e.

δ(i,j)(y) :=
Cov[i, j]

ξ
.

In [3], Amraoui showed these parameters satisfy the following
system of differential equations in the limit of the block length.
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This system is referred to as covariance evolution.

dδ(i,j)(y)

dy
= −

e(y)

y

[

∑

k∈D

(∂f̂ (i)

∂k̄
δ(j,k) +

∂f̂ (j)

∂k̄
δ(i,k)

)

+ f̂ (i,j)(y)

]

, (2)

where

∂f̂ (lb)

∂l̄b
= 0,

∂f̂ (lb)

∂r̄j
= 0,

∂f̂ (rj)

∂l̄b
= −j(b− 1)

r̄j+1 − r̄j

l̄2b
,

∂f̂ (rj)

∂r̄k
= j

b− 1

l̄b

(

I{k=j+1} − I{k=j}

)

,

∂f̂ (rd−1)

∂l̄b
= (d− 1)(b − 1)

l̄b + r̄d−1 − r̄d

l̄2b
,

∂f̂ (rd−1)

∂r̄j
= −(1 + I{j=d−1})

(d − 1)(b− 1)

l̄b
,

f̂ (lblb) = 0, f̂ (lbrk) = 0,

f̂ (rkrj) = kj
b− 1

l̄b

{

−
(r̄k+1 − r̄k)(r̄j+1 − r̄j)

l̄b

+ I{k=j}(r̄j+1 + r̄j)− I{k=j+1} r̄k − I{j=k+1} r̄j

}

,

wherex := ǫyb−1, x̃ := 1 − x, ǫ̃ := 1 − ǫ, e(y) = l̄b =
xy, r̄j =

(

d−1
j−1

)

xj x̃d−j , r̄1 = x(y − 1 + x̃d−1) and I{k=s}

is the indicator function which equals to 1 ifk = s and 0
otherwise.

The initial conditions of the covariance evolution are given
by initial covariances. The initial covariances are the covari-
ances of the number of edges of each degree at the start of the
decoding divided by the total number of edges in the original
graph. Forj, k ∈ {1, 2, . . . , d}, initial covariances are derived
in [3], as follows.

δ(lb,lb)(1) = bǫǫ̃,

δ(lb,rj)(1) = −b

(

d− 1

j − 1

)

ǫj ǫ̃d−j(dǫ− j),

δ(rj ,rk)(1) = I{k=j}j

(

d− 1

j − 1

)

ǫj ǫ̃d−j

− d

(

d− 1

j − 1

)(

d− 1

k − 1

)

ǫj+k ǫ̃2d−j−k

+ (b− 1)

(

d− 1

j − 1

)(

d− 1

k − 1

)

ǫj+k−1ǫ̃2d−j−k−1

· (dǫ − j)(dǫ − k).

III. A NALYTICAL SOLUTION OF COVARIANCE EVOLUTION

We show in the following theorem the analytical solution
of the covariance evolution, for a (b,d)-regular LDPC code
ensemble. The proof1 is given in Section III-C.

1 Taking the derivative of both sides of (3), (4) and (5) with respect toy,
we can check that those equations fulfill (2).

Theorem 1. Let τ be the normalized iteration round of PA as
defined in (1). For a (b,d)-regular LDPC code ensemble and
j, k ∈ {1, 2, . . . , d − 1}, in the limit of the code length, we
obtain the following.

δ(lb,lb) = bǫǫ̃, (3)

δ(lb,rj) = −Gj{ǫǫ̃(b− 1)y−1 + ǫ̃x}+ I{j=1}bǫǫ̃, (4)

δ(rk,rj) =
b− 1

b
GkGj{ǫǫ̃(b − 1)y−2 − (ǫ− ǫ̃)xy−1 + x2}

− d

(

d− 1

k − 1

)(

d− 1

j − 1

)

xk+j x̃2d−k−j

+ I{k=j}

(

d− 1

k − 1

)

kxkx̃d−k + I{k=1,j=1}(bǫǫ̃− xx̃)

−
(

I{k=1}Gj + I{j=1}Gk

)

{ǫǫ̃(b − 1)y−1 − ǫx+ x2}, (5)

whereGj :=
(

d−1
j−1

)

xj−1x̃d−j−1(dx − j) + I{j=1} and y is
defined bydy/dτ = −1/(ǫyb−1) with y = 1 whenτ = 0.

A. scaling parameter α

In [3], scaling parameter α is given by

α = −

√

δ(r1,r1)(ǫ∗, y∗)
√

ξ/n∂r̄1
∂ǫ

∣

∣

ǫ∗;y∗

, (6)

whereǫ∗ is the threshold of the ensemble under BP decoding ,
y∗ is the non-zero solution of̄r1(y) at the threshold ,n is the
blocklength andξ is the total number of edges in the original
graph.

We definex∗ := ǫ∗(y∗)b−1 and x̃∗ := 1 − x∗. Since
r̄1(ǫ

∗, y∗) = 0 and∂r̄1
∂y

|ǫ∗;y∗ = 0, we see thaty∗ = 1−(x̃∗)d−1

andy∗ = (b−1)(d−1)x∗(x̃∗)d−2. Using those equations, we
have from (5)

δ(r1,r1)(ǫ∗, y∗) =
x∗y∗

b− 1
(y∗ − x∗).

(Note thatG1 = b
b−1y

∗). Recall thatr̄1(ǫ, y) = x(y − 1 +

x̃d−1). We see that

∂r̄1
∂ǫ

∣

∣

y∗;ǫ∗
= −

x∗y∗

ǫ∗(b− 1)
.

From (6), we can obtain

α = ǫ∗

√

b− 1

b

( 1

x∗
−

1

y∗
)

.

This is the same result as in [3] for regular LDPC code
ensembles.

B. Example of Solution of Covariance Evolution

Figure 1 shows the solution of the covariance evolution
δ(rj ,rj)(ǫ, y), j ∈ {1, 2, . . . , 5}, as a function ofy for (3,6)-
regular LDPC code ensemble. Figure 2 shows the solution
of the covariance evolutionδ(rj ,rj)(ǫ, y), j ∈ {1, 2, 3}, as a
function of y for (2,4)-regular LDPC code ensemble.

C. Outline of proof

1) Proof for δ(lb,lb): From (2), we getdδ
(lb,lb)

dy (y) = 0.
From initial covariance, we haveδ(lb,lb) = bǫǫ̃. This leads to
(3).
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Fig. 1. The solution of the covariance evolutionδ(rj ,rj), j ∈ {1, 2, . . . , 5},
as a function of the parametery for the (3,6)-regular LDPC code ensemble.
The channel parameter isǫ = 0.4294398 ≈ ǫ∗.
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Fig. 2. The solution of the covariance evolutionδ(rj ,rj), j ∈ {1, 2, 3}, as
a function of the parametery for the (2,4)-regular LDPC code ensemble. The
channel parameter isǫ = 0.333333 ≈ ǫ∗.

2) Proof for δ(lb,rj): In order to solveδ(lb,rj), we de-
fine A(lb,Σ) :=

∑d−1
j=1 δ

(lb,rj), which gives dA(lb,Σ)

dy =
∑d−1

j=1
dδ(lb,rj)

dy . From (2), we see that

dA(lb,Σ)

dy
=

b− 1

y

(

dA(lb,Σ) +D(lb,Σ)
)

, (7)

where

D(lb,Σ) := d(xd−1y−1 − 1)δ(ld,ld).

This equation is a first order linear differential equation and
the solution is given by

A(lb,Σ) = yd(b−1)
{

∫

(b − 1)D(lb,Σ)

yd(b−1)+1
dy + Clb,Σ

}

= Gdǫǫ̃(b − 1)y−1 + bǫǫ̃+ Clb,Σy
d(b−1),

with a constantClb,Σ determined from the initial covariance
whereGj :=

(

d−1
j−1

)

xj−1x̃d−j−1(dx − j) + I{j=1}. Note that

A(lb,Σ)(1) =
∑d−1

j=1 δ
(lb,rj)(1) = bǫǫ̃ − bdǫdǫ̃. We see that

Clb,Σ = −dǫdǫ̃. We have

A(lb,Σ) = Gd{(b− 1)ǫǫ̃y−1 + ǫ̃x} + bǫǫ̃. (8)

From (2) and (8), we get forj ∈ {1, . . . , d− 1}

dδ(lb,rj)

dy
=

b− 1

y
{jδ(lb,rj) +D(lb,rj)},

where

D(lb,rj) :=j{
r̄j+1 − r̄j

l̄b
bǫǫ̃− δ(lb,rj+1)I{j 6=d−1}

+ (A(lb,Σ) − bǫǫ̃)I{j=d−1}}.

Those equations are first order linear differential equations.
The solutions are given by

δ(lb,rj) = yj(b−1)
{

∫

(b − 1)D(lb,rj)

yj(b−1)+1
dy + Clb,rj

}

,

with constantsClb,rj determined from the initial covariances.
Those equations can be solved by mathmatical induction for
j ∈ {2, 3, . . . , d− 1}.

We show thatδ(lb,rd−1) fulfill (4). From (8), we can write

D(lb,rd−1) =(d− 1)ǫ̃xGd

+ ǫǫ̃y−1{bGd−1 + (b− 1)(d− 1)Gd}.

Using the same way in the induction step, we can obtain

δ(lb,rd−1) = −Gd−1{(b− 1)ǫǫ̃y−1 + ǫ̃x}.

We show that ifδ(lb,rj+1) fulfill (4), then alsoδ(lb,rj) fulfill
(4) . Assumeδ(lb,rj+1) = −Gj+1{ǫǫ̃(b− 1) + ǫ̃x}. Using the
induction hypothesis, we can write

D(lb,rj) = jǫ̃xGj+1 + ǫǫ̃y−1{bGj + (b− 1)jGj+1}. (9)

Using x̃k =
∑k

s=0

(

k
s

)

(−x)s, we see that

yj(b−1)

∫

(b − 1)jǫ̃xGj+1

yj(b−1)+1
dy

=− ǫ̃xGj +
d

d− j − 1

(

d− 1

j − 1

)

ǫ̃xj . (10)

Similarly, we have

yj(b−1)

∫

(b− 1)ǫǫ̃y−1bGj

yj(b−1)+1
dy

=(b − 1)bǫǫ̃

(

d− 1

j − 1

)

xj

d−j
∑

s=0

(

d− j

s

)

(j + s)(−ǫ)s−1Ks−1,

(11)

yj(b−1)

∫

(b− 1)2ǫǫ̃y−1jGj+1

yj(b−1)+1
dy

=− (b− 1)2ǫǫ̃

(

d− 1

j − 1

)

xj

d−j
∑

s=0

(

d− j

s

)

s(j + s)(−ǫ)s−1Ks−1,

(12)



where

Ks :=
ys(b−1)−1

s(b− 1)− 1
I{s(b−1) 6=1} + log yI{s(b−1)=1}.

Note that

{s(b− 1)− b}Ks−1 = y(s−1)(b−1)−1 − I{(s−1)(b−1)=1}.

From (11) and (12), we have

yj(b−1)

∫

(b− 1)ǫǫ̃y−1{bGj + (b − 1)jGj+1}

yj(b−1)+1
dy

=− (b − 1)ǫǫ̃

(

d− 1

j − 1

)

xj

·

d−j
∑

s=0

(

d− j

s

)

(j + s){s(b− 1)− b}Ks−1

=− (b − 1)ǫǫ̃y−1Gj + (b − 1)ǫǫ̃xjPj , (13)

where

Pj :=

(

d− 1

j − 1

) d−j
∑

s=0

(

d− j

s

)

(j + s)(−ǫ)s−1I{(s−1)(b−1)=1}.

From (9),(10) and (13), we have

δ(lb,rj) =−Gj{(b− 1)ǫǫ̃y−1 + ǫ̃x}+
d

d− j − 1

(

d− 1

j − 1

)

ǫ̃xj

+ (b − 1)ǫǫ̃xjPj + Clb,rjy
j(b−1).

From initial covariance, we have

Clb,rj = −
d

d− j − 1

(

d− 1

j − 1

)

ǫ̃ǫj − (b− 1)ǫǫ̃ǫjPj .

Hence we obtain

δ(lb,rj) = −Gj{(b− 1)ǫǫ̃y−1 + ǫ̃x}.

This lads to (4) forj ∈ {2, 3, . . . , d− 1}.
Note thatδ(lb,r1) = A(lb,Σ)−

∑d−1
j=2 δ

(lb,rj) and that−G1 =
∑d

j=2 Gj . We have

δ(lb,r1) = −G1{(b− 1)ǫǫ̃y−1 + ǫ̃x}+ bǫǫ̃.

Hence we obtain (4).
3) Proof for B(·,Σ): In order to solveδ(rj ,rk) , we define

B(rj ,Σ) :=
∑d−1

k=1 δ
(rj ,rk) andB(Σ,Σ) :=

∑d−1
j=1 B

(rj ,Σ). From
(2), we get forj ∈ {1, 2, . . . , d− 1}

dB(Σ,Σ)

dy
=
b− 1

y

(

D(Σ,Σ) + 2dB(Σ,Σ)
)

, (14)

dB(rj ,Σ)

dy
=
b− 1

y

{

D(rj,Σ) + (d+ j)B(rj ,Σ)
}

, (15)

where

D(Σ,Σ) :=d
r̄d − l̄b

l̄b

(

dr̄d + 2A(lb,Σ)
)

,

D(rj ,Σ) :=j
r̄j+1 − r̄j

l̄b
(dr̄d +A(lb,Σ)) + d

r̄d − l̄b

l̄b
δ(lb,rj)

− jB(rj+1,Σ)I{j 6=d−1}

+ (d− 1)(B(Σ,Σ) − drd −A(lb,Σ))I{j=d−1}.

The solution of (14) is given by

B(Σ,Σ) =y2d(b−1)
{

∫

(b− 1)
D(Σ,Σ)

y2d(b−1)+1
dy + CΣ,Σ

}

=
b− 1

b
G2

d{ǫǫ̃(b − 1)y−2 − (ǫ− ǫ̃)xy−1}

+ 2Gd{(b− 1)ǫǫ̃y−1 + ǫ̃x}

+ dxd + bǫǫ̃+ CΣ,Σy
2d(b−1),

with a constantCΣ,Σ which determined from the inital covari-
ance. From the initial covariance, we get

B(Σ,Σ)(1) = bǫǫ̃− 2bdǫdǫ̃+ dǫd − dǫ2d + (b − 1)d2ǫ2d−1ǫ̃.

We see thatCΣ,Σ = b−1
b
d2ǫ2d − dǫ2d. Hence we have

B(Σ,Σ) =
b− 1

b
G2

d{(b− 1)ǫǫ̃y−2 − (ǫ − ǫ̃)xy−1 + x2}

+ 2Gd{(b− 1)ǫǫ̃y−1 + ǫ̃x}

+ dxd − dx2d + bǫǫ̃. (16)

From (15), we get

B(rj ,Σ) =y(d+j)(b−1)
{

∫

(b − 1)D(rj,Σ)

y(d+j)(b−1)+1
dy + Crj ,Σ

}

,

with constantsCrj ,Σ. Forj ∈ {2, 3, . . . , d−1}, those equation
are solved by mathmatical induction as the proof forδ(lb,rj).
From the initial covariances, note that

B(rj ,Σ)(1) = d(b − 1)

(

d− 1

j − 1

)

ǫd+j−1ǫ̃d−j(dǫ − j)

+ d

(

d− 1

j − 1

)

ǫd+j ǫ̃d−j − b

(

d− 1

j − 1

)

ǫj ǫ̃d−j(dǫ − j).

We have

B(rj ,Σ) =−
b− 1

b
GdGj{(b− 1)ǫǫ̃y−2 − (ǫ − ǫ̃)xy−1 + x2}

−Gj{(b− 1)ǫǫ̃y−1 + ǫ̃x}+

(

d− 1

j − 1

)

dxd+j x̃d−j.

(17)

UsingB(r1,Σ) = B(Σ,Σ) −
∑d−1

j=2 B
(rj ,Σ) , we have

B(r1,Σ) =−
b− 1

b
GdG1{(b− 1)ǫǫ̃y−2 − (ǫ − ǫ̃)xy−1 + x2}

−G1{(b− 1)ǫǫ̃y−1 + ǫ̃x} + dxd+1x̃d−1

+Gd{(b− 1)ǫǫ̃y−1 + ǫ̃x}+ dxdx̃+ bǫǫ̃. (18)

4) Proof for δ(rk,rj): From (2), we get for k, j ∈
{1, 2, . . . , d− 1}

dδ(rk,rj)

dy
=

b− 1

y
{(k + j)δ(rk,rj) +D(rk,rj)},

where

D(rk,rj) := Hk,j +Hj,k −
l̄b

b− 1
f̂ (rk,rj),

Hk,j := k
r̄k+1 − r̄k

l̄b
δ(lb,rj) − kδ(rk+1,rj)I{k 6=d−1}

− (d− 1)(δ(lb,rj) −B(rj ,Σ))I{k=d−1}.



The solutions of those differential equations are given by

δ(rk,rj) = y(k+j)(b−1)
{

∫

(b− 1)D(rk,rj)

y(k+j)(b−1)+1
dy + Crk,rj

}

,

with constantsCrk,rj . Using (17), we can solve those equa-
tions by mathmatical induction forj, k ∈ {2, 3, . . . , d − 1}.
We have

δ(rk,rj) =
b− 1

b
GkGj{ǫǫ̃(b− 1)y−2 − (ǫ − ǫ̃)xy−1 + x2}

− d

(

d− 1

k − 1

)(

d− 1

j − 1

)

xk+j x̃2d−k−j

+ I{k=j}

(

d− 1

j − 1

)

jxj x̃d−j .

Note thatδ(rk,r1) = B(rk,Σ) −
∑d−1

j=2 δ
(rk,rj). We have for

k ∈ {2, . . . , d− 1}

δ(rk,r1) =
b − 1

b
GkG1{ǫǫ̃(b− 1)y−2 − (ǫ− ǫ̃)xy−1 + x2}

− d

(

d− 1

k − 1

)

xk+1x̃2d−k−1

−Gk{(b− 1)ǫǫ̃y−1 − ǫx+ x2}.

Sinceδ(r1,r1) = B(r1,Σ) −
∑d−1

j=2 δ
(r1,rj), we have

δ(r1,r1) =
b− 1

b
G2

1{ǫǫ̃(b − 1)y−2 − (ǫ− ǫ̃)xy−1 + x2}

− dx2x̃2d−2 + xx̃d−1

− 2G1{(b− 1)ǫǫ̃y−1 − ǫx+ x2}+ (bǫǫ̃− xx̃).

Thus, we can obtain (5).

IV. RELATIONSHIP TO STABILITY CONDITION

In this section, we consider the relationship between the
stability condition [6], [4] and limy→0 δ

(lb,r1)(ǫ, y).
For a (b, d)-regular LDPC code ensemble (b ≥ 3), we see

from (4) and (5) that

lim
y→0

δ(lb,rj)(ǫ, y) = bǫǫ̃I{j=1},

lim
y→0

δ(rj ,rj)(ǫ, y) = bǫǫ̃I{j=1}.

For a (2, d)-regular LDPC code ensemble, we see from (4)
and (5) that

lim
y→0

δ(lb,rj)(ǫ, y) =











2ǫǫ̃{1− (d− 1)ǫ}, if j = 1

2ǫǫ̃(d− 1)ǫ, if j = 2

0, otherwise,

lim
y→0

δ(rj,rk)(ǫ, y)

=



















2ǫǫ̃{1− (d− 1)ǫ}2, if j = k = 1

2ǫ2ǫ̃(d− 1){1− (d− 1)ǫ}, if (j, k) = (1, 2), (2, 1)

2ǫǫ̃(d− 1)2ǫ2, if j = k = 2

0, otherwise.

If we define the correlation coefficient fori, j ∈ D by

ρi,j(ǫ) := lim
y→0

δ(i,j)(ǫ, y)
√

δ(i,i)(ǫ, y)δ(j,j)(ǫ, y)
,
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Fig. 3. Solution of covariance evolutionlimy→0 δ
(j,r1)(ǫ, y), j ∈

{l2, r1, r2}, as a function of the channel parameterǫ for the (2,4)-regular
LDPC code ensemble.

we obtain

ρlb,r1(ǫ) =

{

1, if I{b=2}(d− 1)ǫ ≤ 1

−1, if I{b=2}(d− 1)ǫ > 1.
(19)

Note thatI{b=2}(d−1)ǫ ≤ 1 agree with the stability condition
for regular LDPC code ensembles.

Figure 3 shows the solution of covariance evolution
limy→0 δ

(j,r1)(ǫ, y), j ∈ {l2, r1, r2}, as a function of the chan-
nel parameterǫ for the (2,4)-regular LDPC code ensemble.
From Figure 3, we see thatδ(r2,r1) > 0 andδ(l2,r1) > 0 when
(d − 1)ǫ < 1. Also we see thatδ(r2,r1) < 0 and δ(l2,r1) < 0
when (d− 1)ǫ > 1.

V. CONCLUSION AND FUTURE WORK

In this paper, we have solved analytically the covariance
evolution for regular LDPC code ensembles. Moreover we
have derived the relationship between stability condition.

As a future work, we will derive an analytical solution of
the covariance evolution for irregular LDPC code ensembles.
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