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Abstract— A fundamental result in information-theoretic fault-
tolerant distributed computing is that unconditionally secure
broadcast (or Byzantine agreement) among three players is
impossible if one player is misbehaving. In particular, imperfect
broadcast with failure probability ε is achievable if and only if
ε ≥ 3−

√

5

2
.

In this paper, we examine to what extent the failure probability
of imperfect broadcast can be reduced. As a main result, we show
that, among three players, broadcast with failure probability ε
can be turned into broadcast with negligible failure probability
if and only if ε < 1/3. This result is finally extended to the
more general case ofn players and any number of misbehaving
players.

I. I NTRODUCTION

A fundamental problem in fault-tolerant distributed comput-
ing is to achieve consistency of the involved parties’ views,
even if some of the parties (also called players) deviate from
the protocol in an arbitrary manner. A core primitive for
achieving global consistency is broadcast, i.e., a mechanism
or protocol allowing one player, the sender, to send a value
consistently to all other players such that, even in case of mali-
cious behavior by the sender and/or some of the other players,
all honest players receive the same value. The seminal result of
Lamport, Shostak, and Pease [LSP82] is that broadcast can be
implemented if and only if less than a third of all the players
misbehave.

A. Model

We assume a setP of n players that are connected via
a complete synchronous network of pairwise authenticated
channels, i.e., channels that guarantee the authenticity of the
sender. Whether the channels additionally guarantee privacy
against a potential eavesdropper does not matter for our
results. Synchronicity means that all players share common,
synchronized clock cycles and that messages being sent during
a clock cycle are guaranteed to have arrived at the beginning
of the next cycle.

The resilience of a protocol is characterized by the numbert
of players that may deviate from the protocol. We refer to such
a player as beingcorruptedwhereas a non-corrupted player is
calledcorrect. It helps to imagine a central adversary who can
corrupt up tot players and make them cheat in an arbitrary,
coordinated manner.

In this paper, we make the distinction between a rushing
and a non-rushing adversary. The natural assumption is that
the adversary isrushing. A rushing adversary is given the
power, during each communication cycle, to first collect all
messages addressed to corrupted players — and exploit this
information in order to decide on what the corrupted players
send during the same cycle. In [GY89], this model is called
the sequential model.

A less natural assumption is anon-rushingadversary. A
non-rushing adversary cannot base the messages to be sent
during a particular cycle on the messages the corrupted players
receive during the same cycle. In [GY89], this model is called
the simultaneous model.

B. Broadcast

Definition 1 (ε-BC): A protocol amongn players P =
{p1, . . . , pn} where playerps (thesender) holds an input value
xs ∈ D (from a finite domainD) and every playerpi finally
decides on an output valueyi ∈ D achievesε-broadcast (ε-
BC) if it satisfies the following conditions with probability at
least1 − ε:

• CONSISTENCY: All correct playerspi compute the same
output,yi = y.

• VALIDITY : If ps is correct then every correctpi computes
yi = xs. ⋄

Typically, broadcast protocols are required to involve a
negligible error probabilityε > 0 or even required to be
perfect (ε = 0). For this case, it was shown that broadcast
is achievable if and only ift < n/3 [LSP82]. In particular,
this implies that broadcast among three players with negligible
error probability is impossible. The minimal error probability
that is still achievable in this case was given in [KY84]
(simultaneous model) and [GY89] (sequential model).

Proposition 1: [KY84] In the simultaneous model,ε-BC
among three players is achievable if and only ifε ≥ 1/3.

Proposition 2: [GY89] In the sequential model,ε-BC
among three players is achievable if and only ifε ≥ (3 −√

5)/2 ≈ 0.38.

C. Contribution

In this paper, we demonstrate the somewhat counterintuitive
fact thatµ-BC with sufficiently smallµ can be amplified toε-
BC with arbitrarily small error probabilityε > 0. In particular,



we show that this is possible if and only ifµ < 1/3. For the
general case ofn players and any number of corrupted players,
we finally show thatµ-BC with µ < 1/n allows forε-BC with
arbitrarily smallε.

II. RESULTS

Lemma 1: In the sequential (or even simultaneous) model,
among three players,µ-BC with µ ≥ 1/3 cannot be amplified
to ε-BC with ε < 1/3.

Proof: The lemma directly follows from Proposition 1.

In order to prove the achievability part, we use the re-
sult in [FM00] that weak broadcast (or crusader agree-
ment) [Dol82] is sufficient to achieve broadcast among three
players.

Definition 2 (ε-WBC): A protocol where the sender holds
input xs ∈ D and every playerpi finally decides onyi ∈
D∪{⊥} achievesε-weak-broadcast (ε-WBC)if it satisfies the
following conditions with probability at least1 − ε:

• CONSISTENCY: If any correct playerpi computesyi 6= ⊥
then every correct playerpj computesyj ∈ {yi,⊥}.

• VALIDITY : If ps is correct then every correctpi computes
yi = xs. ⋄

Theorem 1:In the sequential model, among three players,
µ-BC with µ < 1/3 allows for ε-BC with arbitrarily small
ε > 0. In particular, this can be achieved fromO(k · δ−2)
invocations ofµ-BC wherek is the security parameter (ε <
2−k) andδ = 1/3 − µ.

Proof: In [FM00], it was shown that one invocation
of weak broadcast among three players can be turned into
broadcast without introducing any additional error probability.
It is thus sufficient to show how to achieveε-WBC.

The sender sends his input messagexs ∈ {0, 1} m times
(for large enoughm) usingµ-BC. Each recipientRi decides
on yi = b if he received bitb ∈ {0, 1} at least2m/3 times,
and onyi = ⊥, otherwise.

Let Xi (i = 1, . . . , m) be them independent binary random
variables such thatXi = 1 exactly if thei-th invocation ofµ-
BC failed; and letδ = 1/3 − µ.

If the sender is correct then the probability that the protocol
fails can be estimated by Chernoff Bound

Proberr ≤ Prob

(

m
∑

i=1

Xi ≥ m/3 = (µ + δ)m

)

≤ e−
δ2

3µ
m .

If the sender is corrupted then, in order to make the
protocol fail, he must achieve that both recipients disagree
on the outcome of at leastm invocations ofµ-BC. Thus, the
probability that the protocol fails with a corrupted sendercan
be estimated by the same Chernoff bound as above.

Choosingm ≥ 3µ ln(ε−1)
δ2 = O(kδ−2) thus guarantees an

error probability of at most Proberr ≤ ε.
More generally than in the three-player case, it can be shown

that, among any numbern of players,µ-BC for sufficiently
small µ allows for ε-BC with arbitrarily smallε.

Theorem 2:In the sequential model, amongn players
where any number of players can be corrupted,µ-BC with
µ < 1/n allows for ε-BC with arbitrarily smallε > 0. In
particular, this can be achieved fromO(n2k ·δ−2) invocations
of µ-BC wherek is the security parameter (ε < 2−k) and
δ = 1/n− µ.

Proof: In [CFF+05] it was shown that, amongn players,
n-proxcast (a generalization of weak broadcast with multi-
ple intermediary values⊥) is sufficient in order to achieve
broadcast. Furthermore,n-proxcast can be achieved fromµ-
BC (µ < 1/n) in a similar way as, among three players, weak
broadcast fromµ-BC (µ < 1/3). The theorem now follows
from the analysis in [CFF+05].
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