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Abstract—“Sociolects” are specialized vocabularies used by 
social subgroups defined by common interests or origins. We 
applied methods to retrieve large quantities of Twitter data 
based on expert-identified sociolects and then applied and 
developed network-analysis methods to relate sociolect use to 
network (sub-) structure. We show that novel methods 
including consideration of node populations, as well as edge 
counts, provide substantially enhanced performance compared 
to standard assortativity. We explain these methods, show their 
utility in analyzing large corpora of social media data, and 
discuss their further extensions and potential applications.  
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I. INTRODUCTION 
Over the past decade, there has been tremendous interest 

in quantitatively analyzing the rapidly growing phenomenon 
of social media communications. Potential application areas 
include marketing, intelligence analysis and information 
operations, and public health tracking and education 
campaigns. The foundational work in social networks comes 
from the social sciences, decades before the existence of 
electronic social media. See, for example, [1] [2]. The 
quantitative network science community (largely physicists) 
has developed a range of methods, beginning with the ER 
model of random graphs [3], extended by identification of 
the properties of small-world [4] and scale-free [5] networks, 
and by a proliferation of empirical and theoretical studies 
across a range of disciplines.  

The basic goal of the research reported here is to develop 
novel methods that combine social science theories and 
insights with powerful network analysis techniques. Such 
methods can be of both theoretical interest and practical 
utility in a variety of domains, including intelligence and 
military applications. Our approach is to operationalize 
social science theories to apply to massive amounts of social 
media data and then to combine network analysis methods 
with those operationalizations. This paper summarizes work 

performed during the first eight months of the project, 
focusing on methodological innovations. 

In particular, we investigate how patterns of language use 
in a social network are related to link structure, thus 
combining content information – language use – with 
structural information. To our surprise, we have not been 
able to find other research that explicitly explores this 
relationship.  

Sociolects are  specialized vocabularies used by 
professional groups, by hobbyists (e.g., knitters, bow hunters, 
comic collectors), and by other groups that share an interest 
in a given topic (e.g., “gamers,” Grateful Dead fans, Civil 
War reenactors) [6] [7]. As defined by Louwerse [8],  
sociolects are “similarities in the language use of a group of 
individuals.”  

We operationalized the social science concept of 
sociolects [6] for analysis of groups in social networks  [9] 
based on Twitter [10] data. Our hypothesis is that individuals 
using a sociolect will tend to be more closely linked than 
individuals who do not. This is an example of homophily, 
[11] informally, the idea that "birds of a feather flock 
together;" in this case the "feathers" are group-specific 
patterns of language usage. 

Likelihood of linkage in networks or graphs is a very 
active research area, focusing on identifying “communities” 
(or “modules” or “clusters”). We briefly review some key 
methodological issues in community detection to set the 
stage for our analysis. Conceptually, communities are 
defined as sets of nodes more densely connected internally 
than with the rest of the graph, but this seemingly simple 
idea has proven both conceptually and computationally 
challenging. (See [12] for an extensive review, also [13].) In 
the work reported here, we addressed a simpler version of the 
problem: rather than attempting to decompose the networks 
into communities, we are concerned with assessing the link-
based “communityness” of sets of nodes based on their 
sociolect use. In future work, we plan to identify 
communities and compare them with those based on 
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sociolect use, but that is not our focus in here. As discussed 
below, we initially used the standard approach to assessing 
association in networks, called assortativity [14] [15] [16] 
and equivalent to Pearson’s r. However, the assortativity 
statistic was strongly affected by group size1, and it proved 
inadequate to our needs. We therefore developed two other 
new measures, explained in some detail below. 

Explicitly identifying sociolects is a challenging problem 
in computational linguistics [7] [8].  For this effort, we took a 
less formal approach based on expert elicitation of topic-
specific words. "Sociolect" term lists were constructed by 
identifying analytic topic areas of interest and interviewing 
appropriate experts. The results consisted of short list of 
keywords (typically around 20 terms) relevant and specific to 
the topic area, as judged by the expert. We call each such 
collection of words a term list. These constructed term lists 
are summarized in Table 1. Four topic areas were considered, 
which we refer to with the tags, Narco, Syria, Bahrain, and 
Shooting. As a control, we also constructed a random term 
list, which we call Random. For Random, a selection of 20 
words was retrieved from the COCA (Corpus of 
Contemporary American English) online interface [17]. The 
COCA random retrieval selects one of the 60,000 most 
common words in the corpus with uniform probability. For 
the Narco term-list, the (Spanish) terms were taken from a 
glossary of narco-related terms published by the El Paso 
Intelligence Center [18]; thus it was developed by domain 
experts. All other term lists were elicited by us from subject-
matter experts. 

II. DATA AND METHODS

A. Data 
We will provide full details of the elicitations in a 

companion publication.  

Name Description Language Terms Tweets 
Retrieved 

Distinct Posters 
(Nodes/Edges) 

Random Control -
COCA English 20 1,127,895,980 20,325,708/30,411,053 

Narco 
Narcotics 
Violence in 
Mexico 

Spanish 63 831,799 714,214/665,231

Syria Syrian civil 
war Arabic 20 27,159,300 237,538/615,397

Bahrain 
Bahrain 
Shiite-Sunni 
conflict 

Arabic 17 9,310,475 149,488/333,962

Shooting Firearms 
Enthusiasts English 28 279,829,564 6,894,309/6,196,719

Table 1: Summary of Term-Lists and Harvests 

1 Modularity, a closely related and widely used concept for detecting and 
quantifying community structure [24], has been similarly criticized . [20] 
shows algebraically that modularity is biased toward finding communities 
of approximately the same size. In response to efforts to address this 
problem by introducing a tunable parameter for community size, a recent 
paper  [21] showed that modularity maximization, even with such a 
parameter, will either merge small modules which should remain separate 
or split large ones with should remain intact for networks with a broad 
distribution of module sizes (as found in many real-world networks). The 
authors even conjecture that the tendency to simultaneously merge and 
split clusters is an inevitable feature of methods based on global 
optimization [21, p. 7],  suggesting potentially widespread methodological 
problems in the area. 

Twitter data were obtained from Pacific Northwet 
National Labs’ suite of SociAL Sensor Analytics (SALSA). 
SALSA provides immediate access to and tools to 
manipulate data from over 20 billion entries in blogs, micro-
blogs, comments, and mainstream news articles spanning 13-
June 2011 through 11-March 2013. The system stores and 
indexes 140 TB of social media data in a distributed 
database, 60% in English and the other 40% among at least 
60 languages. For this effort, data were collected exclusively 
from micro-blog Twitter, in which authors compose short 
messages, known as tweets, limited to 140 characters in 
length. Tweets are characterized by content, data, and author, 
among other fields. 

A separate experiment was conducted for each term list 
in Table 1. For each term list, all tweets containing one or 
more words from the term list were retrieved from the 
SALSA corpus, creating a term data-set of tweets associated 
with the term list. Each tweet has a number of attributes, 
including text, author and post-time. For each unique author 
in a term data-set, the text of all tweets by that author were 
accumulated into an author-specific text corpus. Within each 
of these author-specific corpora, the number of distinct terms 
from the term list were computed, resulting in the author's 
term-count, or TC. This procedure yields a single, well-
defined TC for each author for each of the five term lists. We 
refer to a group of others with the same TC as a class. We 
would like to understand mixing [15] [16] between different 
classes - qualitatively, our hypothesis is that authors who use 
"more" terms are more likely to interact. We make this 
statement more precise below.

Networks were constructed for each term data set as 
follows: each author in the term data set is associated with a 
distinct node in the network, and is characterized by its TC. 
Directed links between author/nodes were added based on 
mention (@-sign) and retweet (RT2) tags: an author/node 
(author-1) that mentioned or retweeted another author/node 
(author-2) in the author-specific text corpus (the accumulated 
tweets) would lead to an edge from author-1 to author-2. 
Edges are unweighted. In the event that author-2 did not exist 
in the term data-set, either because they were not in the full 
SALSA corpus, or had not used any terms from the term list, 
a node was added to the network for that author with TC=0.  

We note that this simplifies the network by ignoring 
frequency of links and their temporal distribution. For 
example, a single link from author-1 to author-2 is used 
whether there are many mentions or a single mention. 
Extending the analysis with link weights based on mention 
frequency might reveal different phenomena, and we hope to 
explore this as the research continues. In this first analysis 
we intentionally avoid such complexities, although we 
believe that considering them could be useful.  

Generally, classes with lower TC have many more nodes 
than classes with higher TC. This is intuitively reasonable: 
since filtering for a given term will select a fraction of the 
nodes in the corpus, repeatedly filtering for multiple 
(independent) terms will lead to a (geometrical) diminution 

2 MT (modified tweet) tags were ignored.
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of group size. Occurrence of sociolect terms is not 
independent, as we discuss below, although class size still 
diminishes rapidly with increasing TC.

B. Methods: Average Degree and Assortativity 
We begin by discussing node degrees in the constructed 

networks. We examine the set of networks associated with a 
term data-set, restricted to have TC higher than a given 
threshhold, TCt, generating t networks for each. For each 
such truncated network, average degree [19] was computed 
by dividing the total number of edges, NE by the total number 
of nodes, NN,  yielding average degree as a function of TCt.
We then plotted average degree for each term set for every 
value of t; note that the values of t for each term data-sets 
differed slightly. 

All of these average degree plots, computed for both 
sociolects and the random term data-set, exhibited the same 
generic behavior: initial increasing average degree with 
increasing TCt up to a maximum, with subsequent decay. 
Maxima in all curves occurred  around TCt = 6. However, 
we found no consistent differences between average degree 
curves from the sociolect-based term data sets and the 
random word term data set. We do note that the two Arabic-
based term data-sets (Bahrain and Syria) yielded more 
highly peaked curves than the others. See Figure 1. 

The peaked structure of the average degree curves 
implies some dependence of probability of connection with 
minimum term count; if TC were randomly assigned to 
nodes in a random network with connection probability p  
[14], average degree of the truncated networks would simply 
decrease as pTCt . This may indicate the existence of a core 
group at around TC = 6, which may reflect strong 
consistencies in patterns of language use, perhaps due to 
word frequency effects, which we did not control for.3

Figure 1: Average Degree vs minimum TC, TCt 

3 Whether this reflects a core group of posters, a core group of 
terms, or a core size of term usage will be investigated in the next 
phase of the research. 

A manifestation of homophily in social networks is 
assortative mixing, in which network nodes that share a 
similar property are more likely to be linked [11] [14]  [19].  
Newman [15] [16] provides a now-standard measure of 
assortative mixing4.  Here, the assortative property of interest 
is the TCs of the nodes. To compute the metric one 
constructs a “mixing matrix” where each cell, Nij, is simply 
the number of edges connecting nodes with TC=i to nodes 
with TC=j. This is a square matrix, symmetric for undirected 
graphs but not for directed graphs (such as the ones we 
used). The matrix can be normalized by total number of 
edges in the network, NE, yielding the matrix eij = Nij/NE.
(We note that this normalized mixing matrix includes no 
information about the number of nodes in each class, Ni.)
This matrix is the probability that,  given an edge between a 
source node s, and a destination node d, that the edge will 
connect a node with TC i to one with TC j. eij = P(s  i, d  j | 
Edge(s,d) ), where Edge(s,d) is a Boolean function returning 
true if there is an edge in the network connecting node s to 
node d. As a probability, ij eij = 1, and one can speak of 
marginals over columns, ai  = j eij and rows, bj = j eij
which give the proportion of nodes from (for rows) or to (for 
columns) nodes with value i or j. The sum of row and 
column marginals equals 1 by construction. The assortativity 
coefficient, r, is: 

   (1) 

As Newman notes [15] [16],  this is simply the Pearson 
correlation coefficient of the TCs paired by edges in the 
network. This makes intuitive sense, since the relationship of 
interest is precisely the association of values of the row and 
column values of a quantitative variable. We expected 
increasing association with increasing TC. However, the 
results of this initial assortativity analysis were not 
encouraging. Briefly, assortativity calculations yielded a 
coefficient close to zero, typically positive, but small. This 
held for networks constructed using tweets selected with the 
sociolect and random term lists. This also applied to 
subnetworks truncated by TCt. One explanation may be that 
Newman's r is very dependent on the size of the different 
classes in the network (strictly speaking, on the number of 
edges attached to a class, which will be the product of 
average degree and number of nodes). TC classes with large 
numbers of nodes will typically dominate the value of r. Due 
to the dramatic diminution of nodes (and edges) with  
increasing TC, the lower TC populations, which are less 
interesting from our perspective, dominate r.5

4 Although usually used to determine the relationship of node 
degree with link structure, assortativity can be used to characterize 
the relationship of any scalar node attribute with link structure, as 
Newman [15] makes clear. 
5 Since the focus of this paper is methodological, we note that we 
also performed an analysis where we computed the expected value 
of each cell in the normalized mixing matrix by simply multiplying 
the row and column marginals. We then divided the observed 
mixing matrix by the matrix of expected values, with the idea that 
the  pattern of ratios should differ in the sociolect networks from 
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C. Methods: Edge Density and Term Independence 
Motivated by this observation, we extended the analysis 

to include the node population information. We developed a 
simple formulation of the propensity of nodes in a network to 
connect: inverting the expression for eij = P(s  i, d  j | 
Edge(s,d)) gives:  

(2) 

where, P(s  i) = Ni/NN , is the estimated probability of node s
belonging to TC class i, and  Ni is the number of nodes in 
class i. (2) introduces two important quantities that consider 
the edge densities. The first, P(Edge(s,d)| s  i, d  j), is the 
probability of an edge, or interaction, between TC class i and 
TC class j. The second, P(Edge(s,d)), is the global 
probability of interaction in a network. (2) implies that 
P(Edge(s,d)| s  i, d  j)=Nij/NiNj  and P(Edge(s,d))=NE

/NN
2

[19]. This is intuitively reasonable: the probability of an edge 
occurring between two nodes in a network is given by the 
proportion of observed number of edges NE to the possible 
number of edges in the network, NN

2 (allowing for self-
connection)6 . Like average degree, this edge density is a 
global property of networks. 

We plot, on a log scale, the edge density of subnetworks 
truncated by TCt in figure 2. 

Figure 2: Edge Density vs TCt 

This plot indicates that for a given number of terms, the 
probability of interaction in the sociolect networks is 
typically one to two orders of magnitude greater than the 
probability of interaction in the random network. This is 
most pronounced in the Narco, Syrian and Bahrain

the control network. Although there was a tendency in some of the 
sociolect networks for higher values near the diagonal than for the 
network obtained using random terms, suggesting association, no 
reliable pattern was found.
6 If self-connection is disallowed, then the possible number of 
edges between N nodes is N(N-1) and the edge density of the 
network is NE/NN(NN-1). Our analysis is the same in either case.

networks, less so for the Shooting network. This indicates 
that the shooting network is less connected – i.e., has a lower 
density of edges – than the others. Whether this is a 
fundamental property of the underlying social system or an 
artifact of the informal sociolect construction  process is a 
question for further study. We also note that all networks 
exhibit increasing interaction probability with increasing 
term count. Although the average number of links begins 
decreasing at TC=6, the number of nodes decreases more 
quickly; this shows the value of conditionalizing link 
probability on number of nodes, as done in equation (2). This 
may also be due to retweet effects, where, given several 
common words, the likelihood of nodes interacting through 
retweets increases, leading to increased edge density. 
Behavior of networks ignoring retweets is a topic for future 
study. Note that we do not regard this as an artifact of our 
methodology, since retweets are a fundamental information 
diffusion mechanism on Twitter. We have not controlled for 
word frequency, although the similarity of the slopes in the 
figure suggests that any such effects are similar across term 
lists. 

Thus, we see a strong sociolect effect using this measure, 
which explicitly includes number of nodes in computing the 
conditional probability of links. This is similar to other work 
in which edge density has been used to identify subgroups 
[12], but we believe its use to identify assortative mixing is 
unique.

We have, thus far, presented two analyses: one, 
assortativity, based only on the edge structure of the network, 
Nij (or equivalently eij), the other, edge densities, that adds in 
the node populations over TC classes, Ni. We now perform 
an analysis that depends only on the node populations Ni.
Central to the definition of a sociolect is the notion that its 
constituent terms are not statistically independent. For 
example, someone who uses a domain-specific term, such as 
breech, firing-pin or handload for the case of shooting, 
should be more likely to use other domain-specific terms. 
The converse of this statement is that unrelated words should 
occur independently: given an arbitrary group of words, 
using one word from the group should not affect the 
likelihood of using another word from the group. Pursuing 
this reasoning, we define a quantity Nti = j i Ni , the number 
of nodes in a network which have TC i. We investigate the 
ratios ti = Nti/Nti+1 - this is the fractional reduction in the 
node population when increasing the minimum number of 
keywords, TCt. If the probability of using a term, qt, is 
independent of the number of terms used, this quantity 
should scale as qTCt.

In Figure 3, we plot the ratio ti/t1
TCt . We note a striking 

difference between the ratios for the sociolect networks, 
which tend to increase with increasing term usage, compared 
to the ratio for the random network which remains O(1) until 
the last few terms, which have very small N’s and are 
therefore noisy. 
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 Figure 3: Term Dependence vs TCt. 

III. CONCLUSION AND FUTURE WORK

We applied a number of measures to look for signatures 
of sociolect usage related to linkage patterns in networks 
constructed by filtering billions of tweets based on various 
term lists. We believe that this focus is novel, and are not 
aware of any prior work specifically investigating the 
coupling between language and community structure [12] 
[13] [14]. Although we found increased levels of  association 
between individuals who use common language, whether the 
terms used are from a sociolect or a random word list, the 
standard metric of average degree showed no reliable 
differences between sociolects and the control. Neither did 
Newman’s assortativity [15] [16] nor a measure we 
developed using expected values for cells in Newman’s 
mixing matrix differentiate between them. We speculate that 
this may be due to failure to account for large variations in 
sub-population sizes.  

We observed that the node population as a function of 
term count dropped off dramatically with increasing term 
count. Therefore, we developed two novel metrics, one using 
both number of edges and number of nodes to compute edge 
density, and the other using only number of nodes to 
compute term independence. Edge density indicates that 
association for sociolect-based networks are typically two 
orders of magnitude stronger than association for random 
term list networks. Term independence shows a strong 
increase in likelihood for multiple term usage in sociolect-
based networks compared to strong independence for term 
usage from the random term list.  

In combination, these two methods provide a strong 
indicator of sociolect usage and associated community 
structure. We believe that considering node count, which 
crucially constrains number of possible edges, can 
substantially sharpen the analytical power of measures of 
association in networks more broadly. It explicitly addresses 
the issue of group sizes, which has been found to be 
important in the closely related problem of community 
detection [20] [21]. We are therefore quite encouraged that it 

will be possible to explore sociolect (and other social-media-
based) networks more systematically going forward, using 
both these novel metrics and a range of others. 

We plan to explore several additional methodological and 
substantive questions. Is it possible to find a parsimonious 
set of terms in a sociolect that can effectively differentiate a 
sociolect-using subnetwork from the larger network? Is it 
possible to find a sociolect without starting with an initial 
word set? Are retweets different from mentions in terms of 
sociolect usage and/or network structure? Can these methods 
be applied effectively to other social media, such as weblogs 
or Facebook? Are there ways to relate these networks to 
demographic variables? Can we use structural methods to 
find cores or key transmitters (or amplifiers) in networks, 
and do they have significant roles in information diffusion? 
We also intend to investigate the extent to which language 
and structure detects communities that are different from 
communities detected using traditional approaches based on 
structure alone; therefore, comparison of communities 
identified by multiple algorithms and the ones presented here 
should be enlightening.  

We believe that refinement and application of these 
methods may be of considerable utility in identifying 
important subgroups in vast streams of social media data, 
with potential applications to military and related intelligence 
activities, marketing, political campaigns, dissemination of 
news and information, and the like. Multimethod approaches, 
such as the one presented here, are consistent with 
recommended best practices in social science research [22] 
and experimental design [23], and we are continuing to try to 
develop new methodological approaches to such problems. 
We also conjecture that community structure may best be 
characterized by a vector of measures, revealing multiple 
aspects of that structure, potentially relevant for different 
analytical goals. 
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