NeuralPot: An Industrial Honeypot Implementation
Based On Convolutional Neural Networks

Ilias Siniosoglou*, Georgios Efstathopoulos!, Dimitrios Pliatsios*, Ioannis D. Moscholios|
Antonios SarigiannidisY, Georgia Sakellarit, Georgios Loukas®, Panagiotis Sarigiannidis*®
*Department of Electrical and Computer Engineering
University of Western Macedonia, Kozani, Greece
{isiniosoglou, dpliatsios, psarigiannidis} @uowm.gr
f0 INFINITY Limited
Imperial Offices, London, United Kingdom
george @0inf.com
||Department of Informatics and Telecommunications
University of Peloponnese Tripoli, Greece
idm@uop.gr
ISidroco Holdings Ltd.

Limassol, Cyprus
asarigia@sidroco.com
J;Computing and Information Systems
University of Greenwich, London, United Kingdom
{g.sakellari, g.loukas}@greenwich.ac.uk

Abstract—Honeypots are powerful security tools, which are
developed to shield commercial and industrial networks from
malicious activity. Honeypots act as passive and interactive
decoys in a network by attracting malicious activity away from
critical network devices. Given that the security incidents against
industrial and critical infrastructure are getting sophisticated and
persistent, advanced security systems are needed. In this paper, a
novel industrial honeypot implementation is presented, which is
based on the Modbus protocol, entitled NeuralPot. The presented
NeuralPot honeypot is able to emulate industrial Modbus entities
in order to actively confuse the intruders. It achieves this by
introducing two distinct deep neural networks, a Generative
Adversarial Network and an Autoencoder Network, which learn
Modbus device behavior and generate realistic-looking traffic
behavior. Based on the evaluation results, the proposed industrial
honeypot performs well in terms of accuracy, similarity, and
elapsed time of data generation.

Index Terms—Industrial Control System, SCADA, Honeypots,
GAN Network, Autoencoder Network, Data Generation

I. INTRODUCTION

Industrial Control Systems (ICS) are the fundamental con-
trol elements, both hardware and software, which are used
to organise and oversee industrial network processes such as
water and gas pipeline distribution, heavy manufacturing, and
energy generation and distribution. A typical ICS system is
composed of a central controller and a number of distributed
field devices, such as sensors and actuators. Custom communi-
cation protocols are used to enable the data exchange between
the controller and the field devices. Driven by the need for

§ The corresponding author s

(psarigiannidis @uowm.gr)

Panagiotis Sarigiannidis

high scalability, computational-intensive processes, and remote
monitoring and control, as well the rapid evolution of Infor-
mation and Communication Technologies (ICT), modern ICS
are connected to the Internet. In addition, in order to provide
seamless integration among various components, as well as
different vendors, well-known communication protocols are
utilized. As a result, modern ICS are exposed to numerous
security threats.

A cyberattack against an ICS could have devastating conse-
quences on public health and safety. For example, an attacker
can compromise an ICS and shut down electricity, gas, and
water services, or even destroy critical military infrastructure.
Reports in [1] and [2] show an increasing number of security
incidents and cyber attacks against critical ICS infrastructure.
Consequently, security considerations for ICS are gaining
higher priority and consideration than those for traditional ICT
systems due to the potential impact on the physical safety
of employees, customers, or communities. The Repository of
Industrial Security Incidents (RISI) [3] contains 242 reported
incidents dating from 1982 to 2014. Each record contains the
year, title, industry type, country and information about the
incident and its impact.

The ICS are vulnerable to many threats, such as Denial
of Service (DoS) attacks, eavesdropping, Man-In-The-Middle
(MITM) attacks, and virus and worm infections. DoS attacks
aim to disrupt the operation of the system, by aggressively
using all of the available resources of the system, so it cannot
respond to the legitimate users. By eavesdropping, the attacker
intercepts the communications, thus violating the confiden-

tiality of the communication. Mostly wireless communication
systems are affected by this attack, as the radio signals spread
in a large area, where anyone can intercept the signal and
decode the message. In a MITM attack, the attacker acts as a
legitimate user between the endpoints of the communication,
therefore violating the confidentiality of the communication.
Moreover, the attacker can also tamper with the exchanged
messages. Finally, virus and worm infections aim to execute
malicious code in a compromised system. In addition, worms
can launch more cyberattacks from the compromised system.

Most proposed defences focus on secure authentication
and intrusion detection. However, attacks cannot always be
prevented or detected, especially if they are zero-day attacks.
Here, honeypots have an advantage, by luring the otherwise
successful attacker to the wrong resources.

A. Motivation and Contribution

The concept of honeypots has emerged as an effective
method to generate the signature database as well as to
discover novel attack methods and tools [4]. Honeypots mimic
the operation of applications, services, and devices in order to
attract potential hackers to attack them instead of attacking the
real ones [5].

Honeypots are extensively used in the protection of com-
puter networks. Nevertheless, the use of honeypots in indus-
trial environments is less common, since older ICS utilize
analog communication schemes. In addition, many of the ICS
communication protocols are proprietary, therefore they cannot
be easily integrated into a honeypot system. In this paper,
we present the design and implementation of a novel method
that generates realistic traffic. Moreover, the proposed method
is integrated into the Conpot honeypot [6], in order to be
deployed in an industrial environment.

Our proposed NeuralPot aims to actively mislead attackers
and redirect their interest away from the real network devices.
To accomplice this, a Deep Neural Network (DNN) scheme
is introduced. DNNs are used in a variety of technological
and scientific fields ([7], [8]) due to their rapid evolution
and implementation as well as their reliability and scalability.
This work leverages DNNs as a dynamic method of generating
Modbus traffic data, since the Modbus protocol is widely used
in ICS.

The generated data are not statically defined, but they
are dynamically changing based on the data generated by a
real device. Consequently, the network traffic is constantly
changing, achieving a better emulation of a real device.
Furthermore, since the generated data are adapted to the real
data, the probability of successfully deceiving an adversary
into attacking the device is increased.

Here, two different categories of DNNs are employed,
namely the Generative Adversarial Network (GAN) [9] and
the Auto-Encoder Network [10] in order to learn the device
behavior and generate similar traffic. These DNN implemen-
tations are compared to evaluate their performance.

By adapting these techniques into modern honeypots and
placing multiple of those honeypots into a network, it would

be more easy to attract attackers, while important traffic traces
will be captured. In addition, critical log files, captured by the
honeypots, could be used for forensic operations.

In the light of the aforementioned remarks, the contribution
of this work is summarised as follows:

o Design a dynamic network analyser for Modbus traffic
coming from Remote Terminal Units (RTUs) and Pro-
grammable Logic Controllers (PLCs).

o Design a new DNN that generates network traffic adapted
to the real network traffic.

« Implement a novel honeypot that utilizes DNNs to gen-
erate traffic that attracts potential attackers and mislead
them into attacking the honeypot instead of the real RTUs
and PLCs.

The rest of the paper is organized as follows: Section
IT presents the related work, while Section III provides the
fundamental background. Section IV presents the design and
the proof of concept implementation. In Section V, the evalu-
ation results are presented and discussed. Finally, Section VI
concludes the paper.

II. RELATED WORK

The notion of honeypots is quite popular in the literature.
The authors in [11] reviewed and discussed the recent ad-
vances as well as the future trends in the topic of honeypots.
The survey suggests that honeypot research is on the rise due
to the increasing number of connected devices. Moreover,
research honeypots generate valuable data that are used to
improve and develop new honeypots. Finally, the legal and
ethical concerns of honeypot usage is an important research
area.

Simoes et al. [12] investigated the utilisation of honeypots
in ICS environments, along with implementation and deploy-
ment strategies. In addition, the authors introduced two ICS
honeypot systems, where the one is hosted on a physical
device, while the other is hosted on a virtual machine. The
results indicate that low-cost machines can provide enough
computational resources, and in cases where the location of the
honeypot is irrelevant, the virtual honeypots are more flexible
and cost-effective.

In [13], the authors presented a high-interaction ICS hon-
eypot that aims to address the main challenges related to ICS
requirements. In addition, the authors utilised the MiniCPS
framework in order to implement the proposed honeypot. In
order to evaluate it, they organized a Capture The Flag (CTF)
competition, hosted by Singapore University of Technology,
where they deployed a water treatment testbed.

Cao et al. [14] proposed DiPot, which is a distributed
industrial honeypot system that provides deep data analytics
and advanced visualisation techniques. DiPot is a modular
honeypot that consists of three nodes, namely honeypot, pro-
cessing, and management nodes. The honeypot node emulates
an ICS device, while the data processing node periodically
analyses raw log files. The management node facilitates user
interaction and provides data visualization functionalities. In

order to evaluate Dipot, large amounts of both legitimate and
malicious network traffic were captured and analysed.

The authors in [15], designed an ICS honeypot that collects
and feeds intelligence to real-world ICS cybersecurity moni-
toring services. The ICS system module emulates the HMI and
PLC devices, the simulation system that evaluates the process
status variables in real time, and the cybersecurity monitoring
infrastructure that collects and generates information about the
cyber attackers. The honeypot continuously provides security
intelligence and insights, such as correlation rules, IDS signa-
tures, and general awareness of the cyberthreat landscape.

The authors in [16] designed and implemented an interactive
ICS honeypot that emulates a physical ICS device by replicat-
ing realistic traffic from a real device. The implemented ICS
honeypot is based on Conpot, while the Modbus ICS com-
munication protocol is used for the communication between
the ICS devices. The honeypot runs inside a virtual machine
in order to facilitate the emulation of the entire organization’s
ICS infrastructure. Most of the works found in the literature
implement a honeypot using preconfigured traffic in order to
act as a real device and attract potential attackers. In this
work, we adopt a novel approach in the implementation of
a honeypot. To achieve this, we utilise a DNN that generates
network traffic, where the produced traffic is very similar to
the real traffic. This allows adapting to changing conditions,
such as new devices being introduced or existing ones being
dropped. Consequently, the generated traffic is dynamic and
the probability of attracting attackers is getting higher.

III. BACKGROUND

This section provides a description of the main components,
such as the Conpot honeypot, the Modbus communication
protocol, and the utilized traffic dataset.

A. Conpot Honeypot

The proposed approach is based on the Conpot honeypot,
which is an industrial honeypot that utilises well-known in-
dustrial communication protocols [6]. These include the IEC
60870-104, the Backnet, the EtherNet/IP, the Guardian AST,
the Kamstrup, the Modbus, and the S7Comm communication
protocol. In this work, the Modbus communication protocol
was selected since it is widely used in industrial applications.

B. Modbus Communication Protocol

Modbus is an open and royalty-free communication protocol
that is widely used in industrial applications [17]. It is a
simple and easy to deploy protocol, developed to facilitate
the communication among PLCs and RTUs. Modbus supports
both serial and Transmission Control Protocol (TCP) commu-
nication schemes.

The basic Modbus entities in a network are the Modbus
masters, and slaves. A master is usually a remote query
terminal, such as a Human-Machine Interface (HMI), that
sends control and request information to the Modbus slaves.
The slaves are usually PLCs or RTUs, deployed throughout

the network. Each server can have multiple slaves with unique
slave IDs associated with them.

In the Modbus protocol, the data are stored in four tables,
where each table is associated with the discrete (called coils)
and numerical (called registers) inputs and outputs. The master
utilises several Function Codes in order to communicate with
the PLCs and RTUs. The most common function codes include
the Read Coil Status (FCO1), the Read Input Status (FCO02),
the Read Holding Registers (FC03), the Read Input Registers
(FC04), the Force Single Coil (FCO05), the Preset Single
Register (FC06), the Force Multiple Coils (FC15), and the
Preset Multiple Registers (FC16).

C. Network Traffic Dataset

The datasets for the training and testing processes of the
DNNss are extracted from the real network traffic. The network
traffic is collected and stored in a pcap file. The collected
traffic corresponds to the communication of an HMI with a
PLC and a RTU in the network. Specifically, the HMI sends
requests to the PLC and RTU for an update on a value that
is stored in the device memory (i.e., Read Holding Registers
(FC03)). Upon the reception of the request, the PLC or the
RTU responds with a packet that contains the requested values.

IV. DESIGN AND IMPLEMENTATION

This section provides a detailed description of the design
and implementation of the DNN that generates the Modbus
network traffic. Table I lists the notations and symbols that
are used in this work.

TABLE I: Notations & Symbols

Term | Description

z; Feature 7 of input vector x

z’ Flattened data vector

G Generator

D Discriminator

z Random noise

p(+) Probability function

Yi Label of sample ¢

o(z) | Normalized sigmoid function
n Number of predictions

M Number of features

Lor Real data

Ip Predicted data

S Covariance matrix of real data
p Covariance matrix of predicted data

A. Data Preprocessing

Dataset Generation: Fig. 1 depicts a high-level view of
the dataset generation process. Two approaches have been
developed to extract and transform the data into a suitable
structure, which will be used in the training process. The
first approach parses the raw traffic from a pcap file and
extracts the selected features into two separate categories, one
for the Modbus request and one for the Modbus responses
respectively. Regarding the requests, the selected features are:
i) Relative-Time, ii) Type, iii) Transaction-ID, iv) Protocol-
ID, v) Length, vi) Unit-ID, vii) Function Code, viii) Start
Address, ix) Quantity (of Addresses). Regarding the responses,

Flattened Modbus
Address Memory
Modbus Values Slices
Responses
FEEEEEEEE R EEErn
frrrrrrrrerrrerenn
Modbus [EERRRARRR RN
rrrrrrrrrerrrerenn
Mt | | N FH
frrrrrrrrerrrerenn
I (NN RN RN A}
Modbus Address
Requests Index

Fig. 1: Pcap file - Modbus traffic

the Quantity feature is replaced with the Byte Count feature,
while an additional feature, namely Address, is selected.

Since the flattened data are not sorted, a sorting function
is used to include the different values of the addresses to
the memory instance without omitting values. In order to
transform the flattened data into an appropriate form, the
process creates a tuple of all of the given values in an instance,
which is considered as the tuple of values of addresses
between two recurring addresses. Afterward, the generated
tuples are exported to a csv file, which is used as input to the
neural network. In order to improve the training and testing
effectiveness, the datasets are scaled using a MinMax Scaler
based on the following formula:

, x; — min(x)

= max(zx) — min(z) M

where 2’ is the scaled vector of data, x is the input vector of
data and z; is the different features in the data vector.

B. GAN Architecture

Real Controller
Data

Generated

Controller Data '
L Generator =) ‘

Fig. 2: GAN Architecture

» Validity
Label

Noise Vector
(KxN)

The GAN architecture [9] [18], as shown in Fig. 2, is
based on a pair of neural sub-networks, namely the Generator
that generates the mimic data using noise as input and the

Discriminator that classify the generated data into fake and
real. The GAN aims to generate data that the discriminator will
classify as real. Equation (2) shows the relationship between
the Generator and the Discriminator (denoted as G and D,
respectively) as a value function.

ménmng(G, D) = ménmngIdiam [log(D(x))]+

Eznp.[log(1 = D(G(2)))]

in which the G' accumulates noise z from space Z and outputs
x, which is forwarded to the D. The terms pgutq(z) and
p-(z) denote the probabilistic distribution of spaces X and Z
respectively. In the proposed implementation, GAN consists of
three different components. The first component is the Input
module, the second is the Generator module and the third is
the Discriminator module.

Input Module: The Input module of GAN is a simple layer
with an input size of 100 that describes the randomly generated
input noise given to the Generator to produce the simulating
data. The random noise is created using the normal distribution
with mean g = 0 and a standard deviation of o = 1.

Generator Module: The Generator module is one of the
two neural sub-networks in the GAN architecture. It aims to
produce an output that is almost identical to the real data. In
GAN, the Generator is composed of seven layers and it is
compiled with the Binary Crossentropy loss function (3) and
the Adam Optimizer [19].

—% ;yi-log(p(yi))Jr

where [V is the number of samples given, y is the data label,
and p(y;) is the probability of the sample being a match to
the label.

(1—wi)-log(1—=p(y:)) (3)

Generator

Dense

Dense
Layer
(256, 512)

" Dense LeakyRelu
Layer Layer
(100, 256) (256, 256)

LeakyRelu
Layer
(512, 512)

Dense LeakyRelu
Layer Layer Layer
(512, 1024) (1024, 1024) (1024, M)

Fig. 3: Generator Module Architecture

The architecture of the Generator module is shown in Fig. 3.
The first layer is the Generator’s input dense layer that has
a size of 100 tuples. Among the remaining layers, three are
dense layers, where the number of neurons is increasing from
256 to 1024. The output layer contains M number of neurons,
where M is the number of selected features. The rest of the
layers are Leaky Rectified Linear Units (ReLU) layers that
follow the first, second and third dense layers.

Discriminator Module: The second neural sub-network,
namely the Discriminator, is responsible for the classification
of the real data, originating from the input dataset, and the
generated data, originating from the Generator module. The
Discriminator is trained on both real and generated data.

Discriminator

y -

("Dense LeakyRelu
Layer Layer

Dense
Layer

Dense
Layer

y
Dropout
Layer

LeakyRelu
Layer

Dropout

Layer Layer Layer

(M, 1024) (1024, 1024) (1024, 1024) (1024, 512) (512,512) (512, 512) (512, 256) (256, 256) (256,1))

Fig. 4: Discriminator Module Architecture

The architecture of the Discriminator module is shown
in Fig. 4. The module includes nine layers, consisting of
Dense, LeakyReLU and Dropout layers. The first layer is the
Discriminator’s input layer having an input dimension of M.
Each one of the first three Dense layers is followed by a
LeakyReLU layer. In order to prevent overfitting, each of the
first two combinations of Dense and LeakyReL.U is followed
by a Dropout layer [20]. Finally, the last layer produces the
output using a sigmoid activation function:

1
s(x) = ——
(2) 1+e®
where z is the input data vector, and the output of the function

is 0 or 1. The result is used as a label, indicating whether the
input data was real or generated.

“4)

C. Auto-Encoder Architecture

Encoder Decoder
M M
Features Generated

Features
Autoencoder

Fig. 5: Autoencoder Architecture

The basic concept of the Auto-Encoder is the assimilation
of the given data of space X into a compressed manifold ¥
of those data using the encoder module and consequently the
scaling of that manifold F' to the predicted value P of those
given data by the decoder, where P ~ X. Fig. 5 depicts the
architecture of the Autoencoder.

s

LeakyRelu Dense

Encoder Module: The role of the Encoder module is to
compress the input data to a predefined output size and forward
the output to the Decoder for scaling. The architecture of the

Encoder
Model

.
Input Dense Relu Dense Relu
Layer Layer Layer Layer Layer
(M) (M, 32) (32,32) (32,16) (16, 16)

Fig. 6: Encoder Module Architecture

Encoder module is shown in Fig. 6. The Encoder module is
comprised of an input layer followed by two Dense layers. The
input layer has an input dimension of M and no activation
function. The following two layers consist of 32 and 16
neurons respectively. Both of them utilise the ReLU activation
function, which replaces all negative values with zeros. The
Encoder integrates the Mean Square Error loss function:
1< o
MSE =~ (y; —) ®)

=1

where n represents the number of predictions, while Y and Y
are the samples and predicted values vector respectively.
Decoder Module: The aim of the Decoder module is to
scale the data generated by the Encoder in order to make them
almost identical to the real data. Fig. 7 depicts the architecture

Decoder

Dense Relu Dense Relu
Layer Layer Layer Layer
(16, 16) (16, 16) (16,32) (32, 32)

Sigmoid
Layer
(32,Mm) |

Fig. 7: Decoder Model

of the Decoder module. The Decoder module consists of three
Dense layers. The first two layers contain 16 and 32 neurons,
respectively, and utilize the ReLU activation function. The last
layer contains a variable number of neurons, depending on
the number of features M of the input data. In addition, the
last layer uses the sigmoid activation function (equation 4) to
output the scaled data.

D. Conpot Integration

The proposed DNNs were integrated into the Conpot hon-
eypot, by incorporating the trained model to Conpot’s databus
system, which performs the data acquisition and delivery
within the honeypot. Two different indexes were used to
cross-reference the generated values and update the Conpot’s
Modbus memory blocks. One of the manifests keeps the actual
Modbus address index in reference to the network produced
index. The manifest is a file that contains metadata from the
Preprocessing. The manifest contains the essential information
required, in order to cross-reference the information that the
neural networks generated. This manifest is used with the
Modbus memory block index to assign the correct values
to their corresponding slave memory block. The index is
produced from the profile that Conpot is simulating. Using this
configuration, Conpot updates its memory block every time a
query is received, successfully emulating a Modbus device.

V. EVALUATION

The evaluation consists of two parts. Firstly, the proposed
DNNs are compared in order to evaluate the accuracy of the
results. Secondly, the required time for traffic generation is
measured.

A. Accuracy

The performance of the DNNs is evaluated in terms of
similarity with the real data, while the training dataset has
a size of 1.0 gigabyte. The performance metrics are the arith-
metic mean, the standard deviation, and the Frechet Inception
Distance (FID) [21], [22] score. The FID score is calculated
as:

FID:|‘Hr‘ﬂp”2+tr(zT+2p_2 (- Ep) (©

where p,. and p,, are the vectors of the real and predicted data
respectively, while X, and X, are the covariance matrices of
the aforementioned vectors. Finally, the term tr denotes the
trace of the matrix.

Fig. 8 and Fig. 9 depict the similarity between the generated
and real data values in terms of arithmetic mean and standard
deviation. In particular, Fig. 8 shows the arithmetic mean of
the features, ranging from 1 to 45. Both of the approaches
achieve a high overall similarity to the real values, while the
GAN achieves a slightly better similarity.

Similarly, Fig. 9 shows the standard deviation of the feature
values, ranging from 1 to 45. Both approaches achieve a
high overall similarity. However, in this case, the Autoencoder
achieves a slightly better similarity.

Fig. 10 presents a similarity comparison between the data
generated by the Autoencoder and the GAN, as well as
the real dataset. The graphs were rendered by plotting the
numerical values of 43 features. According to the graphs, the
Autoencoder has higher similarity to the real dataset, compared
to the GAN. In addition, using equation (6), Autoencoder
achieves a FID score of 29.94, while GAN achieves a FID
score of 31.29. As a smaller FID score indicates higher
similarity, Autoencoder performs better compared to GAN.

0.8 ‘
—*— Real Data
0.7 —o— GAN Data 1
Autoencoder Data
061 1
So5¢]
©
% 04F]
= 03f]
02r]
01r 1
O 1 1 P 1
0 5 10 15 20 25 30 35 40
Features
Fig. 8: Arithmetic mean of the data
0.8 w
—+— Real Data
0.7F —o— GAN Data 1
Autoencoder Data
06 1
go5¢+]
©
% 04+ 1
= 03f]
02r 1
01r 1
O : 1 1 5 1
0 5 10 15 20 25 30 35 40
Features
Fig. 9: Standard deviation of the data
B. Time

The elapsed time of data generation has a critical impact, as
the honeypot has to generate the requested data in a very short
time, to effectively emulate a real network device. In order to
measure the execution time of the proposed DNNSs, a testbed
has been deployed, where the DNNs run in a virtualized
environment. An Intel Core i7-6700HQ has been utilized for
the computation having a 16GB of RAM to its disposal.

GAN, having a more complex architecture, generates 128
values in 0.6969 ms. On the other hand, the Autoencoder
achieved a time of 0.4116 ms. Both times are within the
accepted limit (i.e., 500 ms, as defined in [23]), therefore
both approaches can be effectively used for network traffic
generation in real-time.

40

0

(c) Real
Fig. 10: Visualized Data using the FID function

VI. CONCLUSION

In this work, we presented the design and implementation
of a novel method that adapts honeypot technologies to the
requirements of an industrial network. NeuralPot is a highly
interactive adaptation of the Conpot honeypot, that generates
network traffic based on an existing network entity. The
two distinct DNN implementations, namely Autoencoder and
GAN, are developed and compared against each other, as well
as against the actual Modbus network traffic. Even though
the output-wise results of both DNNs are close, based on
the quantitative metrics comparison, the GAN architecture is
recommended due to its higher similarity with the real data.
In the future, we aim to deploy the implemented honeypot
in a real ICS network in order to evaluate its efficiency in
attracting attackers and record their behavior. Furthermore, we
aim to incorporate additional well known ICS communication
protocols.

ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No. 787011 (SPEAR).

REFERENCES

[1] S. A. Baker, S. Waterman, and G. Ivanov, In the crossfire: Critical
infrastructure in the age of cyber war. McAfee, Incorporated, 2009.

[2] B. Miller and D. C. Rowe, “A survey SCADA of and critical infrastruc-
ture incidents.” RIIT, vol. 12, pp. 51-56, 2012.

[3] “RISI - The Repository of Industrial Security Incidents.” [Online].
Available: http://www.risidata.com/

[4]

[5

—_

[6

—

[7]

[8

—_

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]
[22]

[23]

C. Dalamagkas, P. Sarigiannidis, D. Ioannidis, E. Iturbe, O. Nikolis,
F. Ramos, E. Rios, A. Sarigiannidis, and D. Tzovaras, “A survey on
honeypots, honeynets and their applications on smart grid,” in 2019
IEEE Conference on Network Softwarization (NetSoft). 1EEE, 2019,
pp. 93-100.

A. Mairh, D. Barik, K. Verma, and D. Jena, “Honeypot in network
security: a survey,” in Proceedings of the 2011 international conference
on communication, computing & security. ACM, 2011, pp. 600-605.
A. Jicha, M. Patton, and H. Chen, “SCADA honeypots: An in-depth
analysis of Conpot,” in 2016 IEEE conference on intelligence and
security informatics (I1SI). 1EEE, 2016, pp. 196-198.

L. Deng, G. Hinton, and B. Kingsbury, “New types of deep neural
network learning for speech recognition and related applications: An
overview,” in 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing. 1EEE, 2013, pp. 8599-8603.

Y. Yu, H. Lin, Q. Yu, J. Meng, Z. Zhao, Y. Li, and L. Zuo, “Modality
classification for medical images using multiple deep convolutional
neural networks,” J. Comput. Inf. Syst, vol. 11, no. 15, pp. 5403-5413,
2015.

A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and
A. A. Bharath, “Generative adversarial networks: An overview,” IEEE
Signal Processing Magazine, vol. 35, no. 1, pp. 53-65, 2018.

P. Baldi, “Autoencoders, unsupervised learning, and deep architectures,”
in Proceedings of ICML workshop on unsupervised and transfer learn-
ing, 2012, pp. 37-49.

R. M. Campbell, K. Padayachee, and T. Masombuka, “A survey of
honeypot research: Trends and opportunities,” in 2015 10th international
conference for internet technology and secured transactions (ICITST).
IEEE, 2015, pp. 208-212.

P. Simdes, T. Cruz, J. Proenga, and E. Monteiro, “Specialized honeypots
for SCADA systems,” in Cyber Security: Analytics, Technology and
Automation. Springer, 2015, pp. 251-269.

D. Antonioli, A. Agrawal, and N. O. Tippenhauer, “Towards high-
interaction virtual ICS honeypots-in-a-box,” in Proceedings of the
2nd ACM Workshop on Cyber-Physical Systems Security and Privacy.
ACM, 2016, pp. 13-22.

J. Cao, W. Li, J. Li, and B. Li, “Dipot: A distributed industrial
honeypot system,” in International Conference on Smart Computing and
Communication. Springer, 2017, pp. 300-309.

O. Navarro, S. A. J. Balbastre, and S. Beyer, “Gathering intelligence
through realistic industrial control system honeypots,” in International
Conference on Critical Information Infrastructures Security. Springer,
2018, pp. 143-153.

D. Pliatsios, P. Sarigiannidis, T. Liatifis, K. Rompolos, and I. Sin-
iosoglou, “A novel and interactive industrial control system honeypot
for critical smart grid infrastructure,” in 2019 IEEE 24th International
Workshop on Computer Aided Modeling and Design of Communication
Links and Networks (CAMAD). 1EEE, 2019, pp. 1-6.

P. Huitsing, R. Chandia, M. Papa, and S. Shenoi, “Attack taxonomies for
the modbus protocols,” International Journal of Critical Infrastructure
Protection, vol. 1, pp. 3744, 2008.

Y. Hong, U. Hwang, J. Yoo, and S. Yoon, “How generative adversarial
networks and their variants work: An overview,” ACM Computing
Surveys (CSUR), vol. 52, no. 1, p. 10, 2019.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” The journal of machine learning research, vol. 15, no. 1, pp.
1929-1958, 2014.

S. Barratt and R. Sharma, “A note on the inception score,” arXiv preprint
arXiv:1801.01973, 2018.

H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention gen-
erative adversarial networks,” arXiv preprint arXiv:1805.08318, 2018.
“Modbus Message Timing - Continental Control Systems, LLC.” [On-
line]. Available: https:/ctlsys.com/support/modbus,, essagetiming/

