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Abstract— An on-board UAV high-performance collision 
avoidance system sets up drastic constraints, which can be 
fulfilled by using carefully optimized many-core computational 
architectures. We report here a case study, where we 
implemented a many-core processor system, which can process a 
100 megapixels/sec video flow, identifying remote airplanes, 
tracking flying objects by implementing computationally 
intensive Kalman filters. The introduced processor system is 
implemented in Spartan 6 FPGA, and consumes less than 1W. 
 

Index Terms— many-core architecture, collision avoidance, 
UAV, vision-based control, topographic operators, cellular 
processor arrays 

I. INTRODUCTION 
N the recent years, the development of the unmanned aerial 
vehicle (UAV) technology has reached a decent maturity 

level, which allows autonomous flights on predefined paths, or 
even seeking for ground structures or targets autonomously. 
However, collision avoidance system is not yet developed for 
small or medium sized UAVs; hence they may collide to each 
other or with manned aerial vehicles, which can lead to fatal 
accidents. To build this missing technology component, with 
the support of the Office of Naval Research (ONR) we have 
started to develop an on-board non-cooperating collision 
avoidance device. Such device has two major pieces, a sensory 
one to identify the other aircraft, and the control one, to design 
and execute an avoidance maneuver. In the sensory part, we 
consider visual sensors rather than radar, because the latter is 
too bulky and too expensive to fit on a small or medium sized 
UAV [1], [2]. 

The general requirement of an on-board collision avoidance 
system is the ability to perform Sense and Avoid functions at 
an “equivalent level of safety” (ELOS) to manned aircraft 
while not negatively impacting the existing infrastructure and 
manned Traffic Alert and Collision Avoidance System 
(TCAS) that create today’s safe airspace [3], [4], [5] . To be 
able to achieve this strict requirement, we have to use 3 pieces 
of HD cameras as we have showed in [10], and the system 
should be able to perform real-time the image processing 
functionality, what we have described in [6]. To be able to 
handle this computationally heavy task, we needed to 
implement a many-core computer system in an FPGA. This 
paper introduces the architecture of the processor system, and 
gives the most important parameters, like computational 
performance, resource usage, and power consumption.  

II. ON-BOARD IMAGE PROCESSING SYSTEM 
The on-board image processing system should execute several 
parallel tasks. Each task of the algorithm has a dedicated 
execution unit designed for the specific functionality of the 
task. Operation of the different units is synchronized by a 
Xilinx Microblaze soft processor core [7],[8]. The system can 
handle several cameras which are connected to the FPGA 
directly. The processing is done in two steps. First the 
suspicious objects which are considered to be candidate 
remote aircrafts are detected during the full-frame 
preprocessing step. Then, windows containing these objects 
are cut out from the high resolution images. These windows 
are called foveas. The foveas including the suspicious objects 
are further processed by the gray-scale and binary foveal 
processors in the second step. In this step, the most 
computationally intensive aircraft identification parts of the 
algorithm are executed on the foveas only. Block diagram of 
the on-board image processing and motion estimation system 
is shown in Fig. 1. 

 
Fig. 1. Block diagram of the proposed image processing architecture 

A. Image preprocessing system 

The main task of the image preprocessor part is to provide a 
physical interface for the cameras, receive pixel data and 
identify suspicious objects. The main parts of the image 
preprocessor are shown in Fig. 2. The incoming pixel streams 
are processed immediately and the results along with the 
original pixel data are saved into the DRAM memory 
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connected to the FPGA. Depending on the size of the off-chip 
memory several input frames can be saved for further analysis. 
Resolution, frame rate and the pixel clock of the cameras do 
not typically match neither the clock frequency of the 
Microblaze processor’s nor the clock of the memory interface. 
Therefore the image preprocessor works on three different 
clocks while synchronization between the clock domains are 
performed by using FIFO buffers. 

The incoming frames are converted to binary images by 
using an adaptive threshold operation where the local average 
calculation can be achieved in either 3×3, or 5×5 or 7×7 
windows. 

 
Fig. 2. Architecture of the full frame preprocessor 

The next step is detection of the coordinates of the 
suspicions objects. First, the white pixels are counted in all 
non-overlapping 32×32 pixel sized parts of the thresholded 
image. The horizontal and vertical coordinates and the number 
of the found white pixels are sent to the Microblaze processor 
where the coordinates of the final 128 × 128 sized foveas are 
computed. These foveas are further investigated by the gray-
scale and binary processors. 

B. Grayscale processor 

Grayscale operators of the algorithm are performed by the unit 
shown in Fig. 3. As opposed to the high resolution full frames, 
which were stored in external DRAM, the 128x128 sized 
foveas are stored in internal block RAMs (BRAM) of the 
FPGA. The number of foveas can be configured according to 
the requirements of the image processing algorithm. Fast 
offchip DRAM access is provided by a Direct Memory Access 
(DMA) engine which can cut out the 128×128 sized foveas 
from the input image. For efficient utilization of the available 
memory bandwidth, the top left corner of a fovea must fall on 
a 32 pixel boundary. The on-chip memories should also be 
accessed by the Microblaze processor to make decisions based 
on the results of the image processing algorithm. However, the 
grayscale image processing unit can run on higher clock 
frequency than the Microblaze processor, therefore the on-
chip BRAM memories are used in dual-ported configuration 
where each port is connected to a different clock domain as it 
is shown in Fig. 3. 

Foveas are processed by an architecture similar to the Falcon 
emulated digital CNN-UM processor [9]. However, the 
arithmetic unit of the processor here contains an array of 
highly optimized Processing Elements (PEs) from which only 

one is activated during an operation. The PE array has a 
modular structure where existing functions can be easily 
removed and new functions can be easily inserted before 
synthesizing the unit according to the requirements of the 
image processing algorithm. The utilization of the partial 
reconfiguration feature of the modern FPGAs makes it 
possible to load a new mix of PEs to the FPGA without 
interrupting other functions of the device. This can be very 
useful for example to adapt to changing visibility conditions 
on-the-flight. 

 
Fig. 3. Architecture of the grayscale processor 

The supported operations are diffusion, local average 
calculation, orientation selective edge detection, thresholding, 
and arithmetic operations such as addition, subtraction, 
multiplication and absolute value computation. 

Operation of the processor is initiated by the Microblaze 
processor, by sending an instruction word which contains the 
address of the three distinct memories (two sources and the 
target) and one processing element. The input memories 
provide data to fill up the input buffers where 3×3 sized 
neighborhood is generated for each pixel. These 9 neighboring 
pixels are handled in one single step by the processor 
elements. The result of the selected operator is saved into the 
third memory. Completion of the operation is indicated by 
generating an interrupt for the Microblaze processor. 

Result of the operation can be quickly evaluated by the 
Microblaze processor by checking the global status signals. 
Completely white and black result is indicated by the global 
white and black signals while steady state of an iterative 
operation can be checked by the global change signal. 

C. Binary processor 

The architecture of the binary processor is similar to the 
grayscale processor. Here the internal BRAMs store the 
128×128 sized binary foveas also. They are accessible both by 
the Microblaze and the binary processors as shown in Fig. 4. 
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However, the image processing algorithm requires more 
binary and morphological operators than grayscale operators, 
therefore the binary image processor is designed for higher 
performance. Port A of each BRAM is configured as a 128bit 
wide data bus and all the pixels in a row are computed in 
parallel here (Fig. 4). Due to architectural restrictions of the 
Spartan-6 FPGA data bus of the BRAMs, one BRAM can 
provide maximum 36 bits parallel only, therefore four pieces 
of 18kbit BRAMs are required for each memory blocks. In 
these blocks, four binary images can be stored at a time. The 
input buffers store three lines from the binary image and the 
processing is carried out by a linear array of 128 binary 
processors. 

 
Fig. 4. Architecture of the binary processor 

 

The supported operations are erosion, dilation, single pixel 
removal, reconstruction, and two input-one output logic 
operations such as AND, OR, and XOR. The global white, 
black and change signals are also implemented. 

D. Double precision floating-point vector processor 

From the results of the grayscale and the binary foveal 
operations, the Microblaze processor decides whether a 
candidate object was a real remote aircraft or not. Then it 
calculates its (x,y) coordinate and its wingspan. Using this 
information, motion prediction is performed by an unscented 
Kalman-filter. Majority of the operators during the solution of 
the Kalman-filter are matrix algebraic operators, matrix-
vector, matrix-matrix additions and multiplications. In the last 
step of the Kalman filter calculation, a small matrix should be 
inverted where the matrix can be nearly singular, therefore 
double-precision floating point number representation is 
required to avoid numerical instability. Unfortunately, the 

Microblaze processor supports single precision floating-point 
operations. On the other hand its computing performance is 
not high enough to calculate the required operators for the 
unscented Kalman filter real-time. Therefore, a vector 
processor, shown in Fig. 5, was implemented. 

The vector processor is build from a scratch-pad memory, 
several vector registers, and a floating-point adder and 
multiplier, because the majority of the required operations are 
multiplications and additions. The state of the filter and 
several matrices are stored in the scratch-pad memory where 
high-speed memory access by the Microblaze processor is 
critical, because it executes other operations like comparison, 
division and square root.  

The vector processor can compute single addition, 
multiplication and multiply-add operation moreover one 
addition and one multiplication can be computed in parallel 
when distinct result registers are used. The length of the 
vectors is limited by the depth of the vector registers and can 
be configured on-the-fly to adapt to the requirements of the 
Kalman-filter. Using the six input LUT structure of the 
Spartan-6 FPGA, we found that the optimal depth of the 
vector registers is 64 elements. 

 
Fig. 5. Architecture of the floating point vector processor

III. IMPLEMENTATION AREA, PERFORMANCE 
The prototype of the system is implemented on a Xilinx 
SP605 evaluation board which is equipped with a 
XC6SLX45T Spartan-6 FPGA, 128MB DDR3 DRAM  
emory, Gigabit Ethernet interface, one FMC-LPC connector 
and several other peripherals. Camera signals are connected 
via an FMC daughter board. Implementation details are 
described by using an example system configured to handle 
one HD resolution (1920×1080@50Hz) image flow. In the 
final system, 3 pieces of HD cameras running at 16.6Hz will 
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be used. Area requirements and power consumption of the full 
system are summarized on Table I. 

The system use standard Xilinx IP cores to access devices on 
the prototyping board such as the on-chip hard memory 
controller block (MCB DDR3) and the soft Gigabit Ethernet 
IP core (Soft TEMAC) and other IPs for system level tasks 
such as clock management, interrupt controller, etc. The 
Microblaze processor part of the system is running on a 
moderate 66MHz clock frequency while the on-board DDR3 
DRAM chip has a 400MHz clock frequency providing 
1.6GB/s peak memory access bandwidth. The full frame 
preprocessing part is running on 165MHz pixel clock. The 
grayscale processor is configured to use all PE types described 
in Section II-B and grayscale foveas can be stored in four on-
chip memories. The binary processor also contains all PE 
types described in Section II-C and four BRAM units where 
used to store 16 binary foveas. Both units are operating on 
150MHz clock frequency which is limited by the BRAMs and 
the dedicated multipliers of the FPGA. 

Each grayscale operation can be executed in 16,384 clock 
cycles which requires 110μs. This means that about 9100 
operations/sec can be reached using 150MHz clock frequency. 
The grayscale processor consumes relatively small area 
therefore its performance can be improved by using four 
arithmetic units if required. 

The binary operations can be executed significantly faster, 
only 0.86μs is needed for one operation. This equals to more 
than a million pieces of 128×128 sized binary operations in a 
second! 

Assuming three pieces of 16.6Hz HD image flow, more than 
180 grayscale and 23,000 binary operations can be executed 
on each frame. The current image processing algorithm 
executes 4 grayscale and about 50 binary operations, therefore 
approximately 45 foveas can be examined on each frame. 

The system occupies about one half of the FPGA where the 
image processing system requires about one quarter of the 
chip and the Microblaze subsystem, the memory controller 
and the Gigabit Ethernet MAC can be implemented on one 
other quarter. The remaining free space makes it possible 
implement more functions on the FPGA such as collision 
estimation and trajectory generation. 

Dynamic power consumption of the system is estimated by 
the Xilinx Power Analyzer and the results are summarized on 

Table I. Quiescent power consumption of the system is 0.6W 
which is more than half of the total power consumption. On 
the FPGA the clock generation and the memory interface 
require the majority of the power. Total power consumption of 
the system is around 1W which fits well into the power budget 
of a UAV. 

IV. CONCLUSIONS 
In this article a many-core image processing unit and a 

double precision floating point vector processor unit were 
introduced. The processor units were implemented in FPGA, 
and they were designed for deliver the computational needs of 
an on-board UAV collision avoidance device. The processor 
units were capable to evaluate a 100Mpixel/sec video flow 
real-time, by applying multi-foveal processing approach. Their 
overall power consumption was under 1W. 
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Module   Slice Reg   LUTs   LUTRAM   BRAM/FIFO   DSP48A1  Power 
MCB_DDR3  1978 2172 45 0 0 0,195 
Soft_TEMAC  2636 2452 109 6 0 0,00548 
image_proc_0  1737 3388 66 16 0 0,00973 
image_proc_gray_0  604 622 100 32 2 0,00462 
microblaze_0  1056 1363 113 0 3 0,00507 
vga_in_ctrl_0  1751 1896 344 2 0 0,0223 
other 1421 1356 48 4 0 0,211 
System total 11183 13249 825 60 5 0,454 
Spartan-6 XC6SLX45T (available) 54320 27288 6408 116 58 
used 20,59% 48,55% 12,87% 51,72% 8,62% 

Table 1. The resource requirements and the power consumption of the system. 
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