

Volume and power optimized high-performance
system for UAV collision avoidance

Zoltán Nagy*†, András Kiss*†, Ákos Zarándy*†, Bálint Vanek*, Tamás Péni*,
József Bokor*, Tamás Roska*†

*Computer and Automation Research Institute of the Hungarian Academy of Sciences (MTA-SZTAKI)

Budapest, Hungary
†Pázmány Péter Catholic University, The Faculty of Information Technology, Budapest, Hungary,

Abstract— An on-board UAV high-performance collision
avoidance system sets up drastic constraints, which can be
fulfilled by using carefully optimized many-core computational
architectures. We report here a case study, where we
implemented a many-core processor system, which can process a
100 megapixels/sec video flow, identifying remote airplanes,
tracking flying objects by implementing computationally
intensive Kalman filters. The introduced processor system is
implemented in Spartan 6 FPGA, and consumes less than 1W.

Index Terms— many-core architecture, collision avoidance,
UAV, vision-based control, topographic operators, cellular
processor arrays

I. INTRODUCTION
N the recent years, the development of the unmanned aerial
vehicle (UAV) technology has reached a decent maturity

level, which allows autonomous flights on predefined paths, or
even seeking for ground structures or targets autonomously.
However, collision avoidance system is not yet developed for
small or medium sized UAVs; hence they may collide to each
other or with manned aerial vehicles, which can lead to fatal
accidents. To build this missing technology component, with
the support of the Office of Naval Research (ONR) we have
started to develop an on-board non-cooperating collision
avoidance device. Such device has two major pieces, a sensory
one to identify the other aircraft, and the control one, to design
and execute an avoidance maneuver. In the sensory part, we
consider visual sensors rather than radar, because the latter is
too bulky and too expensive to fit on a small or medium sized
UAV [1], [2].

The general requirement of an on-board collision avoidance
system is the ability to perform Sense and Avoid functions at
an “equivalent level of safety” (ELOS) to manned aircraft
while not negatively impacting the existing infrastructure and
manned Traffic Alert and Collision Avoidance System
(TCAS) that create today’s safe airspace [3], [4], [5] . To be
able to achieve this strict requirement, we have to use 3 pieces
of HD cameras as we have showed in [10], and the system
should be able to perform real-time the image processing
functionality, what we have described in [6]. To be able to
handle this computationally heavy task, we needed to
implement a many-core computer system in an FPGA. This
paper introduces the architecture of the processor system, and
gives the most important parameters, like computational
performance, resource usage, and power consumption.

II. ON-BOARD IMAGE PROCESSING SYSTEM
The on-board image processing system should execute several
parallel tasks. Each task of the algorithm has a dedicated
execution unit designed for the specific functionality of the
task. Operation of the different units is synchronized by a
Xilinx Microblaze soft processor core [7],[8]. The system can
handle several cameras which are connected to the FPGA
directly. The processing is done in two steps. First the
suspicious objects which are considered to be candidate
remote aircrafts are detected during the full-frame
preprocessing step. Then, windows containing these objects
are cut out from the high resolution images. These windows
are called foveas. The foveas including the suspicious objects
are further processed by the gray-scale and binary foveal
processors in the second step. In this step, the most
computationally intensive aircraft identification parts of the
algorithm are executed on the foveas only. Block diagram of
the on-board image processing and motion estimation system
is shown in Fig. 1.

Fig. 1. Block diagram of the proposed image processing architecture

A. Image preprocessing system

The main task of the image preprocessor part is to provide a
physical interface for the cameras, receive pixel data and
identify suspicious objects. The main parts of the image
preprocessor are shown in Fig. 2. The incoming pixel streams
are processed immediately and the results along with the
original pixel data are saved into the DRAM memory

I

Memory
controller DRAM

Microblaze
processor

Image capture

Full frame
preprocessing

Gray scale
processor

Binary
processor

connected to the FPGA. Depending on the size of the off-chip
memory several input frames can be saved for further analysis.
Resolution, frame rate and the pixel clock of the cameras do
not typically match neither the clock frequency of the
Microblaze processor’s nor the clock of the memory interface.
Therefore the image preprocessor works on three different
clocks while synchronization between the clock domains are
performed by using FIFO buffers.

The incoming frames are converted to binary images by
using an adaptive threshold operation where the local average
calculation can be achieved in either 3×3, or 5×5 or 7×7
windows.

Fig. 2. Architecture of the full frame preprocessor

The next step is detection of the coordinates of the
suspicions objects. First, the white pixels are counted in all
non-overlapping 32×32 pixel sized parts of the thresholded
image. The horizontal and vertical coordinates and the number
of the found white pixels are sent to the Microblaze processor
where the coordinates of the final 128 × 128 sized foveas are
computed. These foveas are further investigated by the gray-
scale and binary processors.

B. Grayscale processor

Grayscale operators of the algorithm are performed by the unit
shown in Fig. 3. As opposed to the high resolution full frames,
which were stored in external DRAM, the 128x128 sized
foveas are stored in internal block RAMs (BRAM) of the
FPGA. The number of foveas can be configured according to
the requirements of the image processing algorithm. Fast
offchip DRAM access is provided by a Direct Memory Access
(DMA) engine which can cut out the 128×128 sized foveas
from the input image. For efficient utilization of the available
memory bandwidth, the top left corner of a fovea must fall on
a 32 pixel boundary. The on-chip memories should also be
accessed by the Microblaze processor to make decisions based
on the results of the image processing algorithm. However, the
grayscale image processing unit can run on higher clock
frequency than the Microblaze processor, therefore the on-
chip BRAM memories are used in dual-ported configuration
where each port is connected to a different clock domain as it
is shown in Fig. 3.

Foveas are processed by an architecture similar to the Falcon
emulated digital CNN-UM processor [9]. However, the
arithmetic unit of the processor here contains an array of
highly optimized Processing Elements (PEs) from which only

one is activated during an operation. The PE array has a
modular structure where existing functions can be easily
removed and new functions can be easily inserted before
synthesizing the unit according to the requirements of the
image processing algorithm. The utilization of the partial
reconfiguration feature of the modern FPGAs makes it
possible to load a new mix of PEs to the FPGA without
interrupting other functions of the device. This can be very
useful for example to adapt to changing visibility conditions
on-the-flight.

Fig. 3. Architecture of the grayscale processor

The supported operations are diffusion, local average
calculation, orientation selective edge detection, thresholding,
and arithmetic operations such as addition, subtraction,
multiplication and absolute value computation.

Operation of the processor is initiated by the Microblaze
processor, by sending an instruction word which contains the
address of the three distinct memories (two sources and the
target) and one processing element. The input memories
provide data to fill up the input buffers where 3×3 sized
neighborhood is generated for each pixel. These 9 neighboring
pixels are handled in one single step by the processor
elements. The result of the selected operator is saved into the
third memory. Completion of the operation is indicated by
generating an interrupt for the Microblaze processor.

Result of the operation can be quickly evaluated by the
Microblaze processor by checking the global status signals.
Completely white and black result is indicated by the global
white and black signals while steady state of an iterative
operation can be checked by the global change signal.

C. Binary processor

The architecture of the binary processor is similar to the
grayscale processor. Here the internal BRAMs store the
128×128 sized binary foveas also. They are accessible both by
the Microblaze and the binary processors as shown in Fig. 4.

Mem_0
128x128

8bit

Mem_1
128x128

8bit

Mem_
128x128

8bit

N

PE_0 PE_1 PE_M

Input_1 Buffer Input_2 Buffer

Port A Port A Port A

Port B Port B Port B

A DI DO A DI DO A DI D

I1_sel I2_s

O_sel

Microblaze
clock

domain

Image proc.
clock

domain

O

el

DVI Interface

Adaptive
threshold

Centroid
computation

Input Video
1920x1080@50Hz

FIFO

Microblaze FSL

R

FIFO
G

FIFO
B

FIFO
BW

CE

CE

Memory
Interface

Memory
clock domain

DVI clock
domain

However, the image processing algorithm requires more
binary and morphological operators than grayscale operators,
therefore the binary image processor is designed for higher
performance. Port A of each BRAM is configured as a 128bit
wide data bus and all the pixels in a row are computed in
parallel here (Fig. 4). Due to architectural restrictions of the
Spartan-6 FPGA data bus of the BRAMs, one BRAM can
provide maximum 36 bits parallel only, therefore four pieces
of 18kbit BRAMs are required for each memory blocks. In
these blocks, four binary images can be stored at a time. The
input buffers store three lines from the binary image and the
processing is carried out by a linear array of 128 binary
processors.

Fig. 4. Architecture of the binary processor

The supported operations are erosion, dilation, single pixel
removal, reconstruction, and two input-one output logic
operations such as AND, OR, and XOR. The global white,
black and change signals are also implemented.

D. Double precision floating-point vector processor

From the results of the grayscale and the binary foveal
operations, the Microblaze processor decides whether a
candidate object was a real remote aircraft or not. Then it
calculates its (x,y) coordinate and its wingspan. Using this
information, motion prediction is performed by an unscented
Kalman-filter. Majority of the operators during the solution of
the Kalman-filter are matrix algebraic operators, matrix-
vector, matrix-matrix additions and multiplications. In the last
step of the Kalman filter calculation, a small matrix should be
inverted where the matrix can be nearly singular, therefore
double-precision floating point number representation is
required to avoid numerical instability. Unfortunately, the

Microblaze processor supports single precision floating-point
operations. On the other hand its computing performance is
not high enough to calculate the required operators for the
unscented Kalman filter real-time. Therefore, a vector
processor, shown in Fig. 5, was implemented.

The vector processor is build from a scratch-pad memory,
several vector registers, and a floating-point adder and
multiplier, because the majority of the required operations are
multiplications and additions. The state of the filter and
several matrices are stored in the scratch-pad memory where
high-speed memory access by the Microblaze processor is
critical, because it executes other operations like comparison,
division and square root.

The vector processor can compute single addition,
multiplication and multiply-add operation moreover one
addition and one multiplication can be computed in parallel
when distinct result registers are used. The length of the
vectors is limited by the depth of the vector registers and can
be configured on-the-fly to adapt to the requirements of the
Kalman-filter. Using the six input LUT structure of the
Spartan-6 FPGA, we found that the optimal depth of the
vector registers is 64 elements.

Fig. 5. Architecture of the floating point vector processor

III. IMPLEMENTATION AREA, PERFORMANCE
The prototype of the system is implemented on a Xilinx
SP605 evaluation board which is equipped with a
XC6SLX45T Spartan-6 FPGA, 128MB DDR3 DRAM
emory, Gigabit Ethernet interface, one FMC-LPC connector
and several other peripherals. Camera signals are connected
via an FMC daughter board. Implementation details are
described by using an example system configured to handle
one HD resolution (1920×1080@50Hz) image flow. In the
final system, 3 pieces of HD cameras running at 16.6Hz will

64x64bit

Vect_0

*

+

D

A DI

DO

ReadAddrWriteAddr

64x64bit

Vect_1
A DI

DO

64x64bit

Vect_n
A DI

DO

Scratchpad
memory

DI DO

A DI DO

Mem_0
128x128

1bit

Mem_1
128x128

1bit

Mem_N
128x128

1bit

Input_1 Buffer Input_2 Buffer

Port A Port A Port A

Port B Port B Port B

A DI DO A DI DO A DI DO

I1_sel I2_sel

Microblaze
clock

domain

Image proc.
clock

domain

128bit data
path

128x1 processor array

PE_0 PE_1 PE_M

O_sel

Microblaze clock
domain

be used. Area requirements and power consumption of the full
system are summarized on Table I.

The system use standard Xilinx IP cores to access devices on
the prototyping board such as the on-chip hard memory
controller block (MCB DDR3) and the soft Gigabit Ethernet
IP core (Soft TEMAC) and other IPs for system level tasks
such as clock management, interrupt controller, etc. The
Microblaze processor part of the system is running on a
moderate 66MHz clock frequency while the on-board DDR3
DRAM chip has a 400MHz clock frequency providing
1.6GB/s peak memory access bandwidth. The full frame
preprocessing part is running on 165MHz pixel clock. The
grayscale processor is configured to use all PE types described
in Section II-B and grayscale foveas can be stored in four on-
chip memories. The binary processor also contains all PE
types described in Section II-C and four BRAM units where
used to store 16 binary foveas. Both units are operating on
150MHz clock frequency which is limited by the BRAMs and
the dedicated multipliers of the FPGA.

Each grayscale operation can be executed in 16,384 clock
cycles which requires 110μs. This means that about 9100
operations/sec can be reached using 150MHz clock frequency.
The grayscale processor consumes relatively small area
therefore its performance can be improved by using four
arithmetic units if required.

The binary operations can be executed significantly faster,
only 0.86μs is needed for one operation. This equals to more
than a million pieces of 128×128 sized binary operations in a
second!

Assuming three pieces of 16.6Hz HD image flow, more than
180 grayscale and 23,000 binary operations can be executed
on each frame. The current image processing algorithm
executes 4 grayscale and about 50 binary operations, therefore
approximately 45 foveas can be examined on each frame.

The system occupies about one half of the FPGA where the
image processing system requires about one quarter of the
chip and the Microblaze subsystem, the memory controller
and the Gigabit Ethernet MAC can be implemented on one
other quarter. The remaining free space makes it possible
implement more functions on the FPGA such as collision
estimation and trajectory generation.

Dynamic power consumption of the system is estimated by
the Xilinx Power Analyzer and the results are summarized on

Table I. Quiescent power consumption of the system is 0.6W
which is more than half of the total power consumption. On
the FPGA the clock generation and the memory interface
require the majority of the power. Total power consumption of
the system is around 1W which fits well into the power budget
of a UAV.

IV. CONCLUSIONS
In this article a many-core image processing unit and a

double precision floating point vector processor unit were
introduced. The processor units were implemented in FPGA,
and they were designed for deliver the computational needs of
an on-board UAV collision avoidance device. The processor
units were capable to evaluate a 100Mpixel/sec video flow
real-time, by applying multi-foveal processing approach. Their
overall power consumption was under 1W.

ACKNOWLEDGMENT
The ONR Grants (N62909-11-1-7039, N62909-10-1-7081)

is greatly acknowledged.
REFERENCES

[1] Hutchings, T., Jeffryes, S., and Farmer, S. J., “Architecting UAV sense
& avoid systems,” Proc. Institution of Engineering and Technology
Conf. Autonomous Systems, 2007, pp. 1–8.

[2] Fasano, G., Accardo, D., Forlenza, L., Moccia, A., and Rispoli, A., “A
multi-sensor obstacle detection and tracking system for autonomous
UAV sense and avoid,” XX Congresso Nazionale AIDAA, Milano, 2009.

[3] Dempsey, M., “U.S. Army Unmanned Aircraft Systems Roadmap 2010-
2035,” Tech. rep., U.S. Army UAS Center of Excellence, 2010.

[4] DeGarmo, M. T., “Issues Concerning Integration of Unmanned Aerial
Vehicles in Civil Airspace,” Tech. rep., MITRE Center for Advanced
Aviation System Development, 2004.

[5] Cox, T. H., Nagy, C. J., Skoog, M. A., Somers, I. A., and Warner, R.,
“Civil UAV Capability Assessment,” Tech. rep., NASA Dryden Flight
Research Center, 2004.

[6] T. Zsedrovits, Á. Zarándy, B. Vanek, T. Péni, J. Bokor, T. Roska,
“Collision avoidance for UAV using visual detection”, IEEE
International Symposium on Circuits and Systems, ISCAS 2011, Rio de
Janeiro.

[7] Z. Voroshazi, A. Kiss, Z. Nagy, and P. Szolgay, “Implementation of
embedded emulated-digital CNN-UM global analogic programming unit
on FPGA and its application,” International Journal of Circuit Theory
and Applications, vol. 36, no. 5-6, pp. 589–603, 2008.

[8] “Xilinx products homepage,” [Online] http://www.xilinx.com, 2011.
[9] Z. Nagy and P. Szolgay, “Configurable Multi-layer CNN-UM Emulator

on FPGA,” IEEE Transaction on Circuit and Systems I: Fundamental
Theory and Applications, vol. 50, pp. 774–778, 2003.

[10] B. Vanek, T. Péni, T. Zsedrovits, Á. Zarándy, J. Bokor and T. Roska.,
"Vision only Sense and Avoid system for small UAVs”, Am.Control
Conference 2011

Module Slice Reg LUTs LUTRAM BRAM/FIFO DSP48A1 Power
MCB_DDR3 1978 2172 45 0 0 0,195
Soft_TEMAC 2636 2452 109 6 0 0,00548
image_proc_0 1737 3388 66 16 0 0,00973
image_proc_gray_0 604 622 100 32 2 0,00462
microblaze_0 1056 1363 113 0 3 0,00507
vga_in_ctrl_0 1751 1896 344 2 0 0,0223
other 1421 1356 48 4 0 0,211
System total 11183 13249 825 60 5 0,454
Spartan-6 XC6SLX45T (available) 54320 27288 6408 116 58
used 20,59% 48,55% 12,87% 51,72% 8,62%

Table 1. The resource requirements and the power consumption of the system.

	I. Introduction
	II. On-board image processing system
	III. Implementation area, performance
	IV. Conclusions

