
QuTracer: Mitigating Quantum Gate and
Measurement Errors by Tracing Subsets of Qubits

Peiyi Li∗
North Carolina State University

Raleigh, USA
pli11@ncsu.edu

Ji Liu∗
Argonne National Laboratory

Lemont, USA
ji.liu@anl.gov

Alvin Gonzales
Argonne National Laboratory

Lemont, USA
agonzales@anl.gov

Zain Hamid Saleem
Argonne National Laboratory

Lemont, USA
zsaleem@anl.gov

Huiyang Zhou
North Carolina State University

Raleigh, USA
hzhou@ncsu.edu

Paul Hovland
Argonne National Laboratory

Lemont, USA
hovland@mcs.anl.gov

Abstract—Quantum error mitigation plays a crucial role in
the current noisy-intermediate-scale-quantum (NISQ) era. As we
advance towards achieving a practical quantum advantage in
the near term, error mitigation emerges as an indispensable
component. One notable prior work, Jigsaw, demonstrates that
measurement crosstalk errors can be effectively mitigated by
measuring subsets of qubits. Jigsaw operates by running multiple
copies of the original circuit, each time measuring only a subset
of qubits. The localized distributions yielded from measurement
subsetting suffer from less crosstalk and are then used to
update the global distribution, thereby achieving improved output
fidelity.

Inspired by the idea of measurement subsetting, we propose
QuTracer, a framework designed to mitigate both gate and
measurement errors in subsets of qubits by tracing the states
of qubit subsets throughout the computational process. In order
to achieve this goal, we introduce a technique, qubit subsetting
Pauli checks (QSPC), which utilizes circuit cutting and Pauli
Check Sandwiching (PCS) to trace the qubit subsets distribution
to mitigate errors. The QuTracer framework can be applied to
various algorithms including, but not limited to, VQE, QAOA,
quantum arithmetic circuits, QPE, and Hamiltonian simulations.
In our experiments, we perform both noisy simulations and real
device experiments to demonstrate that QuTracer is scalable and
significantly outperforms the state-of-the-art approaches.

I. INTRODUCTION

Quantum computing is rapidly emerging as a transformative
technology, offering great potential for chemistry simula-
tions [27], combinatorial optimization [16], machine learn-
ing [40], and other domains [8]. Ideal quantum computers
with fully fault-tolerant error correction codes [1], [25] remain
distant, and we currently find ourselves in the Noisy Intermedi-
ate Scale Quantum (NISQ) era [37], characterized by quantum
computers comprising of tens to thousands of noisy qubits and
limited connectivity.

In the NISQ era, quantum error mitigation has emerged
as a promising strategy to deal with errors arising during
quantum computation. Instead of fully correcting the errors,
we may mitigate these errors to an acceptable level. Various
approaches have been proposed to this end, including Zero
Noise Extrapolation [18], [42], Clifford Data Regression [10],

∗ The first two authors contribute equally to this work.

Virtual Distillation [22], [26], Symmetry Verification [7], [9],
[29], [30], [43], Pauli Check Sandwiching (PCS) [14], [19],
[44], and measurement subsetting [11], [13].

Previous work in measurement subsetting [11], [13] made
the observation that measuring a subset of qubits leads to
lower measurement errors than measuring all the qubits by
reducing the measurement crosstalk. The more accurate local
distributions from subset measurements can then be used
to improve the measurement results of all the qubits, i.e.,
the global distribution. Inspired by measurement subsetting,
we propose the following hypothesis: if we can mitigate
the noise of a subset of qubits throughout the entire circuit
execution and achieve high-fidelity results for these subsets
of qubits, can we significantly improve the overall fidelity?
In this paper, we develop a novel qubit subsetting framework,
QuTracer, to validate our hypothesis. QuTracer continuously
tracks the state of qubit subsets throughout the computational
process and mitigates errors along the way. The high-fidelity
local distributions can be obtained and used to refine the
noisy global distribution. Compared to the previous work on
measurement subsetting, QuTracer effectively mitigates both
gate and measurement errors. Mitigating noise in a subset of
qubits is also much more effective and less costly than directly
mitigating the noise on all the qubits.

QuTracer consists of multiple novel ideas. First, we repur-
pose the circuit cutting technique to track the state of qubit
subsets, analogous to watchpoints during program execution.
Second, we propose qubit subsetting Pauli check (QSPC) to
mitigate the errors on qubit subsets. Our proposed implementa-
tion of QSPC has low circuit cost. For example, adding single-
qubit subset Pauli checks only requires insertion of single-
qubit gates. Third, we propose a multi-layer qubit subsetting
approach designed to mitigate errors in circuits requiring
multiple layers of Pauli checks. Fourth, we propose a series
of novel optimizations specifically tailored for the process
of qubit subsetting, offering improvements in efficiency and
accuracy.

Our noisy simulator and real-device experimental results
confirm the effectiveness of our proposed QuTracer frame-
work.
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Our contributions can be summarized as follows:
• We introduce QuTracer, a qubit subsetting framework that

monitors the distribution of a subset of qubits to mitigate
errors. It mitigates both gate errors and measurement
crosstalk errors, thereby surpassing the capability of
measurement subsetting.

• We repurpose circuit cutting to track the quantum states
during the circuit execution. This is analogous to enabling
watchpoints when debugging classical programs.

• We propose qubit subsetting Pauli Checks (QSPC) to
mitigate the errors on qubit subsets. QSPC has a lower
cost than the existing Pauli check error detection schemes.

• We propose and incorporate multiple optimizations for
qubit subsetting. These optimizations include state prepa-
ration reduction, localized gate simulation, gate bypass-
ing, state traceback, false dependency removal, and qubit
remapping.

• We demonstrate the scalability and effectiveness of our
approach through rigorous experimentation. Our experi-
mental results on both noisy simulators and real quantum
devices show that QuTracer significantly outperforms the
state-of-the-art approaches.

This paper is organized as follows. In Section II, we review
related works and discuss the motivation of qubit subsetting.
In Section III, we use the inverse quantum Fourier transform
circuit as an example to illustrate the QuTracer framework.
In Section IV, we present the theory and the design of
qubit subsetting Pauli checks. In Section V, we present the
design of the QuTracer framework and discuss the relevant
optimizations. In Section VI, we provide the experimental
setup. In Section VII, we discuss both the noisy simulation
and the real-device results. Finally, Section IX concludes the
paper.

II. BACKGROUND AND MOTIVATION

A. Measurement Error Mitigation via Measurement Subsetting

Measurement subsetting, i.e., the JigSaw protocol, aims to
reduce the effects of measurement errors [13]. The protocol
splits the experiment shots into a set containing all the end
measurements and a set containing only partial measurements.
The circuits with partial measurements are equivalent to the
complete circuit, except that some of the measurement opera-
tors at the end are removed. The circuit with all measurements
generates a noisy global distribution. The partial measurement
circuits generate local distributions that have high local fideli-
ties due to the reduced measurement errors. Then, the local
distributions refine the global distribution through a Bayesian
recombination method that uses local information to update the
global distribution. VarSaw is an improved version of JigSaw
intended for variational quantum algorithms (VQA) [11]. It
recognizes that various time and spatial redundancies exist in
measurement subsetting for VQA circuits. By eliminating such
redundancy, VarSaw can achieve better efficiency.

Takeaway: While Jigsaw and Varsaw target measurement
errors, gate errors remain unmitigated. The effectiveness of

measurement subsetting is limited for circuits with a high
circuit depth, leading to a high gate error rate. Therefore,
a subsetting technique that can also effectively mitigate gate
errors is desired.

B. Circuit Cutting

Quantum circuit cutting decomposes a payload circuit into
smaller fragments such that they can run on smaller quantum
devices [3], [4], [34], [35]. Circuit cutting works by measuring
a complete basis set on the left side of the cut and preparing
the corresponding states on the right side of the cut. To see
how this can be done when cutting one qubit, we can fragment
an arbitrary quantum state ρ as

ρ =
1

2

∑
M∈B

M ⊗ trj(Mjρ), (1)

where B represents the basis set of 2×2 Pauli matrices, trj is
the partial trace over qubit j, and Mj represents an operator
that acts with Pauli operator M on qubit j and acts with
identity I on other qubits. By expanding M in its spectral
decomposition, we can decompose ρ into a sum of channels
that contains measurements M on qubit j followed by the
preparation of quantum states which are the eigenstates of M .
When cutting multiple qubits, the number of Pauli basis scales
exponentially O(4n) with the number of the cutting qubits n.

Measuring the probability distribution of qubits at the cut
provides complete information about the quantum state at that
position. In conventional circuit cutting, this state information
is used to reconstruct the state after the circuit cutting. How-
ever, we make a key observation that the state information at
the cut can also be leveraged to monitor the execution of the
program and to facilitate error mitigation.

Takeaway: Circuit cutting, rather than being solely used for
dividing a circuit into multiple subcircuits, can be repurposed
to monitor the quantum states throughout the execution of a
circuit.

|0⟩ H H

ρ CL U ε CR ρout

|0⟩ H H

ρ U C†
R

ε CR ρout

Fig. 1: General idea of Pauli Check Sandwiching (PCS). ε is the
noise map due to U . The two circuits are equivalent as a result of
Eq. (3), and the sandwiched ε can be seen as a transformed noise
map. The gates that prepare the input state ρ are not shown.
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Measurement subsetting distributions:
q0:
q1:
q2:
fidelity:  0.57

Original bitwise distributions:
q0:
q1:
q2:
fidelity:  0.39

Optimized bitwise distributions:
q0:
q1:
q2:
fidelity:  0.71

q0:
q1:
q2:
fidelity:  0.68

q0:
q1:
q2:
fidelity:  0.87

QuTracer bitwise distributions:

q0:
q1:
q2:

Ideal bitwise distributions:

Gate errors: 
E1q: 0.01, E2q: 0.1 

Measurement errors:
EMq0: 0.1
EMq1: 0.3
EMq2: 0.3
EMancilla: 0.3

Fig. 2: QuTracer optimized circuits and the corresponding bitwise distributions (i.e., local distribution with subset size of 1) and output
Hellinger fidelity (i.e., fidelity of global distribution). (a) The original iQFT circuit that generates the noisy global distribution; (b) Circuit
copies with a measurement subsetting size of one; (c) Optimized circuit copies of (b) by removing the gates that the measurement subset
has no dependence upon; (d) Circuit copies with PCS to mitigate gate errors; (e) The QuTracer optimized circuit copies of (d).

C. Pauli Check Sandwiching (PCS) and SQEM framework

PCS [19] is a technique designed to detect errors in quan-
tum circuits. This method involves applying a set of checks
that have known transformations with the payload circuit to
mitigate the errors.

The n-qubit Pauli group Pn is defined as

Pn = {I,X, Y, Z}⊗n × {±1,±i}. (2)

Let U denote the payload unitary circuit. Pauli checks are
chosen such that the following constraint is satisfied

CRUCL = U (3)

and typically, CL and CR are elements of the Pauli group. For
a single pair of checks, the PCS scheme applies the circuit
shown in Fig. 1 and post-selects on the zero outcome of a
Z-basis measurement of the ancilla qubit. Note that the right
check along with the post-selection can be recognized as the
Hadamard test often used in quantum error correction [32].
The single layer scheme and its equivalent form are depicted in
Fig. 1. As long as the error operator anti-commutes with CR,
it can be effectively eliminated as a result of post-selection.

In PCS and other error mitigation techniques, the error
mitigation protocol introduces extra errors via additional gates
(e.g., the Hadamard test gates) and ancilla qubits. This ex-
tra noise degrades the performance of the error mitigation
schemes. Simulated Quantum Error Mitigation (SQEM) was
developed to minimize the added noise [28] by leveraging
circuit cutting. In SQEM, circuit cutting is performed so that
the payload subcircuit becomes separated from the quantum
error mitigation subcircuit. The payload circuit fragment runs
on the quantum hardware and the quantum error mitigation

fragments are simulated on a classical computer. The results
of the fragments are recombined via classical post-processing.

Although SQEM addresses the issue of additional noise
from mitigation circuits, it inherits the scalability challenges
of circuit cutting. When mitigating multi-layer VQE or QAOA
circuits, SQEM requires cutting the error mitigation circuit
across layers, leading to an overhead that scales exponentially
with the number of layers.

Takeaway: PCS is a promising mitigation technique but
the extra noise due to its additional gates and ancillas limits
its effectiveness. Although the SQEM framework reduces this
extra noise of PCS and can be used for shallow VQE circuits,
there is a need for a more generalized framework capable of
handling multi-layer, complex circuits. The crucial part is to
address the scalability resulting from circuit cutting.

III. MOTIVATING EXAMPLE: INVERSE QFT
In this section, we use the inverse quantum Fourier trans-

form (iQFT) circuit as an example to show the key idea
behind the QuTracer framework. QFT and iQFT are basic
building blocks in many quantum algorithms including Shor’s
algorithm [41], quantum adder [15], quantum multiplexer [39],
quantum phase estimation [24], and HHL algorithm [21]. A
three-qubit iQFT circuit is shown in Fig. 2(a). When running
on a noisy simulator that incorporates both simulated gate and
measurement errors, the Hellinger fidelity of the output state
is 0.39 due to the noise in both circuit execution and qubit
measurements. The measurement error vary from 0.1 to 0.3.

The key ideas behind our proposed qubit subsetting are that
(a) it optimizes the circuit copies generated for qubit subsets,
and (b) it enables error mitigation during the computation
of these qubit subsets. The circuits in Fig. 2(b) employ
measurement subsetting, i.e., Jigsaw, with a subset size of
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one, resulting in three separate circuit copies for this three-
qubit iQFT. Jigsaw maps the qubit subset to qubits with lower
measurement errors, and the resulting output fidelity becomes
0.57 after combining the more accurate local distributions. In
comparison, QuTracer further optimizes these circuits. First,
the gates that the measurement operator has no dependency
on can be removed. Second, as we only measure the prob-
ability distribution on the Z basis, the Rz gates, which only
induce a phase change, can also be eliminated. The optimized
circuits are shown in Fig. 2(c). Note that this optimization
opportunity is unique and arises specifically when the focus
is on the distribution of a subset of qubits. As the optimized
circuits contain fewer gates, local distributions can be further
improved, and the fidelity of the refined global state becomes
0.71.

After optimizing the circuit, we apply error mitigation
schemes. Fig. 2(d) shows the circuits after applying PCS. Here,
Pauli-Z checking is used as the Z gate on the control qubit
commutes with the control-Z gate to be protected. By intro-
ducing an ancilla qubit and the Pauli-Z checking circuit, errors
that anti-commute with the Pauli-Z operator (e.g., Pauli-X and
Pauli-Y) can be detected. The ancilla qubit and the extra gates
are marked in red in the figure. However, these extra operations
themselves introduce noise, and there is no guarantee that the
noise reduction would outweigh the induced errors due to the
extra gates. In our experiment, this added mitigation actually
showed worse local distributions than Fig. 2(c), and the output
fidelity becomes 0.68. To overcome the noise due to the
mitigation circuits, we propose to implement these mitigation
operations “virtually.” As elaborated in the following section,
we develop a qubit subsetting Pauli check (QSPC) technique,
which transforms these operations into a collection of lower-
cost circuits that introduce only minimal noise. Consequently,
the circuits depicted in Fig. 2(d) are transformed into the
more efficient ones shown in Fig. 2(e), which involve state
preparation and measurements, but only introduce additional
single-qubit gates, which have much lower error rates than
two-qubit ones. With QSPC, the local distributions become
more accurate as a result of mitigating both gate and mea-
surement errors. The fidelity of the refined global distribution
becomes 0.87, a 53% improvement over Jigsaw.

IV. QUBIT SUBSETTING PAULI CHECKS (QSPC)

In this section, we present Qubit Subsetting Pauli Checks
(QSPC), a novel approach specifically designed to check a
subset of qubits.

A. Intuition

QSPC incorporates two key elements. First, it employs PCS
protocol to mitigate gate errors. Second, it virtualizes the
PCS circuits by transforming them into an ensemble of state
preparation and measurements. This is achieved by leveraging
the circuit-cutting idea. As a side benefit, some quantum gates
can be replaced with classical computation if they depend
solely on the state at a cut. Moreover, as the post-selected
output states can be prepared directly from the cut, there is

no need to measure the ancilla qubits, thus QSPC is immune
to measurement errors on ancilla qubits. Virtualization of
the PCS circuit also offers a unique advantage: it integrates
the measurement errors from the original circuit into the
error channel protected by the Pauli checks. This results
in the virtual Pauli checks effectively mitigating both gate
and measurement errors, a significant improvement over the
original PCS that only addresses gate errors.

B. Theory

The circuit implementation of the PCS protocol shown in
Fig. 1, uses a pair of n-qubit gates {CL, CR} to check the
n-qubit circuit U . The requirement is CRUCL = U . With
the error channel being ϵ(ρ) =

∑
i EiρE

†
i , the post-selected

output state of the PCS protocol is [19]:

ρout =
∑

i[(CREiC
†
R+Ei)UρU†(CRE†

i C
†
R+E†

i )]
tr(

∑
i[(CREiC

†
R+Ei)UρU†(CRE†

i C
†
R+E†

i )])
(4)

As long as the error operator Ei anticommutes with CR,
CREiC

†
R+Ei = 0 and the error can be eliminated as a result

of post-selection. When there is no error, i.e., Ei = I , ρout =
UρU†, meaning that the execution of the gate U is noise free.
In QSPC, we use Pauli-Z checks to protect a subset of qubits,
the subset size of qubits is set to 1, i.e., CR = CL = Zj , where
Zj represents an operator that acts with Pauli operator Z on
qubit j and acts with identity I on other qubits, and qubit j is
the qubit that we want to protect. Pauli-Z checks capture bitflip
errors on the protected qubit as X anti-commutes with Z. The
discussion of protecting more than one qubit simultaneously,
i.e., setting the qubit subset size to be larger than 1 will be
introduced in section V-D.

Generating the output state ρout shown in Eq. (4) requires
ancilla qubit measurement and post-selection, which introduce
extra noise. To address the issue, we make the observation
that it is sufficient to obtain the expectation value of ρout
with respect to an observable O, ⟨O⟩ = tr(ρoutO), instead
of the exact state ρout. There are two reasons for this.
Firstly, in many algorithms, including variational ones, the
expectation value of an observable is needed instead of the
output distribution. Secondly, measuring the probability of a
classical output is actually equivalent to measuring the corre-
sponding observables. The benefit of using tr(ρoutO) is that
it can be computed virtually by leveraging the circuit cutting
technique. To compute tr(ρoutO), we first derive the following
relationship: since CRUCL = U , we have C†

RU = UCL

and U†CR = C†
LU

†. Then, we use Eq. (4) to compute
the numerator and denominator of tr(ρoutO) separately. The
numerator of tr(ρoutO) can be computed from the following
four terms:

tr(ΣiEiUρU†E†
iO) (5)

tr(ΣiEiUCLρU
†E†

iOCR) (6)

tr(ΣiEiUρC†
LU

†E†
iC

†
RO) (7)

tr(ΣiEiUCLρC
†
LU

†E†
iC

†
ROCR). (8)
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Fig. 3: Qubit subsetting Pauli check for a single qubit. (a) Circuit with one qubit to measure as a result of measurement subsetting; (b) Circuit
with Pauli-Check Sandwiching; (c) Circuit with our proposed qubit subsetting Pauli checking. ϵg denotes the error channel that consists of
gate errors. ϵm denotes the measurement error channel. ϵgm denotes the error channel that consists of both gate and measurement errors. The
sequence of gates U1−m sharing the same control qubit exists widely in algorithms such as QFT and QPE. We use this pattern to illustrate
QuTracer’s ability to protect a series of operations commuting on a subset of qubits.

These four terms can be obtained by preparing ρ, CLρ, ρC
†
L,

and CLρC
†
L, passing them through a quantum gate U followed

by a noisy quantum channel ϵ(ρ), and measuring four observ-
ables O,OCR, C

†
RO, and C†

ROCR, respectively. This process
consists solely of state preparation and measurement and do
not involve ancilla qubits and controlled unitary gates which
are required in the PCS circuits. Therefore, the errors typically
associated with the QSPC checking circuit can be significantly
reduced. We will detail the procedure for calculating Term (6);
other terms can be calculated by the same procedure.

For Term (6), we need to first prepare CLρ. But CLρ is
not a quantum state that can be directly prepared. However,
based on Eq. (1), CLρ can be decomposed as Eq. (9), which is
a linear combination of channels that contains measurements
followed by state preparation. This allows us to use a similar
process as the wire cutting in quantum circuits to obtain CLρ.

CLρ =
1

2

∑
M∈B

ZM ⊗ trj(Mjρ), (9)

Therefore, the preparation of CLρ transforms into setting up
a series of circuits involving measurements followed by state
preparation. In each circuit, the measurement operator Mj is
applied to the state ρ, followed by preparing the eigenstates
of ZM on the jth qubit. Then based on Term (6), all these
circuits go through the quantum gate U and noisy quantum
channel ϵ(ρ), the observable OCR is measured to obtain the
results. Fig. 3(c) gives an example of setting up the circuits to
compute Term (6) when the checking qubit is the first qubit.
The results from all the circuits are combined linearly to derive
the outcome for Term (6).

We can calculate all the terms for the numerator of
tr(ρoutO) by the above procedure. The calculation for the
denominator of tr(ρoutO) is in the same manner with the
observable O being the identity I for all the qubits. A
maximum of 18 distinct circuits is sufficient to calculate
tr(ρoutO). In some scenarios, we care about the information of
the protected qubit of ρout in all three measurement basis X ,
Y , and Z. Then in the worst-case scenario, we need to prepare

30 different circuits to calculate tr(ρoutXj), tr(ρoutYj), and
tr(ρoutZj) by reusing results from some circuits.

C. QSPC vs. SQEM

In our approach, the transformation of the PCS circuit into
an ensemble of state preparations and measurements is akin
to the process of cutting and simulating Pauli check circuits,
as discussed in the SQEM framework [28]. However, the key
distinction between our Qubit Subsetting Pauli Checks (QSPC)
and the SQEM approach lies in the state reconstruction pro-
cess. Circuit cutting necessitates preparing and measuring on
all bases for complete state reconstruction. For a cut frag-
ment with m measurement locations and n state preparation
locations, the standard circuit cutting requires 3m× 4n circuit
copies, as detailed in [35]. Since there are two measurement
locations and one state preparation location when cutting the
circuit in Fig. 3(b), SQEM requires 36 circuit copies. In
contrast, QSPC directly calculates the necessary state prepara-
tions and measurement bases, thus significantly reducing the
number of required state preparations and measurements. As
mentioned earlier, the calculation requires 18 circuits. Even
in the worst case scenario, QSPC surpasses SQEM, requiring
30 circuits. In the experimental section (Section VII), we will
present the overhead for various benchmarks and demonstrate
the substantial reduction in circuit cost achieved through our
method.

D. Measurement Error Mitigation

QSPC offers a unique advantage in that it enables the
mitigation of both gate and measurement errors. In the orig-
inal PCS scheme shown in Fig. 3(b), the error channel ϵg
consists of gate errors that occur between the two checks.
The measurement errors denoted by ϵm are not mitigated.
However, with QSPC’s “virtual” implementation of checks, the
final measurements on the qubits are also sandwiched between
these checks. As we prepare states and measure observables
in QSPC, the resultant error channel, denoted ϵgm, consists of
both gate and measurement errors. The post-selected output
state that we reconstructed is the state that mitigates both gate
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False dependency removal
Qubit remapping
Qubit subsetting Pauli checks

Output state
distribution

Fig. 4: QuTracer workflow and the optimizations

and measurement errors. This is particularly effective when
measurement errors can be viewed as products of bit-flip Pauli
X errors. Since these measurement errors anticommute with
Pauli Z checks, they can be effectively mitigated using the
QSPC method.

In summary, QSPC virtualizes the single-qubit PCS circuit
in Fig. 3(b) and converts it to an ensemble of circuits in
Fig. 3(c) that only contains additional single-qubit gates, thus
eliminating the use of ancilla qubits and reducing the noise in
these checking circuits. In addition, the ensemble of circuits
mitigates the measurement errors. In the next section, we
will discuss how to incorporate QSPC in our error mitigation
framework to protect a general quantum circuit.

V. QUTRACER FRAMEWORK

A. Framework

Our QuTracer framework involves continual tracking of the
state of qubit subsets throughout their computational process.

In order to track the state during circuit execution, we re-
purpose the circuit-cutting technique: for a cut, we actually
measure the distribution at the cutting point and prepare the
necessary states accordingly. We can insert multiple cut points
on a subset of qubits and measure at these points to track
their state at each cut point. In other words, the purpose of
these cuts is not to separate a circuit but to track the quantum
states to ensure the correct execution of the circuit. This is
analogous to creating watchpoints when debugging classical
programs. Note that having watchpoints on many qubits incurs
exceedingly high overhead. On the other hand, watchpoints
are a good fit when used on a small subset of qubits as the
overhead would be much more manageable. By measuring at
the “quantum watchpoints” and error-mitigating the state of
a subset of qubits, we can achieve high-fidelity qubit subset
distributions.

The workflow of our approach is as follows. Given a
quantum circuit, it is first executed to produce the global
distribution. Then, QuTracer performs qubit subsetting to
produce high-fidelity local distributions and refines the global
one. At a high level, QuTracer takes three distinct steps shown
in Fig. 4:

• Analysis and Circuit Preparation: For a circuit with
a subset of qubits of interest, analyze the circuit to
determine the cut locations where the measurement of the
qubit subset states is needed. To measure the states of the
qubit subset, multiple state preparation and measurement
circuits will be generated following the circuit cutting
protocol.

• Circuit Execution and Error Mitigation: Execute the
circuits and subsequently update the qubit subset states.
During this step, error mitigation techniques are strate-
gically employed to ensure an accurate estimation of the
subset state.

• Global Distribution Update: Refine the global distribu-
tion based on the qubit subset states. The global distribu-
tion is updated using the same Bayesian recombination
algorithms utilized by SQEM [28].

Within each step, we propose further optimizations as listed
in Fig. 4. To facilitate a clear and focused examination of
the concepts and optimizations, we limit the size of the qubit
subset to one in the following discussion.

B. Single-layer Qubit Subsetting

In this subsection, we use Quantum Phase Estimation (QPE)
as an example to illustrate how its execution result can
be refined by the QuTracer framework. Fig. 5(a) depicts
a quantum phase estimation circuit featuring three ancilla
qubits. As only these ancilla qubits are to be measured,
qubit subsetting is specifically applied to these three qubits
by obtaining the accurate distribution of one ancilla qubit
at a time. Here, we focus on the third qubit. As shown in
Fig. 5(a), the circuit analyzer strategically inserts three circuit
cut points. The criteria for choosing cut points is to divide
the gate operations into sets of commuting operations. The
reason is that a sequence of commuting operations can be
efficiently checked by our Qubit Subsetting Pauli Checks
(QSPC) approach. Initially, each cut point requires measure-
ment in three bases and preparation in six states. However,
many state preparations and measurements can be optimized.
The Analysis and Circuit Preparation step incorporates the
following optimizations:
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Fig. 5: QuTracer framework for Quantum Phase Estimation (QPE)

State preparation reduction: In Fig. 5(a), we prepare six
states |0⟩, |1⟩, |+⟩, |−⟩, |i⟩ and |−i⟩ at the cut point ρ3,1 in
order to compute ρ3,2. The expectation value of states |−⟩
and |−i⟩ can be derived with classical post-processing based
on the expectation value of the other four states |0⟩, |1⟩, |+⟩,
and |i⟩. Therefore, the number of state preparations in the cut
point ρ3,1 can be reduced to four.

Localized gate simulation: Since we restrict the size of
the subsetting, the localized gates that operate only on the
subset of qubits can be efficiently simulated using classical
computers. In our example, we track the state on the third
qubit. As such, we simulate all the single-qubit gates on the
qubit from the start. Therefore, we can compute ρ3,1 without
the need for any measurement. Similarly, ρ3,3 can be derived
based on ρ3,2 with a classically simulated Hadamard gate. As
a result, we can eliminate the state preparation at ρ3,2 and
the measurement at ρ3,3. This optimization also ensures the
noiseless execution of the localized gates.

Gate bypassing: Leveraging gate properties, we can reduce
the required number of measurements. For example, the con-
trolled gates do not change the Z basis distribution on the
control qubit. Since we compute the density matrix ρ3,1, there
is no need to measure ρ3,2 in the Z basis because the sequence
of controlled U gates leaves the distribution unchanged. This
sequence of gates can be bypassed when tracking the Z basis
distribution, thereby ensuring noiseless computation on the Z
basis.

State traceback: We can reduce the number of mea-
surements and preparations when we trace back from the
final measurements on the computational basis. Since only
the measurement in the Z basis is necessary at the circuit’s

conclusion, we can omit the measurements on the X and
Y bases. For instance, by following our discussion on gate
bypassing, on the third qubit, the last two controlled-RZ gates
do not alter the distribution on the Z basis. It suffices to acquire
only the Z basis information of ρ3,3. Since we simulate the
single-qubit Hadamard gates, we only need to measure on the
X basis for ρ3,2 to acquire the Z basis distribution of ρ3,3.

After the aforementioned optimizations, the circuit with
the necessary preparations and measurements is shown in
Fig. 5(c). Only four circuits are needed to calculate the output
distribution on the third qubit. In the second step of the
process, labeled Circuit Execution and Error Mitigation,
we further implement the following optimizations:

False dependency removal: As we only need to measure
a subset of qubits, we can remove the gates that the subset
measurement is not dependent upon. This is similar to identi-
fying causal cones in variational quantum ansatz studies [2],
[5]. Nevertheless, there might be false dependencies in the
circuit diagram. In the original circuit, the controlled-U gate
and controlled-U2 gate may affect our measurement of ρ3,2.
By employing gate commuting rules, we can shift these gates
after the measurement of ρ3,2. Then, it becomes evident that
the controlled-U gate and controlled-U2 gate can be removed.
After this optimization, the gates that the ρ3,2 measurement is
dependent on are shown in Fig. 5(d).

Qubit remapping: Since the optimized circuit to be exe-
cuted on the hardware is different from and smaller than the
original circuit, we can remap it to physical qubits with low
noise. The remapping ensures the low noise execution of the
circuit. Furthermore, circuits for different subsets of qubits
may re-utilize the same set of high-quality qubits. We employ
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Fig. 6: QuTracer framework for two-layer VQE ansatz

the noise-aware mapping scheme [31] for our re-mapping.
Qubit subsetting Pauli checks: The final circuit shown

in Fig. 5(d) can be protected by QSPC. As we prepare the
input state in different states and acquire the measurement
results from the real device, we can calculate the error miti-
gated distribution on the X basis following the discussion in
Section IV. We start with the ground state |0⟩ and calculate
the noiseless density matrix ρ3,1. Then, we run the circuit in
Fig. 5(d) to acquire the noise-mitigated distribution on the X
basis. Next, we simulate the Hadamard gate and bypass the
Rz gates to get the final output distribution on the third qubit.
In this process, the only step susceptible to hardware noise is
the execution of the controlled gate U4. The reduction of the
circuit size, coupled with QSPC for error mitigation, makes the
local distribution of the third qubit substantially more accurate
than measurement subsetting.

We can follow a similar procedure to obtain the accurate
local distribution of the first and the second qubits. These
qubits exhibit similar properties, and each only needs a single-
qubit subsetting Pauli check. Notably, this requirement remains
consistent regardless of the size of the Quantum Phase Estima-
tion (QPE) algorithm, where the single-qubit distribution only
demands a single-qubit subsetting Pauli check per individual
qubit. In the next section, we will use the multilayer VQE
algorithm as an example to explore the challenges associated
with sequentially implementing multiple qubit subsetting Pauli
checks.

C. Multi-layer Qubit Subsetting

In this subsection, we illustrate the application of the
QuTracer framework on a multi-layer ansatz circuit for varia-
tional quantum algorithms. As depicted in Fig. 6(a), the ansatz
circuit is composed of layers of single-qubit Y-rotation gates
and linear entanglement with CZ gates. In our discussion, we
concentrate on the top qubit. As illustrated in Fig. 6(a), four
circuit cuts are placed as two circuit cuts are needed per layer
to ensure that the check is performed only on the qubit subset.
For example, we can use pairs of Pauli Z checks at cut points
(1,1) and (1,2) to protect one layer of CZ gates. However, if
we use only the cut points (1,1) and (1,4) to check two layers,
we cannot find pairs of single-qubit gates CL and CR that
would satisfy the requirements for Pauli checks. The reason is
when a single-qubit Pauli check is specified on one side, the

corresponding check on the other side becomes a multi-qubit
operation. Consequently, the operation would not be restricted
to the subset, necessitating the tracking of additional qubits
beyond the subset.

As we have identified the four cut points, we perform
the aforementioned optimizations and construct the quantum
circuits. As shown in Fig. 6(b), each layer generates a circuit
that can be protected with a single-qubit subsetting Pauli
check. For the first circuit, the calculations yield the mitigated
distributions at (1, 2) and (1, 3). However, for the second
circuit, we measure the state at (1,3) and obtain an unmit-
igated density matrix ρ1,3, which is then used to calculate
the mitigated density matrix ρ1,4. The challenge arises when
considering the sequential execution of these circuits. If they
run separately and in sequence, the mitigation is restricted to
one layer only, with no provision to transmit the mitigated
data to the subsequent calculation. Attempting to merge these
two circuits to simultaneously check the two layers (akin
to simultaneously cutting at all four cut points) would lead
to an exponential increase in the required state preparation
and measurement as the number of layers increases. The
primary challenge lies in effectively transferring the mitigated
distribution from one layer to the next.

The problem of transferring the mitigated distribution from
one layer to the next can be translated into the task of
updating the global output distribution based on the local
output distributions. Referencing Fig. 6(b), the circuit for
calculating ρ1,4 yields the output distribution P = {00 :
a, 01 : b, 10 : c, 11 : d} which is the measurement result for
locations (1,3) and (1,4), and P can be viewed as the global
output distribution when measuring locations (1,3) and (1,4)
simultaneously. Since we already obtain the error-mitigated
output distribution at (1,3) represented as M = {0 : α, 1 : β}
based on the calculation in the first layer, we can use M to
update the global output distribution P . The global output
distribution is updated using the same Bayesian recombination
algorithms utilized by SQEM [28]. The updated global output
distribution Pupdate has a bitwise distribution for location (1,3)
which is the same as the error-mitigated output distribution M .
We can then employ the error-mitigated probability Pupdate

in the second layer’s qubit subsetting calculation, which will
mitigate the noise in both layers.
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D. Different Subset Sizes

While increasing the subset size captures more global cor-
relation, the noise also increases. The previous measurement
subsetting works [11], [13] suggest that a subset size of 2
strikes a balance. Increasing the subset size allows us to
“virtualize” multiple Pauli checks concurrently. For instance,
the VQE circuit shown in Fig. 6 consists of single-qubit Pauli
Z checks. Extending the subset size to 2 allows simultaneous
application of IZ and ZI checks, which detects more errors.
However, as will be discussed in the following subsection, the
classical and quantum overhead scales exponentially with the
subset size. We restrict the subset size to one or two in our
experiments. When running QuTracer with subset size of two,
in the worst case scenario, it requires 302 circuits.

For circuits yielding symmetric output states, it’s advisable
to use a subset size greater than one. This is because measur-
ing a single qubit typically produces a uniformly distributed
bitwise outcome, which does not effectively refine the global
distribution from the original circuit. For example, the Z2

symmetry in the MaxCut problem and the QAOA ansatz
results in output states that are bit-flip invariant, with single
qubit distributions being uniformly distributed. Therefore, the
subset size should be larger than one. We will show the results
for QAOA by setting the subset size to be two in Section VII.

E. Scalability

The cost of our proposed QuTracer framework includes
classical circuit analysis, quantum circuit execution, and clas-
sical post-processing. It scales linearly with the number of
layers in the circuit. Consider the original circuit with n
qubits, m layers, k shots, and a qubit subset size of s.
First, we consider the overhead in quantum processes. The
total number of shots represents the total execution time on
a quantum device. For each qubit subsetting Pauli check,
we require O(Cs) number of preparation and measurement
circuits, whereas C is the number of circuit copies for a single-
qubit QSPC. Then, following the discussion in measurement
subsetting [13], the number of subsets to be evaluated is
O(n). Since we have m layers, the total number of quantum
circuits is O(Csnm). These circuits for the same check O(Cs)
need to be executed in sequential, while different checks
O(nm) can be parallelized. Since these quantum circuits only
involve state preparation and measurement and do not rely
on data from classical post-processing, they can be executed
simultaneously with classical post-processing. These quantum
circuits require fewer shots than the original circuit. As we
measure the expectation values, the number of shots [36]
scales polynomially with the number of qubits: k ∼ O(nr/ϵ2),
where r is a constant determined by the quantum circuit and
is greater than one, and ϵ is the output error rate. Since
we only measure a subset of qubits, the number of shots in
each circuit copy ϵ is bounded by O( s

nk) to maintain the
same error rate. Therefore, the total number of shots in the
QuTracer framework is O(Csmk), which increases linearly
with the number of layers in the circuit. As discussed in
Section IV, if we limit the subset size to 1, the number of

shots is upper-bounded by O(30mk). As we will show in
Section VII-E, the actual overheads are smaller due to our
proposed optimizations. The constant C can be further reduced
by utilizing Local Operations and Classical Communication
(LOCC), specifically through mid-circuit measurements and
classically controlled operations. Following the discussion
in [20], we can prepare the states based on the measurement
results and reduce the constant C from 30 to 15. However, due
to the lower fidelity associated with mid-circuit measurements
and classically controlled operations, we did not implement
these techniques in our experiments.

Next, we analyze the classical computation overhead. The
circuit analysis simply traverses the circuit and has a complex-
ity of O(nm). The primary bottleneck in classical computation
arises in post-processing the measured data to calculate the
post-selected output states. Since the number of basis states
grows exponentially with the number of qubits, the classical
computation overhead for each qubit subsetting check is
O(C ′s), where C ′ is the time for processing the measurement
results of all the circuit copies for a single-qubit QSPC.
Since we limit the subset size, both the classical memory
and computation overhead is O(C ′snm), which scales linearly
with the number of qubits and the number of layers. Due to
the data dependency across layers, classical computations for
the same check on the same qubit (O(C ′sm)) are sequential.
The computations for different qubits O(n) can be performed
in parallel.

VI. EXPERIMENTAL METHODOLOGY

We evaluate our proposed QuTracer on noisy simulators and
real quantum devices.

Benchmarks: The benchmarks in our experiments include
Quantum Phase Estimation (QPE) [24], Bernstein-Vazirani
algorithm, the QFT adder [15], the QFT multiplier [39],
Variational Quantum Eigensolver (VQE) [23], and Quantum
Approximate Optimization Algorithm (QAOA) [17].

Implementation: We implemented our QuTracer frame-
work on top of the quantum computing framework Qiskit [38].

Devices: We perform our noise simulation experiments
on the Qiskit noisy simulator with noise models that incor-
porate single- and two-qubit gate errors and measurement
errors. The real device experiments are conducted on the 27-
qubit quantum device ibm_hanoi, 127-qubit quantum device
ibm_kyoto, and 127-qubit quantum device ibm_cusco.

Evaluation metrics and setup: We use Hellinger Fi-
delity [33] as the evaluation metrics. Hellinger Fidelity serves
as a measure of similarity between two probability distri-
butions. We use it to evaluate the closeness between the
noisy distributions to the ideal (i.e., noise-free) probability
distributions.

We map and optimize the circuits with the maximum
optimization level in Qiskit. Since the circuit transpilation
is a stochastic process, we transpiled a circuit fifty times
and selected the design with the least number of CNOTs.
The number of shots for the original circuits running on the
real device is set to 100000. The experiments for the same
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benchmark are executed in the same calibration cycle to avoid
unexpected changes in hardware properties.

Comparison with JigSaw and SQEM: To evaluate the
effectiveness of QuTracer, we compared it with the JigSaw and
SQEM approach. JigSaw runs half of the shots in the global
mode where all the qubits are measured, and the other half in
the subset mode where only a subset of qubits are measured.
Consistent with recommendations in prior measurement sub-
setting works [11], [13], the subset size in JigSaw is configured
to 2.

VII. EVALUATION

A. Measurement Error Mitigation

In this experiment, we simulate a 15-qubit VQE circuit
on Qiskit noisy simulator to study the measurement error
mitigation effect of different error mitigation approaches. The
15-qubit VQE circuit has a similar circuit structure as shown in
Fig. 6(a), but with one layer of linear entanglement CZ gates.
The subsetting size of QuTracer and SQEM approach is set to
1. We use a depolarization noise model in which each 1- and
2-qubit gate has depolarizing noise with a certain probability.
The single- and two-qubit gate errors are fixed at 0.001 and
0.01, respectively. The noise model also incorporates uniform
single-qubit measurement errors. To study the effectiveness of
the Pauli check circuits, we also simulate the circuits with
the ideal Pauli checks (ideal PCS), i.e., the Pauli checks are
implemented with no measurement errors on the ancilla qubits
and no gate errors on the checking circuits. We use the Pauli
Z checks shown in Fig. 3(b). Fig. 7 shows the output fidelities
of different approaches as we vary the measurement error
from 0.01 to 0.16. Since the noise model does not incorporate
measurement crosstalk, the fidelity obtained from Jigsaw is
similar to the fidelity of the original circuits. The circuits
with ideal Pauli checks mitigate the gate errors and have
shown improved fidelities over the original circuits. However,
as we increase the measurement error, the measurement error
becomes dominant and the fidelity improvement with ideal
Pauli check circuits becomes less significant. Since SQEM
and QuTracer both implement Pauli check circuits virtually,
they are capable of mitigating the measurement noise. As the
measurement error increases, both approaches mitigate a large
proportion of the measurement error and lead to significant
fidelity improvements. QuTracer achieves a higher fidelity than
SQEM due to its optimizations and the reduced number of
basis measurements. Based on the experiments, we evidently
show that the “virtual” implementation of the Pauli checks
enables the mitigation of measurement errors.

B. Gate Error Mitigation

In this experiment, we conduct simulations of an 8-qubit
VQE circuit using Qiskit noisy simulator to study the gate
error mitigation effect of different error mitigation approaches.
The subsetting size of QuTracer and SQEM approach is set
to 1. We use a depolarization noise model with a single-qubit
gate error of 0.001, a two-qubit gate error of 0.01, and a single-
qubit measurement error of 0.001 for all qubits. In order to
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Fig. 7: Change in Hellinger fidelity with respect to the measurement
error.

assess the influence of gate errors, we vary the CNOT depth
in the circuit by changing the repetition times of the linear
entanglement gate layer, ranging from 1 to 25. Fig. 8 shows
the Hellinger fidelity under different error mitigation methods.
JigSaw shows the same fidelity as the original circuit, as it
does not mitigate gate errors. In comparison, both SQEM and
QuTracer exhibit fidelity improvement. With increasing circuit
depth, the fidelity gap between SQEM and QuTracer widens.
This discrepancy arises because higher circuit depths introduce
more gate errors. SQEM necessitates a state reconstruction
process involving the preparation and measurement on all
bases using the original circuit. As more gate noise is intro-
duced, the accuracy of the state reconstruction process dimin-
ishes. On the other hand, QuTracer utilizes the optimization
of False Dependency Removal to eliminate unnecessary gates,
allowing it to outperform SQEM. A gate count comparison in
Section VII-E confirms this distinction.
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Fig. 8: Changes in Hellinger fidelity with respect to the CNOT depth.

C. Multi-layer Qubit Subsetting

In this experiment, we use a 10-qubit QAOA circuit on
MaxCut problems with four layers to study the effectiveness
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of multi-layer qubit subsetting in a realistic noise model. The
subsetting size of QuTracer is set to 2. The noise model and
coupling map are from the quantum device ibmq_mumbai.
This noise model incorporates various factors, including gate
errors, gate time, T1 and T2 relaxation times, and readout
errors for each qubit. The parameter for this noise model is
based on the calibration data collected on February 22, 2024.
The median CNOT error is 7.611 × 10−3, the median gate
time is 426.667 ns, the median readout error is 1.810× 10−2,
the median T1 is 125.94µs, and the median T2 is 188.75µs.

The results are shown in Fig. 9. We observe that as the
number of checked layers increases, the fidelity improvement
from QuTracer becomes more significant. Checking only the
fourth layer improves the fidelity by 3.96%, checking both
the third and the fourth layer improves the fidelity by 5.74%,
checking the second, the third, and the fourth layer improves
the fidelity by 7.68%, and checking all layers improves the
fidelity by 9.42%, showing that sequentially checking multiple
layers is effective in error mitigation.

We also compare with ideal Pauli checks (ideal PCS), i.e.,
the Pauli checks are implemented with no measurement errors
on the ancilla qubits and no gate errors on the checking
circuit. Interestingly, QuTracer surpasses the performance of
the ideal PCS. This is because when QuTracer checks multiple
layers, it can take advantage of utilizing the optimization
of False Dependency Removal to remove unnecessary gates
in the circuits for each of the layers, while PCS checks
multiple layers simultaneously and can not take advantage of
the optimizations for each of the layers, which results in a
larger circuit with higher noise.
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Fig. 9: Changes in Hellinger fidelity with respect to the number of
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D. Scaling of Circuit Depth

In this subsection, we use 10-qubit QAOA circuits on
MaxCut problems with layers ranging from 1 to 5 to evaluate
QuTracer’s efficiency in handling circuits of varying depths in
a realistic noise model. The detailed parameters of the noise
model are discussed in Section VII-C. The subsetting size of
QuTracer is set to 2. The results are shown in Table I.

For the QAOA circuits, QuTracer interprets each circuit step
as a distinct layer, applying Multi-layer Qubit Subsetting to
check each of the layers. In examining individual layers, the

necessity to check multiple pairs of qubits can be reduced by
the nature of the problem addressed by QAOA. Specifically,
when the application of QAOA is to solve MaxCut problems
on regular graphs, the QAOA circuits exhibit symmetric prop-
erties. As a result, checking one pair of qubits can yield results
for multiple qubit pairs located in symmetric positions.

Results presented in Table I indicate that as circuit depth
increases, the Hellinger Fidelity of the original circuits, prior
to the application of any error mitigation strategies, diminishes
due to the introduction of additional noisy layers. However, the
efficacy of QuTracer in enhancing Hellinger Fidelity becomes
more significant with deeper circuits, Table I includes the
fidelity improvement of QuTracer over the unmitigated results,
showing QuTracer’s capability to effectively mitigate errors in
deeper circuits.

We also compared with JigSaw, which shows little improve-
ment in Hellinger Fidelity. This is due to the Qiskit device
noise model, which does not account for cross-talk noise,
thereby impacting JigSaw’s performance.

E. Real Device Experiments

The experimental results on the real device are shown
in Tables II and III. Applying SQEM to the benchmarks
QFTMultiplier, QPE, QFTAdder, and QAOA is not practical
as it incurs an exponential overhead. Therefore, we mark parts
of the results in SQEM as N/A. The experiments on the same
benchmark are executed in the same calibration cycle, while
those for different benchmarks may be performed in different
cycles with different hardware properties.

We initiate our discussion by focusing on the benchmarks
that require only a single-layer QSPC in QuTracer. As shown
in Table II, the benchmarks include QFTMultiplier, QPE,
QFTAdder, VQE and QAOA with a single layer of CZ gates.
QFTMultiplier, QPE, QFTAdder, and VQE are running on
the 27 qubit machine ibm_hanoi, the subsetting size of
QuTracer is set to 1; QAOA is running on 127 qubit macine
ibm_kyoto, the subsetting size of QuTracer is set to 2. The
results with QuTracer show the highest output fidelity with
an average of 2.3× , 2.03× and 2.15× improvement over the
unmitigated results, the results with JigSaw, and SQEM. In the
VQE example, when increasing the number of qubits from 12
to 15, JigSaw’s results exhibit a noticeable decrease from 0.76
to 0.50. As shown in the table, the average CNOT counts for
the QuTracer framework are significantly smaller than other
approaches, which leads to improved output fidelity.

Table III shows the results of different schemes on the VQE
algorithm and QAOA with multiple layers of CZ gates. VQE
benchmark is running on 27 qubit machine ibm_hanoi, the
subsetting size of QuTracer is set to 1; QAOA benchmark is
running on a 127-qubit machine ibm_cusco, the subsetting
size of QuTracer is set to 2. The SQEM framework is not
included as its overhead scales exponentially with the number
of layers. QuTracer improves the output fidelity by up to 9×
(3.06× on average) compared to the original circuit and by up
to 9× (2.43× on average) compared to JigSaw. As we increase
the number of layers in the circuit, gate errors begin to play
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TABLE I: Simulation results for QAOA circuits with different layers.
Normalized number of shots Average 2-qubit basis gate count Hellinger Fidelity Fidelity Improvement

Workload Original JigSaw QuTracer Original JigSaw QuTracer Original JigSaw QuTracer QuTracer
10-q QAOA with 1 layers 1 1 16 26 26 6 0.90 0.90 0.92 2.89%
10-q QAOA with 2 layers 1 1 106 52 52 21 0.80 0.80 0.83 3.58%
10-q QAOA with 3 layers 1 1 196 78 78 29 0.78 0.79 0.84 8.41%
10-q QAOA with 4 layers 1 1 286 104 104 37 0.74 0.74 0.81 9.42%
10-q QAOA with 5 layers 1 1 376 130 130 47 0.59 0.60 0.70 18.09%

TABLE II: Real device results for single-layer circuits.
Normalized number of shots Average 2-qubit basis gate count Hellinger Fidelity

Workload Original JigSaw SQEM QuTracer Original JigSaw SQEM QuTracer Original JigSaw SQEM QuTracer
4-q QFTMultiplier 1 1 N/A 11 28 28 N/A 18 0.49 0.49 N/A 0.65

5-q QPE 1 1 N/A 11 29 29 N/A 11 0.20 0.20 N/A 0.49
6-q QPE 1 1 N/A 11 44 44 N/A 17 0.19 0.19 N/A 0.29

7-q QFTAdder 1 1 N/A 15 75 75 N/A 37 0.22 0.22 N/A 0.35
9-q BV 1 1 13 11 21 21 21 2 0.07 0.09 0.13 0.89

12-q VQE with 1 layer 1 1 13 11 11 11 11 2 0.67 0.76 0.88 0.96
15-q VQE with 1 layer 1 1 13 11 14 14 14 2 0.36 0.50 0.65 0.87

10-q QAOA with 1 layer 1 1 N/A 16 26 26 N/A 6 0.57 0.57 N/A 0.86

TABLE III: Real device results for circuits with multiple layers.
Normalized number of shots Average 2-qubit basis gate count Hellinger Fidelity

Workload Original JigSaw QuTracer Original JigSaw QuTracer Original JigSaw QuTracer
12-q VQE with 2 layers 1 1 29 22 22 7 0.37 0.52 0.65
12-q VQE with 3 layers 1 1 47 33 33 10 0.29 0.39 0.49
15-q VQE with 2 layers 1 1 29 28 28 7 0.21 0.28 0.69
15-q VQE with 3 layers 1 1 47 42 42 11 0.06 0.06 0.54

10-q QAOA with 2 layers 1 1 106 52 52 21 0.16 0.28 0.36
10-q QAOA with 3 layers 1 1 196 78 78 29 0.14 0.16 0.40

a more significant role. The superior fidelity improvement of
QuTracer comes from its ability to effectively mitigate the
increased gate errors.

VIII. DISCUSSION

A. Integration with Other Error Mitigation Techniques

Our proposed QuTracer framework is complementary with
other error mitigation techniques. QuTracer generates multiple
copies of the original circuit with fewer gates and fewer
qubits. Existing error mitigation techniques such as dynamical
decoupling [12], zero-noise extrapolation [18], Clifford data
regression [10], and probabilistic error cancellation [6] can be
applied to improve the fidelity of circuit copies on hardware.
Moreover, the reduced size of the circuit copies enables a
better scaling of mitigation approaches. For example, Clifford
data regression requires fewer training data for smaller circuits.
The study of integrating QuTracer with other error mitigation
techniques is left for future work.

B. Application-tailored Extension of QuTracer

Prior work [11] presents a measurement subsetting frame-
work, Varsaw, that is designed to mitigate measurement
noise in variational quantum algorithms (VQA). Compared
to Jigsaw, the Varsaw framework reduces the computational
cost by identifying spatial redundancy across subsets from
different VQA circuits and temporal redundancy across global
distributions from different VQA iterations. The optimizations
in Varsaw can be seamlessly integrated into the QuTracer
framework to produce an application-specific extension that
reduces computational overhead.

IX. CONCLUSION

In this paper, we propose a qubit subsetting framework,
QuTracer, to mitigate both gate and measurement errors. The
key idea is to track a subset of qubits to mitigate the error
along the computation process so as to achieve high-fidelity
local distributions, which are then used to refine the global
distribution. Our experimental results on noisy simulators
and real quantum devices show that the proposed framework
significantly outperforms current state-of-the-art approaches.
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APPENDIX

A. Abstract

Our artifact provides the source code for QuTracer, and
the Python scripts to run benchmarks on simulators and real
quantum machines. These scripts also generate results for the
evaluation part. Users can reproduce the results in Table I, II
and III.

B. Artifact check-list (meta-information)
• Compilation: Qiskit transpiler
• Data set: Benchmarks listed in Section VI
• Run-time environment: Ubuntu 20.04.6 LTS
• Hardware: The experiments on real quantum machines require

access to IBM quantum machines
• Execution: Run the bash scripts and python scripts
• Metrics: Hellinger fidelity, 2-qubit basis gate count, normalized

number of shots
• Output: JSON files and CSV files
• Experiments: Apply different Error Mitigation methods to

quantum circuits and compare the normalized number of shots,
2-qubit basis gate count, and Hellinger fidelity.

• How much disk space required (approximately)?: 2GB
• How much time is needed to prepare workflow (approxi-

mately)?: 1 hour
• How much time is needed to complete experiments (approx-

imately)?: 12+ hours
• Publicly available?: Yes
• Code licenses (if publicly available)?: Apache-2.0 License
• Archived (provide DOI)?: 10.5281/zenodo.11075556

C. Description

1) How to access: The source code for QuTracer and the
scripts to run the benchmarks are available in github: https:
//github.com/peiyi1/QuTracer project

2) Hardware dependencies: The access to IBM quantum
machines is needed to reproduce the results in Table II and III.

3) Software dependencies: Python 3.10 is used in our
experiments.

4) Data sets: Benchmarks are listed in Section VI

D. Installation

1) Create conda environment: Download Anaconda at
https://www.anaconda.com/ and install it.

Create an environment named qutracer:
$ conda create -y -n qutracer python=3.10

Activate the environment:
$ conda activate qutracer

2) Install Qiskit and other necessary packages: The version
of Qiskit used in our experiment is 0.45.1.

$ pip install qiskit==0.45.1
$ pip install qiskit-ibm-provider==0.7.3
$ pip install qiskit-aer==0.13.2
$ pip install retworkx==0.13.2
$ pip install networkx==3.2.1
$ pip install matplotlib

$ pip install pylatexenc
$ pip install pyyaml

3) QuTracer package installation: Clone the repository of
QuTracer:

$ git clone https://github.com/peiyi1/QuTracer project.git

Go to the path /QuTracer project/QuTracer and install
QuTracer:

$ cd QuTracer project/QuTracer
$ pip install .

E. Experiment workflow

1) experiments on Qiskit AerSimulator: In the path
/QuTracer project/test on simulator, there are three directo-
ries: script, yaml file, and saved data. The directory script
contains all the scripts that can generate circuits, execute
circuits, and process the results for the circuits in different
error mitigation methods. The directory yaml file contains
all the configuration files for different benchmarks, users can
modify the configuration file to set up different configurations
for running the benchmark. The directory saved data contains
all the saved circuits and results in JSON files. To reproduce
the results in the directory saved data, run the following
command.

Go to the path /QuTracer project/test on simulator:
$ cd QuTracer project/test on simulator/

Generate all the circuits needed in different error mitigation
methods:

$ ./generate circuits.sh

Execute all the circuits generated in the previous step:
$ ./execute circuits.sh

Run the following command to process the results
from all the circuits and calculate the Hellinger fi-
delity for different error mitigation methods. All the re-
sults are saved in the directory saved data. For example,
the results for 10-qubit QAOA with 1 layer are saved
in the path /QuTracer project/test on simulator/saved data/
qaoa reps1 n10/results

$ ./results postprocessing.sh

2) experiments on IBM quantum machine: In the path
/QuTracer project/test on real machine, there are three direc-
tories: script, yaml file, and saved data. For all the YAML
files in the directory yaml file, the configuration option ’en-
able running on real machine’ is set to ’True’ to run all
the circuits on real IBM quantum machines. To reproduce
the results in the directory saved data, run the following
command.

Go to the path /QuTracer project/test on real machine:
$ cd QuTracer project/test on real machine/
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Generate all the circuits needed in different error mitigation
methods:

$ ./generate circuits.sh

Execute all the circuits generated in the previous step:
$ ./execute circuits.sh

After running the above command, all the circuits have been
sent to the job queue of IBM quantum machines, the job
status can be checked on the IBM Quantum Platform website:
https://quantum.ibm.com/jobs. Wait until all the job statuses
become completed, then run the following command to load
and save all the job results:

$ ./save results real machine.sh

Process the results from all the circuits and calculate the
Hellinger fidelity for different error mitigation methods:

$ ./results postprocessing.sh

F. Evaluation and expected results

After going through all the steps in the Experiment Work-
flow section, go back to the path /QuTracer project and run
following commands to generate CSV files, which correspond
to the results in Table I, II and III.

Generate the file simulation results for qaoa.csv, which
contains results in Table I:

$ python generate table simulation results for qaoa.py

Generate the file real machine results for single layer
circuits.csv, which contains results in Table II:
$ python generate table real machine results for single
layer circuits.py

Generate the file real machine results for circuits with
multiple layers.csv, which contains results in Table III:
$ python generate table real machine results for
circuits with multiple layers.py

G. Experiment customization

The configuration in the YAML files can be modified to run
benchmarks with different configurations.

H. Notes

The Experiment Workflow subsection E2 requires access
to IBM quantum machines, and the waiting time for running
circuits on IBM quantum machines may vary based on the
size of the waiting queue.

I. Methodology

Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-

review-and-badging-current
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html
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