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ABSTRACT

Alzheimer’s disease (AD) is a progressive and irreversible
brain disorder that unfolds over the course of 30 years. There-
fore, it is critical to capture the disease progression in an early
stage such that intervention can be applied before the on-
set of symptoms. Machine learning (ML) models have been
shown effective in predicting the onset of AD. Yet for sub-
jects with follow-up visits, existing techniques for AD clas-
sification only aim for accurate group assignment, where the
monotonically increasing risk across follow-up visits is usu-
ally ignored. Resulted fluctuating risk scores across visits
violate the irreversibility of AD, hampering the trustworthi-
ness of models and also providing little value to understand-
ing the disease progression. To address this issue, we propose
a novel regularization approach to predict AD longitudinally.
Our technique aims to maintain the expected monotonicity
of increasing disease risk during progression while preserv-
ing expressiveness. Specifically, we introduce a monotonicity
constraint that encourages the model to predict disease risk
in a consistent and ordered manner across follow-up visits.
We evaluate our method using the longitudinal structural MRI
and amyloid-PET imaging data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI). Our model outperforms ex-
isting techniques in capturing the progressiveness of disease
risk, and at the same time preserves prediction accuracy.
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1. INTRODUCTION

Alzheimer’s disease (AD) is a complex irreversible neurode-
generative disease that affects cognitive functions, including
memory, thinking, and behaviors. It is the most common form
of dementia, accounting for more than half of the cases. AD
symptoms evolve progressively with age and may take up to
30 years to unfold [1]. Efforts are increasing for early di-
agnosis of AD to enable timely intervention before symptom
onset, aiming to stop or slow down disease progression.
Current staging of AD includes healthy control (HC),
early mild cognitive impairment (EMCI), late MCI (LMCI),
and AD. Due to the extremely long spectrum of AD, the
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available longitudinal imaging data offers only a snapshot of
each patient at one or a few visits.

Existing classification studies have achieved great success
in differentiating HC from AD, yet a significant gap of pro-
gression between the two stages remains to be learned [2H5]].
There has been a recent shift of effort to differentiate HC from
EMCI or differentiate stable MCIs and MCI converters, with
very limited success so far though [6]. While existing work
mainly focuses on group progression [J5, [7, [8], trajectories
formed by connecting predictions of same subject will likely
show capricious trends over time (fig. [T| Left), since visits of
the same subjects are taken as independent inputs. This con-
tradicts the irreversible progression of AD and thereby harms
the trustworthiness of models in real-world applications.

Prior knowledge has been demonstrated very effective in
regularizing the models for desired behaviors [9H12]. There-
fore, with the aim of enhancing the trustworthiness of models
in predicting AD stages, we leverage the irreversibility of AD
as prior and propose a new regularization approach to help
model individual progressiveness across follow-up visits. The
proposed framework is evaluated using the longitudinal imag-
ing data from the Alzheimer’s disease Neuroimaging Initia-
tive (ANDI) datasets including structural magnetic resonance
imaging (MRI) and positron emission tomography (PET) for
amyloid deposition. Our experiments demonstrated that when
this prior knowledge is imposed, the trade-off to the expres-
siveness of the model is negligible, but the gain in the de-
sired behaviors (i.e., generating expected individual progres-
sion trajectory like (fig. [I|Right)) is invaluable.

2. METHODS
2.1. Datasets

We downloaded longitudinal structural MRI, amyloid PET
and other clinical data from the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) database (https://adni.loni.usc.edu/).

The ADNI is a longitudinal study launched in 2003 to track
the progression of AD by using clinical and cognitive tests,
MRI, FDG-PET, amyloid PET, CSF, and blood biomark-
ers. More details can be found in previous reports[13} [14].
The study population was composed of participants from the
ADNI-1, ADNI-2, and ADNI-GOJ[15]]. Subjects with re-
versed diagnoses in follow-up visits, such as conversion from
AD back to EMCI, were excluded from this study. In total, we
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Fig. 1. Illustration of fluctuating and expected individual pro-
gression trajectories across follow-up visits. Each connected
line indicates one subject with multiple visits. Left: fluctuat-
ing trajectories commonly seen in raw data and from existing
classification models which rely on baseline data only. Right:
Expected individual trajectory with predicted risk monotoni-
cally increasing across follow-up visits.

have 7702 data points from 1793 subjects for structural MRI,
and 2377 data points from 1054 subjects for amyloid PET.
For both modalities, summary measures from brain regions
of interest (ROI) were directly obtained from the ADNI. For
structural MRI, volumes of 16 subcortical ROIs and thick-
ness of 68 cortical ROIs were included. For amyloid PET,
standardized uptake value ratio (SUVR) of 68 cortical ROISs,
indicating the level of amyloid deposition, were included and
further normalized using COMPOSITE_REF_SUVR (a sum-
mary measure provided by ADNI) as reference. Subcortical
regions were excluded for amyloid analysis since their amy-
loid burden is found non-specific and not related to AD risk
[L6]. Using the weight derived from baseline HC subjects,
all imaging measures were pre-adjusted to remove the poten-
tial bias introduced by age, gender and years of education.
Intracranial volume (ICV) was used as an additional covari-
ate for volume and thickness measures. table [l shows the
detailed demographic information, where age is taken from
baseline (BL) (i.e., first visit).

Table 1. Demographic information of all participants.

MRI HC EMCI LMCI AD
Time points 2284 1427 2230 1761
Subject number 466 361 590 361
Gender(M/F) 222/244 205/156 367/223 204/157
Age(mean=sd) 73.95+£594  71.56+7.32 74.07£7.6 75.14+£7.76
Educ(mean=sd) 16.48+2.59 16.01+2.61 15.961+2.84 15.3+2.89
Amyloid-PET HC EMCI LMCI AD
Time points 791 738 424 424
Subject number 200 316 176 152
Gender(M/F) 86/114 1807136 100/76 91/61
Age(mean=-sd) 73.04+£6.26  71.73+7.16  72.49+7.52  74.78+8.21
Educ(mean=sd) 16.58+2.47 16.08+2.64 16.57+2.5 15.67+2.63

All imaging features were standardized to zero mean and
unit standard deviation for subsequent analysis. Each data
point is associated with a label of group HC/EMCI/LMCI/AD.
Due to limited AD data and the difficulties in distinguishing
MCI stages, the classification tasks of AD stages usually fo-
cus on binary subtasks [[17-H20]]. We consider the binary prob-

lems including the three consecutive stages: (1) HC/EMCI;
(2) EMCI/LMCI; (3) LMCI/AD, and (4) HC/AD, which
classifies samples of completely healthy and dementia.

2.2. Model Formulation

We consider the dataset D = {(X;,Y;)}M, of M sub-
jects, where Y; denotes the stages HC/EMCI/LMCI/AD.
Each subject contains a series of longitudinal data X; =
[i1, -, xi x|’ where Ty € R? is a single data point
consisting of d features. Therefore the entire dataset can also
be written as D = X x Y € R Ki)xd 5 RN,

A classifier for such data is denoted as fy : R¢ — R, pa-
rameterized by . The ERM classifier is obtained by 6* =
argming Les(6), where L is the classification loss. For
the tabular data of MRI and amyloid-PET, various models
are applicable for the prediction of different stages, includ-
ing non-deep models [21] such as linear logistic regressions
(LR) and the variants Lasso, Ridge, elastic net, linear dis-
criminant analysis (LDA), random forests, XGBoost [22], etc.
Recent studies show that deep neural networks such as mul-
tilayer perceptron (MLP) [23] can also be as powerful as, or
even outperform non-deep models on tabular tasks [24]. In
fact, deep models have been extensively used in both super-
vised and unsupervised tasks for AD [18| 25H27]]. When f is
a deep model, it can be decomposed as f(z) = wT g(x) + b,
where g : R? — RP is the feature extraction from the input
data to the penultimate output before the last linear classifica-
tion layer. And w € RP b € R represent the weights and the
bias terms of the last linear layer.

2.3. Irreversible Subject Trajectories

The progression of the disease is known as irreversible and
should always follow the continuum of AD for all subjects.
Therefore, given subject ¢ with data X; = [x; 1, -, zi k|’
Y; = [yi1, - »Yix,)", the predictions of all samples are ex-
pected to follow the trajectory. That is, f(x; ;) < f(@; j+1)
for all V5,1 < j < K; — 1. Note that the binary labels are
indeed monotonic, y; ; < ¥; j+1. Nonetheless, since the la-
bels are discrete, achieving high accuracy does not actually
contradict the frequent breaks of the monotonicity. Even if
with 100% accuracy such that 174, ;)~0 = y:,; holds for all
V7,1 < j < Kj;, the trajectory can still be nowhere monoton-
ically increasing except for when the subjects deteriorate into
the next stage. In fact, we carry out experiments in section 3]
that show the prediction trajectories can be very capricious
without regularization.

)

2.4. Regularization

Neighbor Regularization. In order to achieve the mono-
tonic prediction such that f(x;r) < f(xik+1), it suf-
fices to require f(x; k+1) — f(xix) > 0. However, the
term is unbounded and cannot be maximized. Notice that
through the last linear classification layer, it is equivalent to
w? (g(x;,541) — g(x;,)). We thus consider the cosine sim-
ilarity for bounded loss term, which results in the following
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Complete Regularization. Although L,,; implicitly requires
overall monotonicity, the penalty for one extreme violation is
overlooked. Even if f(x; k,) < f(x;x) for Vk < K, the
penalty only exists in the last term and is at most 1. This
leads to very unstable embedding mapping g. In order to
resolve this, a stronger regularization takes all sample pairs
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is bounded in [— |. Besides, we expect the
more temporally distant the two samples are, the more strictly
they should obey such monotonicity. Therefore each pair is
weighted by the time span associated, denoted by 7; (ko) —
7i(k1), where 7;(k) € Ry denotes the age of the i-th sub-
ject associated with sample x; ;. Therefore, the regulariza-
tion term for all subjects can be written as ming L., where
L4 is the expected regularizer over the entire dataset
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In practice, we randomly sample a small batch of subjects
for MRI data as the size of the dataset is much larger. For
amyloid-PET data, we regularize the entire dataset in each it-
eration. The loss function is then written as L(6) = L(0) +
YLyeg(6), where v = 2 x 10~% is the balance coefficient.
Evaluation of Monotonicity. For the purpose of evaluating
the monotonicity of model f w.r.t. the dataset X', we count
the # of violation pairs for each subject and use the expected
ratio of the # of violations to the # of all pairs. That is,

T(f,X) :EXNX[% Z
( 2 ) k1 <k2<|X|
The ratio r € [0, 1] is expected to be the smaller the better,
and it reaches = 0 if and only if the f is nowhere decreasing
over all subjects of X.

3. EXPERIMENTS

Lif(xe)<f(xe]| B

In this section, we carry out experiments to show the ef-
fectiveness of the proposed regularization. First, for each
dataset, 20% of the data are held out randomly as the test-
ing set, and 5-fold cross-validation experiments over the
remained data are carried out. The datasets are split based
on subjects X;, which means different samples of the same
subject do not appear in different subsets or even different
folds. The baseline models being compared include linear
regression (LR), Lasso, Ridge, elastic net (ENet), linear dis-
criminative analysis (LDA), Random Forest (RF), XGBoost,
and multilayer perceptron (MLP). Our proposed model is
termed regularized MLP (RMLP). It shares the exact same
structure as the MLP model tested. There are 6 hidden layers
with [64, 64, 64, 32, 32, 32] neurons, respectively.
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Fig. 2. Ilustration of the violation ratio — accuracy of

comparing methods on the Amyloid-PET (left) and the MRI
(Right) datasets. The top left corner (higher accuracy, lower
violation ratio) indicates better results.

3.1. Expressiveness vs Violation Ratio

We first compare the expressiveness and the violation ratio
of each model. The detailed accuracy and the violation ra-
tio of both amyloid-PET and MRI data for all tested models
are reported as tables in the appendix. Instead, here we vi-
sualize the results as accuracy—violation ratio in fig.|2) where
different colors illustrate the four tasks, different shapes of
markers represent different models, and the crossings repre-
sent the proposed RMLP. It is expected that the models should
achieve both high accuracy and a low violation ratio. As a re-
sult, on the figure, they should be located the more closely to
the top left corner, the better. For accuracy, the results show
that due to the complexity of the tabular data, no model shows
salient advantages over others and vice versa. However, when
it comes to the violation ratio, RMLP outperforms others sig-
nificantly. As demonstrated by their locations, overall the
regularization achieves better monotonicity, while preserving
comparable expressiveness.

3.2. Total Normalized Violation Gap

Note that the violation ratio is computed by counting the num-
ber of violation pairs, and dividing by the total number of
pairs. This measurement might overlook local details — how
bad are the violations? When f(x; y+1) < f(x; k), the larger
the gap is, the more detrimental it is to the trustworthiness of
the model. Therefore, we compute the normalized violation
gap for neighboring pairs
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Fig. 3. Illustration of the relation among neighbor/complete violation ratio/gap. They are represented by 7,5, cp, Wnp,cp, Te-

spectively.

Results show that the linear relation between the violation gap and the violation ratio is of great significance

(p =9.995e-14, 2.609e-15). And the measurements based on the neighbor pairs are linearly consistent with complete pairs.
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Fig. 4. The progression trajectory of individual subjects
learned from MLP (left) and RMLP (right) using Amyloid-
PET (top) and MRI (bottom) test data. Red connected dots
represent subjects with multiple follow-up visits. The black
dashed horizontal line represents the decision boundary.

and also that for complete pairs w,,. This is the sum of the
violation gap between consecutive/all pairs of follow-up vis-
its for all subjects, normalized by the maximum individual
gap. The normalization is performed due to varying scales
of predictions from different models. Besides, it should be
noticed that it is the neighbor pairs that really determine the
monotonicity. Therefore, we report the relation among neigh-
bor/complete violation ratio 7,3, ¢, and neighbor/complete
gap Wpp, wep Of Amyloid-PET data in fig. E], following the
same legend as before. It can be found that they show a strong
linear correlation with p-value smaller than 10~7. This sug-
gests that the discrete violation ratio is locally consistent with
the violation gap and vice versa. The results of MRI data can
be found in the appendix.

3.3. Visualizations of Trajectories

In fig.[d we qualitatively compare the trajectories of test sub-
jects for the task HC vs EMCI embedded by MLP (left) and
RMLP(right), since they share the same structure and thereby
illustrate the effectiveness of the regularization more clearly.
Here we demonstrate the results from both amyloid-PET (top)
and MRI (bottom) data. It can be found that although with
similar performance on the accuracy, predicted risk by unreg-
ularized MLP is much more volatile across follow-up visits
compared with RMLP. In particular, for subjects with mul-
tiple visits with the same diagnosis like HC or EMCI, the
monotonicity of increasing risk is also preserved, suggesting
the great potential of the proposed technique in modeling the
subtle progression in the very early stage. The trajectories of
other tasks follow the same trend, where the violation ratio is
reduced similarly as shown in figs.[2]and 3]

4. CONCLUSIONS

In this paper, we proposed a new regularization approach to
help bridge a knowledge gap in the current research of AD.
Specifically, when longitudinal data are taken as input inde-
pendently, trained models tend to make predictions that vi-
olate the irreversibility of the AD progression across multi-
ple visits of each subject. This undesired behavior under-
mines the trustworthiness of models in clinical applications
even with high accuracy, and also limit further understand-
ing of disease progression. To address this issue, we pro-
posed a regularization approach that enforces the subject tra-
jectories to align with the expected continuity in the incre-
ment of AD risk. We demonstrate the effectiveness of our ap-
proach through experiments on pre-analyzed Amyloid-PET
and structural MRI tabular data, showing that our regulariza-
tion improves the monotonicity of subject trajectories without
sacrificing accuracy. This alignment with domain knowledge
improves the consistency of the model’s mechanism. Impor-
tantly our regularization approach is not specific to MLPs or
to AD and can be applied to any task involving longitudinal
data with prior knowledge of expected trends.
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