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ABSTRACT

Pathological image analysis is an important process for de-

tecting abnormalities such as cancer from cell images. How-

ever, since the image size is generally very large, the cost

of providing detailed annotations is high, which makes it

difficult to apply machine learning techniques. One way to

improve the performance of identifying abnormalities while

keeping the annotation cost low is to use only labels for

each slide, or to use information from another dataset that

has already been labeled. However, such weak supervisory

information often does not provide sufficient performance.

In this paper, we proposed a new task setting to improve

the classification performance of the target dataset without

increasing annotation costs. And to solve this problem, we

propose a pipeline that uses multiple instance learning (MIL)

and domain adaptation (DA) methods. Furthermore, in order

to combine the supervisory information of both methods ef-

fectively, we propose a method to create pseudo-labels with

high confidence. We conducted experiments on the patholog-

ical image dataset we created for this study and showed that

the proposed method significantly improves the classification

performance compared to existing methods.

Index Terms— Pathology, Multiple Instance Learning,

Domain Adaptation

1. INTRODUCTION

In pathological diagnoses, doctors observe tissue slide images

with a microscope and identify the presence of diseases such

as cancer. Many studies have attempted to apply image recog-

nition technology to reduce the burden on doctors through

automatic diagnosis [1, 2]. Because the diagnosis requires

detailed cell-level observation, the size of whole slide images

(WSIs) can be as large as 105×105 pixels. Owing to memory

Fig. 1. (a) Our problem setting. We estimate the patch labels

of the target dataset only with slide-level labels. We utilize

information from another dataset that already has patch-level

labels. (b) The generalized setting. A WSI can be represented

as a bag, which is a set of instances. Our goal is to predict

target instance labels by leveraging source information.

limitations, the WSI is often divided into small patch images

to input classification models. Patch-level annotation takes

a very high cost because it requires the expertise of doctors

and a significant amount of time to annotate large WSIs. On

the other hand, a label per slide, which indicates whether an

abnormality exists in the WSI, requires little additional anno-

tation cost. It is beneficial to improve the patch-level classifi-

cation performance of the WSIs only with slide-level labels.

Multiple instance learning (MIL) is a type of weakly su-

pervised learning with a single label for a bag of instances

[3, 4, 5]. MIL methods have been applied to pathological im-
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age analysis, regarding the patch image as the “instance” and

the whole slide as the “bag” [6, 7]. Although this is very ef-

fective in reducing the annotation cost, the performance of the

model trained only with slide labels was much lower than that

with patch-level labels. On the other hand, using information

from other datasets can also improve the classification perfor-

mance without additional annotation costs. Domain adapta-

tion (DA) is a method that utilizes a different domain to im-

prove the performance of target data [8, 9, 10]. In patholog-

ical analysis, we can use existing public datasets with pixel-

level labels such as the Camelyon dataset [1]. However, in

most cases, we cannot use them directly because of the dif-

ferences in body parts, appearance, and preprocesses such as

tissue staining. Some studies have attempted to overcome the

differences and transfer information between different pathol-

ogy datasets [11, 12], but the performance is degraded when

the difference between the domains is significant.

In this paper, we proposed a new problem setting to im-

prove the patch-level classification performance of the tar-

get dataset only with slide labels, while utilizing information

from the labeled source dataset from another domain (Fig. 1).

However, since the supervised information from the source

and target dataset is qualitatively different, there is no guaran-

tee that simply combining the two will improve performance.

Therefore, we propose a new training pipeline using pseudo-

labels with high reliability by combining information from

both the source and target. Our method can improve perfor-

mance in situations where MIL alone and DA alone cannot

provide accurate classification. We performed experiments

on a new pathological dataset we created for this study, and

the results confirmed that our method improves the instance

classification performance compared to existing methods.

2. METHOD

Problem settings: In this study, we can access the labels of

all instances from the source dataset, while we can only re-

fer to bag labels and cannot access any instance labels of the

target dataset. The purpose of this study is to estimate the

instance labels of the target domain with high accuracy (Fig.

1 (b)). In the standard MIL setting, we consider bag X =
{x1, ...,xK} as a set of instances x ∈ R

D. K is the number

of instances in the bag, and it varies for each bag. Each in-

stance has a binary label yk ∈ {1, 0}, but this label cannot be

referred to during training. The bag label Y = 1 if the bag

contains at least one positive instance, and Y = 0 if instances

are all negative. We can say that the source is a fully super-

vised setting, whereas the target is a standard MIL setting. We

define the source domain Ds = {(Xs
i , Y

s
i )}

nsb

i=1
as a set of nsb

bags, where the i-th bag Xs
i = {(xs

ij , y
s
ij)}

nsi

j=1
consists of nsi

labeled instances, and the target domainDt = {(Xt
i , Y

t
i )}

ntb

i=1

as a set of ntb bags, where the i-th bag Xt
i = {xt

ij}
nti

j=1
con-

sists of nti unlabeled instances.

Overview of our method: Our pipeline consists of three

components: encoder G, bag classifier FB , and instance clas-

sifier FI . Each instance in the bag of the target and source xij

is input toG to obtain the feature vectorshij . The feature vec-

tors in the bag are collectively input to the bag classifier FB to

obtain the binary prediction score of the bag label p(Y |Xi).
By contrast, a feature vector from each instance is input to

the instance classifier FI to obtain the binary prediction score

of the instance label p(y|xij). Because the target does not

have an instance label, the source instances with the instance

labels and the target instance with the pseudo labels are used

for training FI . At the time of inference, we input the target

instance features into FI to obtain the prediction scores of the

target instances p(y|xt
ij).

hij = G(xij) (1)

p(Y |Xi) = FB(hij|j=1...ni
) (2)

p(y|xij) = FI(hij) (3)

AttentionDeepMIL [5] is used as FB . In this method,

the bag feature is a weighted sum of instance features, and

its weight aij is learnable. As mentioned in [5], the atten-

tion weight implies the positive score of each instance, so we

used sigmoid instead of softmax to calculate aij so that we

can directly obtain the positive score of an instance: aij =
sigmoid(wT tanh(Vh

T
ij)). w and V are hyperparameters.

To improve the prediction performance of the target in-

stances by FI , we add a domain adaptation loss that performs

distribution matching of the intermediate features hij . We use

MCD [9] as the DA loss. MCD performs feature distribution

matching while considering category information by training

the features to be away from the class boundary. To introduce

MCD loss into our method, we use two instance classifiers

FI1 and FI2. We train G, FI1 and FI2 to minimize the in-

stance classification loss LI(x, y). At the same time, we train

G to minimize the discrepancy loss Ladv(x
t) and two classi-

fiers to maximize Ladv(x
t) alternately. The discrepancy loss

is defined as Ladv(x
t) = 1

C

∑C

i=1
|p1i−p2i|, where p1(y|x

t)
and p2(y|x

t) are the output of the two classifiers.

Pseudo labeling: Even if the feature distributions match,

there will still be many misclassified instances if the deci-

sion boundaries of the source and target do not match. To

tackle this problem, we directly optimize our model for target

instance prediction by assigning pseudo-labels to the target

instances and using them for the training of FI . Because

we know that all instances in the negative bag are negative,

we mainly consider the instances from the positive bags. To

obtain reliable pseudo-labels, we use two classifiers FB and

FI . Because these two classifiers are trained using different

supervisory information, they have different properties. we

can obtain pseudo-labels with higher reliability by integrating

the information from both of them.

We define the prediction score of the instance classifier

pI(y|x) as the average of the predictions of FI1 and FI2. We

can also obtain the instance prediction score of the bag clas-

sifier pB(y|x) using the attention weight aij of FB . Because



Fig. 2. The training pipeline. Step 1 is training with FB and

FI separately. After converging Step 1, we alternately per-

form Steps 2 and 3. Step 2 involves training with DA loss and

pseudo-labeled target instances. In Step 3, we assign pseudo-

labels to target instances based on pM (y|x).

the two classifiers are trained in different ways, the accuracy

of the predictions of both models can vary. For example, if

the prediction performance of FB is significantly poor, then

the prediction of FI should be mainly used. Therefore, we

consider the confidence score of each model when assigning

pseudo-labels. cB and cI represent the confidence scores of

FB and FI , respectively. Because the target instances have

no labels and we cannot directly examine the prediction ac-

curacy, we instead use the PR-AUC score of the prediction

performance of the source instances by each model as the

confidence score. Then, we define the mix prediction score

pM (y|x) as:

pM (y|xt) = cB ∗ pB(y|x
t) + cI ∗ pI(y|x

t) (4)

We first select positive candidates that satisfy pM (y =
0|xt) ≤ pM (y = 1|xt) and 0.5 ≤ pM (y = 1|xt), and neg-

ative candidates that satisfy pM (y = 1|xt) ≤ pM (y = 0|xt)
and 0.5 ≤ pM (y = 0|xt). Then, from each of the positive and

negative candidates, we select a fixed number of instances that

Table 1. The classification performance of each method on

pathological dataset
Accuracy PR-AUC

Attention MIL 72.4±5.62 66.0±1.24

Source only 82.5±1.20 66.9±1.00

MCDDA 76.0±3.09 51.8±2.78

PLDA 78.6±1.66 76.5±3.97

Ours (Step 1) 82.7±2.84 71.1±2.62

Ours 86.0±4.11 83.4±3.48

Ideal case 91.1±0.79 87.1±2.05

have high confidence scores and assign pseudo-labels to them.

We give pseudo-labels only to a small number of reliable in-

stances at the beginning of the training when the prediction

is ambiguous, and gradually increase the number as the train-

ing progresses. The definition of the number of pseudo-labels

appears in the supplementary materials.

Training process: Figure 2 shows the entire pipeline of our

method. Our method consists of three steps. In Step 1, we

perform supervised learning of FB using the target bag la-

bels and FI using the source instance labels. In this case, we

use only one instance classifier FIP . By performing Step 1,

the training becomes more stable, and reliable pseudo-labels

can be obtained from the beginning of Step 3. After Step 1

converges, we initialize two instance classifiers FI1 and FI2

and perform Steps 2 and 3 alternately. In Step 2, we train the

model using the feature matching loss of DA. FB is trained

using both the source and target data. In addition, FI1 and

FI2 are trained with {xm, ym}, which includes the source in-

stances, the target instances with pseudo-labels from positive

bags, and the sampled target instances from negative bags.

We optimize the following three losses individually:

min
G,FI1,FI2,FB

λLI (x
m, ym) + (1− λ)(LB(Xt, Y t) + LB(Xs, Y s))

(5)

min
FI1,FI2

λ(LI (x
m, ym) − Ladv(x

t)) (6)

min
G

λLadv(x
t) (7)

where λ is a weight parameter. In Step 3, we fix the model

parameters and give pseudo-labels to the target instances from

positive bags. At the same time, we input the source instances

in the validation set to calculate cB and cI in (4).

3. EXPERIMENT

In this section, we present the experimental results to confirm

the effectiveness of our method. As a preliminary experiment,

we performed detailed evaluations and ablation studies using

benchmark datasets. The details are provided in the supple-

mentary materials. In the following, we describe the results

of the experiments using our pathological dataset.

Dataset: We constructed a new original dataset of patho-

logical images to demonstrate the effectiveness of the pro-

posed method. We collected whole slide images (WSI) from



Fig. 3. Prediction heatmaps of positive prediction scores for

target stomach dataset. In the ground-truth map, red indicates

positive (anomaly), blue indicates negative (normal), and gray

indicates areas without annotation.

two body parts, “Stomach” and “Colon,” which include 997

and 1368 WSIs, respectively. Many previous studies have

set WSIs of two different datasets from a single organ as the

source and the target, respectively [11, 12]. However, the do-

main gap between two organs is considerably larger than that

in a single organ, making our settings more challenging and

suitable for demonstrating the effectiveness of our method.

The size of the WSIs is approximately 104 × 104 pixels,

and the maximum resolution is ×20. Figure 1 (a) shows an

example of the stomach WSI (right) and the colon WSI (left).

The pixel-level normal/abnormal annotation was provided by

expert pathologists. We separated WSI into patches of size

256× 256 without overlaps and assign a binary label to each

patch based on pixel-level annotation. The cropping, labeling,

and image pre-processing methods followed the approach in

[13]. We use Colon as the source and Stomach as the target.

Next, we created bags from each slide. Because one slide

contains, at most, several hundred patches, we sampled 30

patches to make one bag. For the target positive slide, there’s

no guarantee a bag includes positive instance because we

don’t have patch labels. To increase the probability that the

bag contains a positive instance, we performed clustering.

First, we obtained the features of target patches using a clas-

sifier trained with source instances. Then, we separated the

features into 10 clusters using K-means, and selected three

samples with high positive scores from each cluster to obtain

a bag of size 30. As a result, the probability that at least

one positive instance is included in a bag created from the

positive slide (confidence level of positive bag labels) was

95.0%, which is sufficiently reliable. For the negative slide,

because all the patches were negative, we made as many bags

as possible by randomly selecting patches. We randomly

separated our dataset into 70% training slides and 30% test

slides. Finally, we obtained 1000 training bags and 200 test

bags from the source and target dataset, respectively.

Comparison methods: Since our problem setting is com-

pletely new, it cannot be compared to SOTA methods directly.

To verify the effectiveness of MIL, DA, and pseudo-label

modules, we evaluate the following comparison methods.

• Attention MIL: Train AttentionDeepMIL [5] only with

the target data. We used the values of the attention weights

as the instance prediction scores.

• Source only: Train G and FI with only source instances.

• MCDDA: Train unsupervised DA pipeline of MCD [9]

without the bag labels of target data.

• PLDA: Train unsupervised DA with pseudo-labels. We

assign pseudo-labels to the target instances by the model

trained with the source and use them for the training.

• Ours (Step 1): Train only Step 1 of the proposed method.

We evaluate the classification performance of FIP .

• Ideal case: Train G and FI using target instance labels

that are not actually available. This is considered as the

upper bound of the classification performance.

Experimental Settings: We used accuracy and the AUC of

the precision-recall curve (PR-AUC) for instance-level pre-

diction as the evaluation metrics. All experiments were con-

ducted three times with random initial model weights, and

the mean and standard deviation were calculated. We used

ResNet50 [14] pretrained with ImageNet [15] as G, and two

fully connected layers as FI . The dimension of the output of

G was 500. We trained 50 epochs for pretraining and source

only, and 100 epochs for others. We set λ = 0.5.

Results: Table 1 shows the results of each method. Our pro-

posed method outperforms other methods and achieves com-

parable scores with “Ideal case.” Figure 3 shows heatmaps

of the estimated patch labels in the WSIs in the target test set

by each trained model. The heatmaps of “Source only” and

“Attention MIL” show little difference between the scores of

the normal and abnormal areas, which implies that the pre-

dictions appear relatively vague. The heatmaps of “MCDDA”

and “PLDA” appear to be relatively reasonable, but there are

some regions of high abnormality scores in the normal region.

This result is unfavorable for practical purposes because doc-

tors need to examine the slide even if there is a small abnor-

mality area. And “MCDDA” and “PLDA” do not detect the

abnormal region well in the bottom example. Our proposed

method made qualitatively valid prediction maps with a clear

difference between the prediction scores of the normal and

abnormal regions. Our method proved to be effective even in

real-world applications such as pathological images.

4. CONCLUSION

In this study, we proposed a new problem setting to improve

the classification performance of pathological images with

low annotation cost, using only slide-level labels and informa-

tion of another dataset from a different domain. In addition,

we proposed a new pipeline to achieve the accurate classi-

fication of target instances by assigning pseudo-labels using

two different supervisory information. Our method was eval-

uated on the pathological image dataset constructed in this

study. The results demonstrate that our proposed method can

achieve higher performance than comparative methods.
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1. METHOD

1.1. Number of pseudo-labels

We give pseudo-labels only to a small number of reliable in-

stances at the beginning of the training when the prediction is

ambiguous, and gradually increase the number as the training

progresses. τ is a variable for the upper limit of the number

of pseudo-labels:

τ = min

(

Nmin +m ∗
Nmax −Nmin

M
,Nmax

)

(1)

where m denotes the training epoch, and τ increases depend-

ing on m. We assign labels to Ap ∗ τ positive instances and

An ∗ τ negative instances. M , Nmin, Nmax, Ap and An

are the hyperparameters. For the target negative bags, all in-

stances are guaranteed to be negative. To maintain a balance

between the number of labeled instances from the positive and

negative bags, instances were randomly sampled from nega-

tive bags to equal the number of labeled instances from the

positive bags.

We set M = 20, Ap = An = 1, Nmin =
ntpi

10
, and

Nmax =
ntpi

4
, where ntpi is the sum of the instances in all

target positive bags in the experiment with the pathological

dataset.

2. EXPERIMENTS ON DIGIT DATASETS

2.1. Details

In this supplementary material, we present the results of pre-

liminary experiments to confirm the effectiveness of our

method. We performed detailed evaluations using digit

datasets (MNIST [1] and SNHN [2]) and VisDA dataset

[3], a benchmark datasets for image analysis and domain

adaptation.

First, we describe the experiments using the digit datasets.

We created a bag by collecting images from MNIST [1] and

SVHN [2], as in [4]. We define “9” as a positive class and

the others as a negative class. The bag label is positive when

at least one “9” is in it, and otherwise negative. The bag size

follows a normal distribution with a mean of 10 and a variance

of 2, and the number of positive instances in a positive bag

follows a normal distribution with a mean of 1 and a variance

of 1. In both datasets, we made 2000 training bags and 500

test bags, including an equal number of positive and negative

bags by random sampling.

We used an encoder with three convolution layers, fol-

lowed by a fully connected layer as G. FI consists of two

fully connected layers. The size of the output of the encoder

was 500. We use Adam [5] as the optimizer, and the learn-

ing rate was 1e-4. We trained 50 epochs for pre-training and

source only, and 100 epochs for others. We set λ = 0.5,

Ap = 1, An = 3, Nmin =
ntpi

30
, and Nmax =

ntpi

10
, where

ntpi is the sum of the instances in all target positive bags.

Other settings and model structures were the same as the ex-

periment on the pathological dataset.

2.2. Result

Table 2 lists the prediction scores for each method. In the

setting where MNIST is set as the target, our method shows

high performance, but the improvement is negligible because

“Attention MIL” and “PLDA” already yielded good predic-

tions. The reasons for the poor “MCDDA” performance may

be an imbalance in the number of positive and negative in-

stances and the lack of pretraining with ImageNet [6] of the

model. On the other hand, in the setting where SVHN is set as

the target, the proposed method performs considerably better

http://arxiv.org/abs/2304.03537v1


Table 1. The classification performance on VisDA dataset.

plane bcycl bus car horse knife mcycl person plant sktbrd train truck mean

Attention MIL 95.1 79.6 81.4 5.5 5.0 89.3 6.4 5.6 89.5 68.2 6.3 6.8 44.9

Source only 77.4 50.9 46.9 24.0 60.5 25.2 59.6 35.6 59.1 29.9 39.3 22.6 44.3

MCDDA 91.4 75.1 75.5 43.5 89.7 24.2 80.4 43.8 80.3 44.2 76.7 41.7 63.9

PLDA 96.9 86.0 79.5 52.2 94.1 89.0 86.2 64.2 89.9 70.4 84.4 56.4 79.1

Ours (Step 1) 92.2 75.0 78.3 40.1 87.5 28.3 83.4 47.5 85.0 50.1 75.5 40.5 65.3

Ours 98.3 88.1 84.7 59.5 95.5 93.7 88.4 73.6 94.2 80.1 89.8 60.6 83.9

Ideal case 99.0 91.4 88.7 67.5 96.2 96.6 90.3 83.4 95.6 93.0 93.2 71.3 88.9

Table 2. The classification performance on the digit dataset.

Source SVHN MNIST

Target MNIST SVHN

Attention MIL 99.5±0.39 24.1±1.13

Source only 37.4±1.09 14.6±1.46

MCDDA 11.5±1.54 9.5±1.20

PLDA 98.0±1.81 53.6±1.51

Ours (Step 1) 97.1±0.56 30.6±2.27

Ours 99.4±0.56 80.7±0.56

Ideal case 99.8±0.00 86.7±0.29

than the comparative methods, because SVHN is more diffi-

cult to classify than MNIST. Our method achieves PR-AUC

close to the “Ideal case,” owing to the complementary effect

of the target bag-level loss and source instance-level loss. We

found that our method achieved a high classification perfor-

mance without additional annotation of the target instances.

3. EXPERIMENTS ON VISDA 2017

3.1. Details

In this section, we validate our proposed method using VisDA

2017 [3]. VisDA 2017 is one of the largest cross-domain

datasets for object classification and consists of a training

dataset of synthetic images, a validation dataset of real images

collected from MSCOCO [7], and a test dataset of real images

collected from a different domain from the validation dataset.

Because the label of the test dataset is not available, we used

the training dataset as the source domain and the validation

dataset as the target domain. Because there are 12 categories,

we evaluated the performance when one category was set as

positive and the others as negative for every category.

In each setting, we created 500 training bags and 200 test

bags. The bag size follows a normal distribution with a mean

of 10 and a variance of 2. The number of positive instances in

a positive bag follows a normal distribution with a mean of 2

and a variance of 2. The learning rate is 1e-6 for methods in-

cluding feature distribution matching loss and 1e-5 for others.

We trained 50 epochs for pretraining and source only, and 100

epochs for others. Other settings and model structures were

the same as the experiment on the pathological dataset.

Table 3. The result of the ablation study on VisDA dataset.
bus car knife sktbrd

Ours (Step 1) 78.3 40.1 28.3 50.1

w/o pseudo-label 79.2 52.3 51.2 57.9

w/o feature matching 84.0 57.5 92.7 76.4

pseudo-label with FI 84.2 59.1 93.3 78.9

pseudo-label with FB 84.9 15.3 93.8 11.5

pseudo-label w/o conf. score 84.6 57.5 93.5 78.3

pseudo-label with PFAN 84.0 57.1 91.7 76.7

Ours 84.7 59.5 93.7 80.1

3.2. Results

Table 1 shows the performance of our proposed method and

the comparison methods when each category is set as posi-

tive. Our method performed better than the comparison meth-

ods in all settings. In particular, our method improves the

performance of categories such as “car” and “truck,” which

are easily mistaken for other vehicle categories and show ex-

tremely low performance with “Attention MIL.” Further, our

method shows comparable scores with the “Ideal case” when

“plane” and “horse” are set as positive. In addition, “Ours

(Step 1),” which simply combines DA and MIL, does not

achieve high performance, which demonstrates the effective-

ness of our method.

3.3. Feature distribution

Figure 1 presents the visualization result for the distribution

of intermediate features after training each method when

the “plant” is set as positive. In “Source only,” the decision

boundary of the target negative and positive are ambiguous,

and the distribution of the source and target are completely

separated. Although the separation of the target positive and

negative is slightly improved in “MCDDA” and “PLDA,” it

is not sufficient for accurate classification. Moreover, in “At-

tention MIL,” although the decision boundary of the target is

clearer, the target distribution is completely separated from

the source, and there is no guarantee that the target data can

be successfully classified by the decision boundary of FI . In

our proposed method, the decision boundary of the target is

clear, and the distributions of the source and target are well-



Fig. 1. Visualization of the feature of VisDA dataset when “plant” is positive. Red and blue indicate the source positive and

negative instances, respectively, and yellow and green indicate the target positive and negative instances, respectively. We can

observe that our proposed method achieves feature distribution matching and obtains a discriminative decision boundary.

Fig. 2. Comparison of the number of labeled target instances, actual accuracy of pseudo-labels, and PR-AUC score during

training on VisDA dataset.

matched. This means that FI can achieve good classification

performance, even in target instances.

3.4. Accuracy of pseudo-labels

Figure 2 shows the number of target instances given pseudo-

labels, the actual accuracy of pseudo-labels, and the PR-AUC

score of the proposed method for each training epoch on the

VisDA dataset. The figure shows the results when “bus,”

“person,” and “truck” are set as positive. The upper limit of

the number of labeling instances was gradually increased up

to the 20th epoch, and in most cases, the upper limit num-

ber of instances was labeled. Sometimes, as in the case of

the “truck,” the number of labeled instances was lower than

the upper limit, but the performance of the model improved

steadily even in such cases. In the case of “bus,” although the

pseudo-label accuracy decreased slightly as the number of la-

beled instances increased, it was maintained at a high level.

By contrast, in the case of “person,” the pseudo-label accu-

racy increased as the model performance improved.

3.5. Ablation study

In our proposed method, the predictions of FB and FI are

combined based on the confidence scores of the model to ob-

tain pM (y|xt), and pseudo-labels are assigned depending on

the pM (y|xt) score. In addition, we added DA loss to achieve

feature distribution matching. To clarify the effect of each

module, we conducted ablation studies using the following

methods:

• w/o pseudo-label: Train without pseudo-labels.

• w/o feature matching: Train without feature matching

loss.

• pseudo-label with FI : Assign pseudo-labels considering

only the prediction of FI .

• pseudo-label with FB : Assign pseudo-labels considering

only the prediction of FB .

• pseudo-label w/o conf. score: Assign pseudo-labels

without considering confidence scores cI and cB . We use

the simple sum pM (y|xt) = pB(y|x
t) + pI(y|x

t).
• pseudo-label with PFAN: Giving pseudo-labels in fea-

ture space as in PFAN [8], which is one of the SOTA

methods of pseudo-label DA. Specifically, we calculate

the positive and negative centroids of the source instances

and assign pseudo-labels to the target instances that are

close to the centroids.

Table 3 shows the results of evaluating each method when

“bus,” “car,” “knife,” and “skate” are set as positive. First, the

performance of “w/o pseudo-label” and “w/o feature match-



ing” is degraded, indicating that pseudo-labels and feature

matching loss contribute to the performance improvement.

With respect to “pseudo-label with FB ,” the performance for

“bus” and “knife” is good, while the performance for “car”

and “truck” is remarkably poor. This result is owing to the low

confidence of FB , which could not provide accurate pseudo-

labels. By contrast, if the performance of FI is extremely

poor, then the performance of “the pseudo-label with FI” be-

comes worse. This indicates that the proposed method, which

integrates the scores of both FI and FB considering the con-

fidence score, contributes to performance improvement. In

addition, the performance of “pseudo-label w/o conf. score,”

which uses a simple sum of two predictions, is inferior to the

proposed method. Furthermore, the proposed method out-

performs PFAN which uses only a single score from feature

space for labeling. This confirms the effectiveness of consid-

ering information from two models with different properties.
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[1] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner, “Gradient-based learning applied to document

recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998.

[2] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-

sacco, Bo Wu, and Andrew Y Ng, “Reading digits in

natural images with unsupervised feature learning,” in In

NIPS workshop on deep learning and unsupervised fea-

ture learning, 2011, p. 5.

[3] Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoff-

man, Dequan Wang, and Kate Saenko, “Visda: The

visual domain adaptation challenge,” arXiv preprint

arXiv:1710.06924, 2017.

[4] Maximilian Ilse, Jakub Tomczak, and Max Welling,

“Attention-based deep multiple instance learning,” in In-

ternational Conference on Machine Learning, 2018, pp.

2127–2136.

[5] Diederik P Kingma and Jimmy Ba, “Adam: A

method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei, “Imagenet: A large-scale hierarchical im-

age database,” in 2009 IEEE conference on computer vi-

sion and pattern recognition. Ieee, 2009, pp. 248–255.

[7] Tsung-Yi Lin, Michael Maire, Serge Belongie, James

Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and

C Lawrence Zitnick, “Microsoft coco: Common objects

in context,” in European conference on computer vision.

Springer, 2014, pp. 740–755.

[8] Chaoqi Chen, Weiping Xie, Wenbing Huang, Yu Rong,

Xinghao Ding, Yue Huang, Tingyang Xu, and Junzhou

Huang, “Progressive feature alignment for unsupervised

domain adaptation,” in Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2019,

pp. 627–636.


	1  Introduction
	2  Method
	3  Experiment
	4  Conclusion
	5  Acknowledgments
	6  Compliance with Ethical Standards
	7  References
	1  Method
	1.1  Number of pseudo-labels

	2  Experiments on digit datasets
	2.1  Details
	2.2  Result

	3  Experiments on VisDA 2017
	3.1  Details
	3.2  Results
	3.3  Feature distribution
	3.4  Accuracy of pseudo-labels
	3.5  Ablation study

	4  References

