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ABSTRACT

This paper proposes to apply parallel transport and statistical
atlas techniques to quantify 4D myocardial motion abnormal-
ities. We take advantage of our previous work on cardiac mo-
tion, which provided a continuous spatiotemporal representa-
tion of velocities, to interpolate and reorient cardiac motion
fields to an unbiased reference space. Abnormal motion is
quantified using SPM analysis on the velocity fields, which
includes a correction based on random field theory to com-
pensate for the spatial smoothness of the velocity fields. This
paper first introduces the imaging pipeline for constructing
a continuous 4D velocity atlas. This atlas is then applied to
quantify abnormal motion patterns in heart failure patients.

Index Terms— Spatiotemporal atlas, SPM, temporal reg-
istration, diffeomorphism, myocardial motion.

1. INTRODUCTION

In neuroimaging, the statistical parametric mapping method-
ology (SPM) [1] is a recognized paradigm for comparing
anatomical information previously normalized to a common
template (atlas). A SPM can be built for the comparison of
scalar values (image intensities, volume changes) or multi-
variate parameters such as deformation tensors.

In this paper, we aim at translating SPM-based analysis
to cardiology by adapting it to the analysis of myocardial mo-
tion fields. The main difference with neurology is that cardiac
motion inherently includes the temporal dimension, which is
usually not considered in SPM-based analysis. Additionally,
SPM usually compares the displacement fields resulting from
inter-subject mappings, which have no physiological mean-
ing, in contrast to cardiac motion fields, which quantify the
trajectories of material points in the heart.

The construction of a SPM usually proceeds in two steps.
First, all datasets are normalized to a population atlas. Per-
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peridis et al. [2] introduced the concept of spatiotemporal
atlas in cardiology by separating inter-subject temporal and
spatial alignment. The study presented some rendering of the
obtained atlas but did not show any application of this atlas
for the characterization of pathological motion.

Second, a statistical model encodes the variability of the
normalized data, looking for an optimal space to represent
a population and perform inter-subjects comparison. Chan-
drashekara et al. [4] proposed a PCA model for representing
average cardiac motion and its variability within a popula-
tion. They applied this model to reconstruct motion in new
patients but not for the characterization of motion abnormal-
ities. Suinesiaputra et al. [5] applied ICA to the detection of
abnormal thickening in short axis slices but the analysis was
limited to 2D and was not performed on all components of the
vector field. Alternatively, Qian et al. [6] analyzed strain ab-
normalities by a tensor-based classification framework. How-
ever, as their method does not track material points but de-
rives strain from Gabor filters, it does not permit the analysis
of each material point of the myocardium.

In contrast, SPM techniques directly allow inter-subject
comparison at each point of the built map, which corresponds
in our application to each material point of the myocardium.
Spatial smoothness of the input data is taken into account by
introducing a convolution by a Gaussian kernel in the statis-
tical model, and taking into account the width of this kernel
in the SPM computation. As output, SPM provides a map of
p-values, which grades and localizes regions where the two
populations under comparison differ significantly.

The pipeline we present in this paper is an extension of
Duchateau et al. [7] in the following directions. First, we
extended the analysis to 4D sequences and quantified mo-
tion from the Time Diffeomorphic Free Form Deformation
(TDFFD) algorithm [9] rather than using sequential FFD,
which may cause synchronization artifacts due to the use of
piecewise stationary velocities. With TDFFD, motion is rep-
resented by a 3D+t diffeomorphic transformation continuous
in space and time. We modified the inter-subject normaliza-
tion pipeline and included Thin-Plate Spline (TPS) transfor-
mations to obtain an accurate matching of the left ventricle
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(LV) shape. An unbiased reference was obtained as the result
of a Procrustes analysis. Finally, we improved the statistical
analysis at each voxel, using a SPM-based correction taking
into account its neighboring voxels, rather than doing inde-
pendent voxel-wise computations that do not compensate for
the smoothness of the input data. The methodology is applied
to the comparison of 2 patients to a population of 15 healthy
subjects, using tagged magnetic resonance imaging (t-MRI)
sequences.

2. METHODS

The atlas of myocardial velocities is constructed from 15
subjects acquired using t-MRI. All details regarding proto-
cols and enrollment criteria can be found in Tobon-Gomez et
al. [8].

2.1. LV geometry and motion extraction

For motion and geometry quantification, we extended the
pipeline described in [9]. Performing tracking backward in
time from the last frame was a better choice of reference
given the lack of tags in the ventricular cavities. Similarity
was measured using Mean Squared Error (MSE). The metric
was expressed as the sum of two terms: (1) a comparison
to the first frame of the sequence, and (2) a comparison of
consecutive frames.

2.2. Spatiotemporal normalization and reorientation

Spatiotemporal normalization relates any reference point X
and time T 2 [0, 1] to space x and time t coordinates of a
given subject. We followed the parallel transport approach of
[3] and considered a separable matching in space and time.
Spatial normalization. Spatial normalization was performed
in two steps. If we consider K subjects, a set of similarity
transformations {�k

s

}1kK

was obtained from the original
set of input shapes by Procrustes alignment. This alignment
also gives an average shape that is taken as reference geome-
try. Bias was removed from the estimated reference by com-
puting the average similarity transformation Ak

s

and multiply-
ing all matrices Ak

s

, associated to transformations �k

s

, by the
inverse of this average, i.e.,

Ak

s

 Ak

s

·
⇣
Ak

s

⌘�1
.

This ensures the average of all similarity transforms to be
equal to identity. The same Ak

s

is also applied to the aver-
age Procrustes mesh to get the unbiased reference.

All meshes are then aligned to the unbiased mesh by a set
{�k

p

} of Thin Plate Spline (TPS) transformations. Source and
target landmarks were chosen after consistent decimation of
the two input meshes according to the subsampling strategy
described in Hoogendoorn et al. [10].
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Fig. 1: Spatial normalization consists of two steps. First, the initial set of
shapes is aligned (a) using similarity transformations (b) and a reference
shape is computed using Procrustes’ method (c). Then, the alignment of
each shape to the reference is refined using a TPS transformation (d).

SUBJECT SPACEREFERENCE SPACE

Fig. 2: Local reorientation of the velocity field attached to the LV shape.

From the unbiased mesh, the total spatial normalization
mapping to reach each subject is then

�k

ps

(X) = �k

p

� �k

s

(X) (1)

Temporal normalization. For temporal normalization, we fol-
lowed an approach similar to [2]. Instead of working on intra-
cavity volume curves, we chose to manually detect feature
points in the averaged longitudinal strain curves (see Fig. 3).
All temporal landmarks were normalized by the number of
frames in the sequence and then averaged over all atlas sub-
jects to produce a set of normalized landmarks. A piecewise
linear interpolation was then used to match subject to normal-
ized landmarks.

Reorientation. If �k

m

(x, t) stands for the diffeomorphic mo-
tion computed by TDFFD [9] from a velocity field vk

(x, t),
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Fig. 3: Temporal landmarks manually defined for 3 subjects from the longi-
tudinal strain curve averaged over all segments.

velocity can be reoriented at any (X,T ) using
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where
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(X, T ) = �k

m

(�k

ps

(X), �k

t

(T )) , (3)

D is the local orientation/scaling matrix extracted from the
inter-subject mapping and �k

t

is the temporal mapping de-
scribed in the former paragraph. The reorientation process
is illustrated in Fig. 2.

2.3. Statistics

Hotelling’s T -square statistic is computed from the reoriented
velocity vectors ⌫k

= P
�

tot

(vk

)(X,T ) according to

⌧2
= ↵(⌫k � ⌫k

)

t · ⌃�1 · (⌫k � ⌫k

) (4)

where ↵ = K/(K+1), ⌫k and ⌃ are the velocity average and
covariance defined as in [7]. The spatiotemporal resolution of
the velocity field is inherently related to the width of the ker-
nel used to represent it in the TDFFD [9] registration frame-
work. If we take as full-width at half-maximum (FWMH

d

)
the spacing between control points in the d direction (here de-
fined as w

d

), the number of resolution elements (resels) [1] in
the velocity spatiotemporal domain is then

R = V/(w
x

· w
y

· w
z

· w
t

) , (5)

where V is the volume of the bounding box of the normalized
geometry computed in Sec. 2. Note that the control points
gird is sparse in space, but not in time since we place one
control point at every frame. Thus, spatial and temporal reso-
lutions are handled differently. The detection and quantifica-
tion of motion abnormalities requires to compute the p-value
of observing a ⌧

max

value in the myocardial domain exceed-
ing a given threshold ⌧ . Worsley et al. [1] proved that this
p-value can be approximated by the Euler characteristic:

p(⌧
max

> ⌧) ⇡ ✏ = (4 log

e
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1
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(6)
This approximation is valid if the original velocity distribu-
tion (before smoothing) can be approximated by a Gaussian
distribution and if the search volume V is large relative to the
smoothness of the image [1].

3. RESULTS

Fig. 3 shows in three subjects the temporal landmarks used
for normalizing myocardial dynamics of the atlas population.
The impact of this temporal alignment is illustrated in Fig. 4
for all subjects by showing velocity curves before (a) and af-
ter (b) alignment in AHA segment # 6. Velocity curves in this
segment can then be averaged to compute the average velocity
profile in the atlas (bold curve in Fig. 6). Similarly, longitu-
dinal average velocity curves are plotted for all segments in
Fig. 6, the color of each curve corresponds the legend in the
Bull’s eye diagram.
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Fig. 4: Impact of temporal normalization shown for all subjects in one basal
anterolateral AHA segment (#6, see bold curve in Fig. 6).

We then computed the Euler characteristic from (6) for
one healthy subject (after leave-one-out) and for two patients
suffering from dyssynchrony. The ✏ value obtained at 33% of
the cardiac cycle (end of systole) is plotted using a color scale
in the top part of Fig. 5. The temporal evolution of ✏ averaged
over space in two AHA segments (#3 and #8) is plotted in the
bottom part of Fig. 5.

In both patients, abnormality peaks were observed at the
end of systole. Since both patients present assynchronous mo-
tion, the average strain curve only provides the end-systolic
time for the whole LV. Around this average end-systolic time,
segments contracting too late or relaxing too early trigger ve-
locity sign difference with respect to the healthy population,
hence generating high p-values of abnormality. In Patient #2,
incorrect ECG triggering during the MR acquisition warped
the end of the diastolic phase at time 0. This induced the first
abnormality peak in this patient. Finally, for a healthy case the
left ventricle has a reduced motion at end diastole. For the
two patients, the abnormality peaks casted at end of diastole
raised from late ventricular filling.

4. DISCUSSION AND CONCLUSIONS

This paper introduced a novel pipeline for spatiotemporal nor-
malization of motion fields. By transporting 3D+t myocardial
velocity fields to the same spatiotemporal system of coordi-
nates, SPM-based concepts can be translated to the field of
cardiology for quantifying abnormal motion patterns. With
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Fig. 5: (Top) p-value as approximated by the Euler characteristic plotted as
color map at t = 33% cardiac cycle, and (Bottom) as a function of time,
averaged over space in two AHA segments (#3 and #8).
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Fig. 6: Mean velocity curves in all 17 AHA regions. An example of the
variability over subjects can be seen from Fig. 4 in segment # 6.

respect to our earlier work [7], we extended it to 4D sequences
and used TDFFD [9] tracking. We modified the spatiotem-
poral normalization procedure by including TPS transforma-
tions. Finally, we modified the statistical tests by applying
SPM p-value computations to 4D reoriented velocity fields.
The novelty of this paper does not reside in each individual
component but in their combination for statistically model-
ing cardiac velocity fields. Our aim is to encourage SPM
experts to translate their technologies to the cardiac imaging
community. The temporal normalization scheme presented in
this paper reduced the dispersion in the velocity traces and
aligned the main systolic and diastolic peaks. However, some
variability was still observed in secondary peaks. Improv-
ing temporal normalization is expected to reduce this unnec-
essary variability and improve the accuracy of abnormality
quantification. Future work will compare our quantification
of pathological motion to visual scoring by clinicians. We
also will extend our pipeline to handle the strain tensor, which
is known to be more sensitive to characterize abnormalities of
the cardiac function resulting from ischemia or fibrosis.
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