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Abstract
In this paper, we present a comprehensive framework to support classification of nuclei in digital
microscopy images of diffuse gliomas. This system integrates multiple modules designed for
convenient human annotations, standard-based data management, efficient data query and
analysis. In our study, 2770 nuclei of six types are annotated by neuropathologists from 29 whole-
slide images of glioma biopsies. After machine-based nuclei segmentation for whole-slide images,
a set of features describing nuclear shape, texture and cytoplasmic staining is calculated to
describe each nucleus. These features along with nuclear boundaries are represented by a
standardized data model and saved in the spatial relational database in our framework. Features
derived from nuclei classified by neuropathologists are retrieved from the database through
efficient spatial queries and used to train distinct classifiers. The best average classification
accuracy is 87.43% for 100 independent five-fold cross validations. This suggests that the derived
nuclear and cytoplasmic features can achieve promising classification results for six nuclear
classes commonly presented in gliomas. Our framework is generic, and can be easily adapted for
other related applications.

Index Terms
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1. INTRODUCTION
Diffuse gliomas are the most frequent primary brain cancers in the central nervous system
and characterized by widespread invasiveness and a strong inclination to biologic
progression [1]. Although some important knowledge about this disease has been
accumulated over recent years, there still is a long way to go before a good understanding of
these neoplasms is well established. Among the numerous biologic structures believed to be
important in glioma studies, such as microvasculature, necrosis, and pseudopalidsades,
neoplastic nuclei in gliomas stand out as a key element shedding much light on the nature of
this disease. As the spatial densities and distributions of different classes of nuclei carry
complementary information used for glioma diagnosis and grading, classification of nuclei
represents a critical step in categorizing tumors for prognosis, treatment, and research.
Additionally, the classification results may both suggest and be correlated with genetic
alterations and, as a result, can facilitate better categorization of diffuse gliomas,
understanding progression of disease, and prediction of disease prognosis and treatment
response.
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Although previous studies on nuclei classification involve various methods for different
applications, such as breast cancer, and renal cell carcinoma [2, 4, 3], no standard
framework regarding how to represent, manage and utilize large-scale analysis results to
facilitate further processing on microscopy images, e.g. nuclei classification, is discussed.
This becomes a more and more important issue, as the complexity and scale of data keeps
increasing. This issue is particularly important for nuclei analysis because of the large
volume of information to be synthesized. As a result, we develop a mechanism for
standardized representation and management of analytical data results. With this system,
data can be efficiently retrieved with comprehensive query supports. Additionally, we also
establish a comprehensive framework that integrates all the essential components consisting
of: 1) large-scale feature computation; 2) collection of human annotations for training data;
3) query for features of selected nuclei for further analysis; and 4) training and testing of
nuclei classifiers. In this paper, we present such an integrative workflow that supports the
end goal of classification of nuclei in microscopy images of glioma tissues.

2. NUCLEI CLASSIFICATION MECHANISM
Our workflow for nuclei classification involves multiple components: image partition, nuclei
segmentation and nuclear feature computation supported by parallel computation
infrastructure, imaging meta-data representation, microscopy database, human input
interface, query mechanism, classifier training and testing process. Figure 1 illustrates a
panoramic view of the complete working schema. Detailed discussions on each of these
modules are given as follows.

2.1. Parallel Processing of Images
Imaging datasets in our glioma study contain several hundreds of microscopy images and
present a significant computational challenge for image analysis. Due to large sizes, data
structures and intermediate results computed during whole slide image analysis may exceed
available main memory on a machine. Moreover, processing a large image slide may take
very long. For these reasons, we tile whole slide images into non-overlapping 4096 × 4096-
pixel regions to permit parallel analysis. To scale up the analysis, we process images with
the help of a large-scale, high-performance computation infrastructure where a cluster of
computer nodes is used for executing jobs simultaneously. This infrastructure configuration
currently consists of seven Dell 1950 1U rack mount units. Each unit is configured with
Dual Xeon E5420 CPUs running with four cores at 2.5Ghz for a total of eight cores per
node. Each node has one job slot per core, with 56 job slots in total.

2.2. Nuclear Feature Computation
Abundant information on cellular and tissue morphology can be derived from digitized
pathology images. In diffuse gliomas, tumor cell nuclei are of significant interest to the
scientific community [5]. However, capturing and analyzing this information in large-scale
microscopy images presents a serious challenge with the subjective human reviewing
process. Computerized image analysis, as an alternative, provides an opportunity for
quantitative measurement of complex micro-anatomical features for biology entities in
pathologic slides [6]. We have developed a suite of image analysis tools for segmenting and
characterizing nuclei [7]. To identify nuclei in a reliable way, we apply mathematical
morphology operations to images for normalizing background regions degraded by artifacts
arising from tissue preparation and the scanning process. This operation substantially
separates the foreground from the normalized background and allows recognition of nuclei
by the straightforward thresholding method. Overlapped nuclei are subsequently separated
using the watershed technique. A co mplementary set of features is derived from each
identified nucleus. These features can be grouped into four broad categories: nuclear
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morphometry, region texture, intensity, and gradient statistics [7]. Since nuclear morphology
is believed to be informative for distinguishing types of gliomas, morphometric features
such as the degree of elongation, size, and regularity are included. Nuclear texture
information is also captured with multiple descriptors, as there is a significant variation in
texture across nuclei of distinct categories due to the clumping of chromatin. Features
relevant to cytological intensity and intensity gradient are included in the feature set as well.
Additionally, we apply the same set of texture and gradient features to “cytoplasm” regions
surrounding nuclei and combine these features with nuclear features for better representation
of nuclei of distinct types. Since the true cellular borders of glioma cells cannot be resolved
on Hematoxylin and Eosin (H&E) stained images, “cytoplasm” refers to a fixed-distance
radius surrounding a nucleus. Figure 2 presents glioma nuclei and “cytoplasm” regions from
which features are derived. In aggregate, 74 features are computed to represent each
nucleus.

2.3. Nuclei Classification
In our study, we use Quadratic Discriminant Analysis (QDA), because of its good
performances, as a way to differentiate nuclei of distinct classes [10]. As we have collected a
large population of nuclei for each type, we fit a normal distribution (μi, Σi) to each class
of nuclei by the following step:

(1)

where Σi, μi, and Ni are the estimated covariance matrix, mean and the number of samples of
class i; xij ∈ ℜn is the jth sample in class i; Xi = [xi1, · · ·, xiNi] and ;
Additionally, by QR-decomposition, we have: , where Qi and Ri are unitary
and upper triangular matrix, respectively. In our experiments, as we have Ni > n, ∀i, we
truncate Q and R by taking the first n columns of Q and the first n rows of R.

When assuming the normal distribution for each class, the discriminant function for class i
becomes:

(2)

where πi is the prior probability for class i;  is the jth eigen-value of Ri; and

.

Recall that Ri is an upper triangular matrix, as a result, , where  is the jth
diagonal entry of Ri. Therefore, the discriminant function in (2) can be further simplified:
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(3)

Following the Maximum A Posteriori (MAP) rule [10], the classification mechanism
becomes:

(4)

where C is the number of classes.

2.4. Data Representation and Management
Results generated from nuclei analysis contain rich information, including nuclear features,
boundary coordinates, human classification, image metadata, patient information, and
analytical provenance information. To provide a generic representation of data objects, data
types, and their relationships, we develop Pathology Analytical and Imaging Standards
(PAIS) [8, 9] for modeling and managing pathology imaging analysis results and tissue
characterizations in our framework. The logical PAIS model consists of 62 classes and is
realized in our framework as an XML schema. Analysis results are stored in XML
documents (PAIS XML documents) conforming to this schema before they are transferred
over the network to a PAIS database for storage and management. PAIS database provides
relational tables and spatial tables to manage PAIS data. Our implementation is based on
IBM Infosphere Warehouse Enterprise Edition 9.7.2 with DB2 and DB2 Spatial Extender as
the database engine, running on a Dell PowerEdge T410 with CentOS 5.5. The spatial
database engine manages markup boundaries as spatial data types and provides efficient
spatial query support such as contains or intersects predicates. The database implementation
has significant advantages. 1) Efficiency. Although the scale of data is large (about half
million nuclei markups each whole-slide image on average), the relational database is very
efficient on querying the data with its indexing methods and query optimization techniques.
For example, it takes less than one second to count the nuclei for a whole-slide image; 2)
Comprehensive query support, such as metadata queries and spatial queries, and correlation
queries across different data; 3) Highly expressive power of queries. SQL query language
with the spatial extended capabilities makes it most easy for humans to express queries in a
declarative way. For instance, we use the spatial query shown in Figure 3 to identify nuclei
boundaries based on human marked points (one internal point marked per nucleus) and
retrieve corresponding nuclear features of 2770 training nuclei selected by human experts
from the database. This query takes only about 10 seconds.

3. EXPERIMENTS AND RESULTS
To test the classification mechanism, we derive our training and testing data from 29 whole-
slide microscopy images of samples covering a wide spectrum of glioma variations. A panel
of neuropathologists selects 2770 nuclei of six classes via a third-party microscopy image
viewer [11] by making one dot within the region of each nucleus of interest. Table 1
summarizes the six nuclei classes and the number of samples for each class included in our
experiments, where c1 =‘Neoplastic Astrocyte’ (NA), c2 =‘Neoplastic Oligodendrocyte’
(NO), c3 =‘Reactive Endothelial’ (RE), c4 =‘Mitotic Figure’ (MF), c5 =‘Reactive Astrocyte’
(NA), c6 =‘Debris’ (DB). The coordinates of the dots and class labels from each slide are
exported into an XML file from which a text file is generated and imported to the table
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validation.nucleipoint in the PAIS database. From PAIS database, we can submit a joint
query combining multiple tables as demonstrated in Figure 3 and retrieve class labels and
features of all nuclei selected by human experts.

As it is well known that features used for sample representation may not contribute to the
end classification performance uniformly, it is helpful to identify the subset of features
capturing the best discriminating information for recognition improvement [10]. As a result,
we use the Sequential Floating Forward Selection (SFFS) procedure to narrow down the
“discriminating” features prior to QDA. In Table 2, we present the mean confusion matrices
without and with SFFS when QDA+MAP classification method is repeatedly applied to 100
independent five-fold cross validation tests. From Table 2, it is noticed that recognition
accuracies for all classes but neoplastic astrocyte (c1) are improved when SFFS is used. For
class of neoplastic astrocyte, the performances with and without SFFS are comparable.

In order to investigate the best possible classification accuracy with this nuclei set, we also
apply Gaussian Mixture Model [12] to our dataset and compare performance across different
classification methods with nuclei, “cytoplasm”, and nuclei in conjunction with “cytoplasm”
features. These results are shown in Table 3. The addition of features from “cytoplasm”
regions significantly boosts recognition performance for both GMM and QDA classifier.
Additionally, when combining SFFS, the performance is even more improved. When SFFS
+QDA is used, the numbers of features with the use of nuclear, cytoplasmic, and combined
features are 20, 22, and 34, respectively. The best overall accuracy reaches 87.43%. As a
result, this system can be potentially used not only to facilitate clinical researchers in various
cancer-related research, but also to inform pathologists of such critical information as spatial
distributions and percentages of numerous types of nuclei for better diagnosis.

4. CONCLUSIONS
In this paper, we propose a comprehensive framework for classification of nuclei in whole-
slide digital microscopy images, with a specific application to gliomas. We develop a
generic and standardized approach for representing image analytical results, and an efficient
database implementation with powerful query support. The framework provides an
integrated workflow including imaging feature extraction with high performance computing
infrastructure, convenient human annotation collection method, analysis result
representation, spatial database query mechanisms and the final classification pipelines.
When repeating the five-fold cross validation experiment for 100 times on 2770 nuclei of six
types, we achieve an average accuracy of 87.43% with the SFFS+QDA+MAP classifier.
These results demonstrate the efficacy of the integrative framework for analysis of nuclei in
large-scale microscopy images.
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Fig. 1.
The overall framework to support classification of glioma nuclei from microscopy images
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Fig. 2.
Features characterizing nuclei are derived from nuclei (red) and “cytoplasm” regions
(green).
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Fig. 3.
An example SQL query to retrieve features of nuclei based on human marked points
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Table 3

Performances (in %) associated with different features and classification mechanisms are compared.

GMM QDA (“Nuc.”, “Cyto.”, “Nuc.+Cyto.”)

“Nuc.” “Nuc.+Cyto.” No SFFS SFFS (20, 22, 34)

c1 (NA) 72.90 89.62 74.47, 88.46, 89.84 73.82, 85.46, 89.72

c2 (NO) 85.02 90.53 84.94, 77.23, 90.42 86.14, 79.48, 92.39

c3 (RE) 64.19 80.36 64.64, 66.57, 80.26 66.13, 72.84, 85.26

c4 (MF) 79.07 86.45 78.44, 77.07, 86.42 78.77, 84.63, 92.93

c5 (RA) 52.90 63.68 51.17, 54.40, 63.25 51.87, 66.24, 77.43

c6 (DB) 64.99 74.14 63.31, 60.53, 73.65 64.42, 66.07, 84.08

Overall 70.53 82.08 70.44, 72.63, 81.97 71.04, 77.00, 87.43
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