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ABSTRACT 
 

In this paper, we propose a 2D-3D vascular registration 
algorithm based on an efficient rendering method for 
generating 2D projected images from a segmented 3D 
MRA volume. At the preprocessing stage, vessels are 
segmented and represented by a number of spheres with 
centers on the skeleton points of the vessels and radii 
equal to the distance from the skeleton points to their 
closest boundary. To generate projected images for 2D-3D 
registration, instead of using the conventional ray-casting 
technique, the spheres are projected to the projection 
plane. The discrepancy between the projected image and 
the reference DSA image is measured by the sum of 
squared differences. Experimental results show that our 
method is computationally efficient. Moreover, based on 
manually selected markers, it is shown that the accuracies 
of our proposed method and the conventional ray-casting 
based registration method are comparable. 
 

1. INTRODUCTION 
 

Images acquired by different medical imaging modalities 
provide useful complementary information. For example, 
magnetic resonance angiographic (MRA) images provide 
3D structural information before treatments; digital 
subtraction angiographic (DSA) images can be acquired in 
real time and provide 2D structural information during 
treatments. As such, the registration between 3D MRA and 
2D DSA images is very useful for physicians during 
treatments [1], [2], [3].  

Most of the multi-modal registration methods can be 
broadly classified into two categories: feature-based or 
intensity-based. In general, the intensity-based method is 
more accurate. On the other hand, the feature-based 
method is more computationally efficient [4].  

Over the past few years, many intensity-based 
methods have been introduced, for example, sum of 
squared differences (SSD), correlation coefficients (CC) 

and correlation ratio (CR) [5]. The most popular and 
widely used one is the information-theoretic similarity 
measure, namely Mutual Information (MI) [6]. It does not 
require segmentation and only makes use of the 
assumption of statistical dependence between the intensity 
values of two images. Recently, Chung and et. al. [7], [8] 
used a pair of precisely registered or segmented images to 
build the expected joint (intensity or class) histograms and 
employed Kullback-Leibler distance to measure the 
discrepancy between observed and expected joint 
histograms, and to guide the transformation towards the 
expected joint histogram. 

The feature-based registration algorithms extract 
features such as surfaces, curves [3] or skeletons [1], [2] at 
the preprocessing steps. They are faster than intensity-
based methods but comparatively less accurate [4]. Also, 
the extraction of skeletons can be sensitive to noise [9]. 
Therefore, registration algorithms using skeletons as the 
only feature for registration will be sensitive to noise as 
well. Moreover, the surface or curve extraction and 
representation can be complicated and would also affect 
the registration accuracy. 

 
2. OUR 2D-3D REGISTRATION ALGORITHM 
 

For the conventional ray-casting based 2D-3D registration 
methods, given the current pose, the projected image of a 
full intensity 3D MRA volume is generated at each 
iteration and then compared with the 2D reference DSA 
image. Generating a maximum intensity projection image 
with full intensity range by using the ray-casting technique 
can be very time-consuming [10]. As such, a large portion 
of the registration computation time would have to be 
spent on the generations of full intensity MIP images [11]. 
To shorten the computation time, we propose to use the 
projected spheres from a segmented MRA volume.  
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2.1. OFFLINE PREPROCESSING OF 3D VOLUME 
 
Before the registration process, an isotropic volume is 
built so that the new voxel size is equal to the original in-
plane voxel size, and the intensities of voxels between 
slices are estimated by using the trilinear interpolation. 
Vessels are then segmented by using the global 
thresholding method and skeletons are extracted with the 

modified weighted metric < 3,2,1 > [12]. The skeleton 
points (within a 7x7x7 window) are connected using the 
depth first search. The major vessel that we are interested 
in is usually the connected voxel group containing the 
largest number of skeleton points. By using the extracted 
skeleton, the original binary volume can be represented 
and reconstructed by the set of spheres with the centers set 
to the coordinates of skeleton points, and radii equal to 
their distance transform values (which represent distance 
to the closest boundary) [13].  
 
2.2. GENERATION OF PROJECTED IMAGE 
 
In order to mimic the DSA images, the whole projected 
image is randomly initialized to one of the background 
intensities of the DSA image. The background intensities 
of the DSA image can easily be obtained from the 
boundary pixels. 

Given the rigid transformation matrix and the 
projective geometry, the center of each sphere is projected 
to the projection plane. The length of its corresponding 
radius in the projection plane can be calculated based on 
simple projective geometry. The intensities of all pixels 
with its distance to the projected center less than the 
projected radius are assigned to 255 (the max. intensity). 
Fig. 1 shows a projected image from a binary volume 
generated by the projection of spheres. Note that a 
rectangular region of interest containing the major vessels 
is selected in order to shorten the computation time. Our 
method is more efficient because it does not need to trace 
along the projection lines, as required in the ray-casting 
method. A comparison on computational efficiency 
between the proposed method and ray-casting method will 
be presented in Section 3.  
 

 
Fig. 1. Projected image from a binary volume generated by the 
projection of spheres. 
 

2.3. REGISTRATION PROCESS 
 
Vessels in both DSA image and projected image have high 
intensity values (in case the intensities of vessels in DSA 
image are low, we can simply invert the intensity values of 
the entire image). The sum of squared differences (SSD) 
can be employed to measure the difference between the 
2D reference image, denoted by X , and the binary 
projected image, denoted by Y . The SSD between the two 
images is given by 

                 ∑
Φ∈
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i

iYiXYXSSD 2))()((),(  , (1) 

where i and Φ  represent the pixel locations and 
overlapping image domain respectively. When the two 
images X  and Y  are precisely aligned, the value of SSD 
is expected to be minimum. 
 

 
Fig. 2. A flow chart of our registration algorithm. 
 

During the registration process, the floating image is 
the 3D MRA volume while the reference image is the 2D 
DSA image, which is fixed in the 3D space. At each 
iteration, given the current pose, a projected image of the 
segmented volume is generated by the method mentioned 
in Section 2.2. The goal is to find the optimal rigid 

transformation T̂  by minimizing the value of SSD (see 
Equation (1)) between the binary projected image and the 
2D reference image,  

                       ))(,(minargˆ TYXSSDT
T

=  .                  (2) 

Powell’s method is used to iteratively search for the 
minimum SSD value of each parameter (in 3D, the rigid 
transformation has three translational and three rotational 
parameters) using Brent’s method [14]. The algorithm 
halts when the percentage change of SSD is below a user-
specified threshold. We set this threshold to 0.001% in our 
program. The flow chart of our registration algorithm is 
shown in Fig. 2. 
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3. RESULTS 
 
In this section, we show the results of the 2D-3D rigid 
vascular registration algorithm presented in Section 2, and 
also compare its computational efficiency and accuracy. 

We use five pairs of 3D Phase Contrast (PC) MRA 
and 2D DSA datasets for this experiment. In order to 
evaluate the performance and accuracy of our registration 
method, between five and seven target points were chosen 
by an experienced user using an interactive tool for each 
case. After the optimal transformation was found, for 
every user-selected point on a DSA image, the registration 
error was defined by the Euclidean distance between the 
selected point and the projected corresponding 3D MRA 
point. The results of one of the five cases are shown in 
Fig. 3.  

Figs. 3a and 3b show the reference 2D DSA image 
and the initial alignment of the 3D MRA volume 
respectively. During the registration, only binary projected 
images based on spheres were generated and used. The 
final projected image (at final alignment using the 
proposed method) is overlaid on the corresponding DSA 
images (Fig. 3c) and the results are promising. Fig. 3d 
shows the full intensity maximum intensity projection 
(MIP) of the registered MRA volumes for visual 
comparison only.  

 

 
(a) DSA 

 
(b) Initial pose 

 
(c) Final result 

  
(d) Final result 

Fig. 3: Results. (a) DSA image, (b) Initial image alignment and 
projected spheres, (c) Final image alignment, and binary 
projected image is overlaid on the DSA, and (d) full intensity 
MIP of the MRA volume (for visual comparison only). 
 

In order to compare the computation times of 
generating a projected image from a MRA volume, we 
implemented the ray-casting method, and generated 1000 

full intensity MIP images. The ray-casting method takes 
1.34 seconds on average whereas our method, which is 
based on projected spheres of the segmented MRA 
volume, takes 0.07 seconds on average, which is about 19 
times faster than the ray-casting method. 

Table 1 lists the computation times of the whole 
registration process for (a) the proposed method and (b) 
the Mutual Information (MI) based 2D-3D registration 
method based on full intensity ray-casting technique. All 
experiments done in this paper were run on a 1.7GHz 
Pentium IV PC with 768MB of RAM. Based on the results 
of these five datasets, our method can run faster than the 
conventional MI-based method by about 18 times. 
  

Time (sec) Method 
Case 1 Case 2 Case 3 Case 4 Case 5 Mean 

MI 233.56 425.02 460.22 768.34 352.20 447.87 
Proposed 20.21 26.07 21.76 19.81 39.86 25.54 

Table 1: Comparisons of the computation time for the two 
registration algorithms. 
 

Based on manually selected markers, the mean errors 
are 1.710mm ± 0.873 and 1.992mm ± 1.061 for the 
proposed method and MI-based method respectively. It 
shows that the registration accuracy of our method is 
comparable to that of the MI-based method in terms of the 
mean error values. It also shows that the mean error is less 
than 2mm, which is acceptable in this application. 

 
4. DISCUSSIONS AND CONCLUSIONS 

 
Preprocessing and segmentation of vessels in DSA images 
are not required in our method, unlike the methods 
proposed in the prior work [1], [2], [3], [7] and [8]. 
During the endovascular treatments, the high acquisition 
rate (about one image per second) of DSA images makes 
either manual or semi-automatic segmentation infeasible. 
Also, automatic segmentation results of DSA images may 
not always be satisfactory, which will affect the 
registration accuracy. 

In our algorithm, instead of using thinning algorithm 
[15], skeletons are extracted by using distance transform 
[12], [13]. With the skeleton points and the distance 
transform values, the original volume can be recovered 
exactly [13], which may not be feasible by thinning 
algorithms. Skeletons extraction is sensitive to noise [6]. 
Noisy data may give a lot of undesired skeleton points 
which can affect the accuracy of the method proposed by 
Kita and et. al. [1], Liu and et. al. [2] and Feldmar and et. 
al. [3] because they use skeletons alone. Our method 
requires skeletonization as well, but it does not use 
skeletons as the only feature. Instead of using skeletons 
alone, our method also makes use of the distance 
transform values for generating binary projected images. 

710



 

Thus, the accuracy of our registration algorithm is less 
sensitive to noise. 

 

 

Fig. 4. A maximum intensity projection of TOF-MRA in 
transverse view. 
 

For Time-Of-Flight (TOF) MRA image volumes, the 
intensity values of vessels and non-vessels, such as 
eyeballs, can be similar. The MIP along the transverse 
view from a TOF-MRA volume is shown in Fig. 4. Some 
of the vessels are not clearly visible, especially the one at 
the right hand side. The accuracies of the intensity-based 
methods may be affected. The non-vessel regions in the 
MIPs of TOF-MRA may match with the vascular regions 
in the DSA images. In the proposed method, as 
segmentation is done and skeleton points are connected, 
non-vessels will not be projected and the registration 
accuracy will not be affected by the problem mentioned 
above. 

Instead of projecting all boundary or all vessel voxels, 
we draw filled circles with centers located at the projected 
skeleton points, as mentioned in Section 2.2. The reason is 
that projecting boundary or vessel voxels may result in 
some blank horizontal or vertical lines in the projected 
image, which is undesirable and can be avoided by using 
our method. 

To conclude, we have proposed a new multi-modal 
2D-3D image registration method based on efficient 
generation of projected images from a segmented 3D 
volume. The discrepancy between the projected image and 
the reference image is measured by the sum of squared 
differences as similarity measure. Experimental results 
show that our method is efficient, while the accuracies are 
comparable with those of the conventional ray-casting 
based 2D-3D registration method. 
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