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Abstract—The increasing computing demands of autonomous
driving applications make energy optimizations critical for re-
ducing battery capacity and vehicle weight. Current energy
optimization methods typically target traditional real-time systems
with static deadlines, resulting in conservative energy savings that
are unable to exploit additional energy optimizations due to dy-
namic deadlines arising from the vehicle’s change in velocity and
driving context. We present an adaptive system optimization and
reconfiguration approach that dynamically adapts the scheduling
parameters and processor speeds to satisfy dynamic deadlines
while consuming as little energy as possible. Our experimental
results with an autonomous driving task set from Bosch and real-
world driving data show energy reductions up to 46.4% on average
in typical dynamic driving scenarios compared with traditional
static energy optimization methods, demonstrating great potential
for dynamic energy optimization gains by exploiting dynamic
deadlines.
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reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
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I. INTRODUCTION

Due to the enormous amount of computing required for
autonomous vehicles, its inherent high energy consumption has
become one of the major hurdles when designing such com-
puting systems. For example, even a single vehicle computer
with multiple central processing units (CPUs) and graphics
processing units (GPUs) alone reportedly consumes more than
2 kW of power, reducing an electric vehicle’s driving range
up to 12% [1]. With this challenge, some energy optimiza-
tion methods have been proposed that at the same time try
to satisfy the stringent real-time requirements of automotive
systems [2], [3]. However, since they commonly assume just
(fixed) static deadlines, they do not reflect recent autonomous
driving applications with time-varying dynamic deadlines. Such
applications include the localization system with its dynamic
latency constraint as a function of velocity [4] and the truck pla-
tooning system where its control response times are adjustable
to varying driving conditions [5].

With the above motivation, we aim to develop an energy-
efficient software optimization method and a runtime frame-
work that can specifically exploit the dynamic nature of dead-
lines found in many autonomous driving applications. This
study specifically focuses on minimizing CPU energy consump-
tion by using dynamic voltage and frequency scaling (DVFS).
Although conventional automotive microcontrollers often lack
such features, recent application processors for autonomous
driving mostly support DVFS.
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(a) Example time history of vehicle velocity [7]
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(b) Corresponding dynamic deadlines (λ=20 m and amax=2.5 ms-2)

Fig. 1: Example dynamic deadlines

To demonstrate our basic idea, Fig. 1 shows an example time
history of a vehicle’s velocity and its corresponding dynamic
deadline, assuming a velocity-deadline mapping function

d(v) =
−v +

√
v2 + 2λamax

amax
, (1)

which represents the minimum time for a vehicle at its initial
velocity v to advance a fixed distance λ assuming its maximum
acceleration amax. It is especially useful in truck platooning
where trucks maintain a fixed longitudinal gap between them
across various driving velocities [6] such that safe control
decisions can be made more efficiently in terms of a maximum
travel distance (i.e., λ) between sensing and actuation rather
than by a rigid timing constraint. Hence, in the figure, the
faster the vehicle runs, the shorter the deadline gets. The
minimum deadline depicted by a red line is determined by
the maximum velocity enforced by traffic regulations. Here,
our basic idea is to trade the area between the time-varying
dynamic deadline and the minimum deadline to reduce energy
consumption by adaptively slowing down the CPU to the extent
that guarantees the dynamic deadline, rather than adhering
to the static deadline [2], [3] as in the traditional energy
optimization methods.

In the automotive industry, complex control applications
composed of multiple independent real-time tasks are com-
monly modeled with directed acyclic graphs (DAGs) whose
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nodes are periodic tasks and edges are read-write dependencies
between tasks. Fig. 2 shows an example DAG from Bosch [8]
for their reference autonomous driving system from sensors to
actuators. Upon such a DAG, its dynamic deadlines are imposed
by its worst-case end-to-end delays from sources to sinks,
which is collectively decided by the periods of individual tasks.
Then, our objective is to minimize the average power consump-
tion while guaranteeing such dynamic deadlines. When doing
that, we must satisfy (i) the system schedulability constraint
(i.e., task periods) as well as (ii) the end-to-end deadline
constraint. At first, we solve the problem by assuming a static
deadline constraint. For that, we formulate it as a geometric
programming (GP) problem [9], which is a special form of
non-convex optimizations that can be efficiently solved by a
transformation into a convex problem.

To extend the above optimization method to time-varying
dynamic deadlines, we partition the feasible deadline range into
a number of discrete modes, where the system is separately
optimized for each mode, assuming each mode’s shortest
deadline, respectively. Then, our runtime framework provides
a safe mode change protocol that changes each task’s period
when the vehicle slows down or speeds up crossing across
different modes. Our mode change protocol is designed not
to miss any deadline if the mode change is from a shorter
deadline to a longer one. However, we found that extra delays
are unavoidable in the opposite direction (i.e., longer to shorter
deadlines). Even in that case, however, we provide a mode
change delay analysis method from which we can reserve
enough safety margins to hide away the extra delays.

Our experimental results show that our approach reduces the
average energy consumption up to 46.4% in various real-world
driving scenarios compared with the conventional method based
on static deadlines. Moreover, our extensive simulation experi-
enced no deadline miss due to our safe mode change protocol
and delay analysis method. To the best of our knowledge,
our work is one of the first attempts for optimizing energy
consumption in computing systems for autonomous driving,
explicitly focusing on dynamic deadlines.

This study’s contributions can be summarized as follows:

• We formulate an optimization problem for energy-efficient
autonomous driving systems with time-varying dynamic
deadlines and provide a GP-based optimal solution.

• We provide a safe mode change protocol that guarantees
analyzable (if any) overheads, which can be safely manip-
ulated in the design time.

The remainder of this paper is organized as follows: The next
section describes the background and our problem. Section III
presents our offline system optimization method. Section IV ex-
plains the dynamic system reconfiguration approach. Section V
discusses practical issues. Section VI provides the evaluation
results. Section VII presents related work. Finally, Section VIII
concludes the paper.
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Fig. 2: A DAG from Bosch as a reference autonomous driving
system in the WATERS industrial challenge 2019 [8]

II. BACKGROUND AND PROBLEM DESCRIPTION

A. System Model

This study assumes a computing system with a single CPU 1

supporting DVFS with a speed factor s in the range of

0 < smin ≤ s ≤ 1, (2)

where smin denotes the minimum speed factor used for the
CPU idle time while 1 (i.e., 100%) indicates the maximum
processing speed. This study assumes that s can be any con-
tinuous real value in that range such that general optimization
techniques can be applied to. The practical consideration with
commercial off-the-shelf (COTS) CPUs supporting only a num-
ber of discrete frequency levels will be discussed in Section V.

The system executes a set of n implicit-deadline periodic
tasks

V = {τ1, τ2, · · · , τn}, (3)

where their read-write dependencies are represented by a DAG

G = (V,E ∈ V × V ) (4)

with its nodes V and directed edges E representing the
task set and dependencies, respectively. Then, each task τi is
characterized by its period pi and worst-case execution time
(WCET) ei assuming s=1. Fig. 2 shows an example DAG
with ten tasks with complex dependencies beginning from
sensors to actuators. Tasks communicate with each other with
asynchronous message passing. Due to the multi-rate nature,
oversampling or undersampling can happen to communication
buffers, where newly arrived data always overwrite existing
ones. This task model has been commonly used in many studies
for automotive systems [10], [11].

When dealing with speed factors, we use the inter-task DVFS
method, where s can only be changed at context switching
between tasks [12]. Then, each task τi in the runtime is
characterized by

τi = (pi, ei, si), (5)

where si is the per-task speed factor at the moment. Among
them, only ei is a given value, whereas pi and si are design

1As an initial effort for the energy optimization based on dynamic deadlines,
this study employs a rather simple system model, which will be extended in
our future work. Its practical consideration will be discussed in Section V



variables. Thus, a complete system configuration π can be
described by a vector of tuples

π = ((p1, s1), · · · , (pn, sn)). (6)

We assume the earliest deadline first (EDF) scheduling
algorithm such that the L&L utilization bound [13] can be used
to test the system schedulability as

U(π) =

n∑
i=1

ei
pisi

≤ 100%, (7)

which has si in the denominator reflecting the effective WCET
that is inverse-linearly proportional to si. Based on the above
schedulability test, we can guarantee every task’s periodicity.

B. Dynamic Deadlines

In our system model, when referring to deadlines, they al-
ways mean the end-to-end deadlines from sensors to actuators,
not the per-task implicit deadlines that are equal to periods.
Thus, even when the system is schedulable, satisfying every
task’s pi, it does not mean deadlines will be guaranteed. To
formally define our notion of deadlines, let us assume ns sensor
tasks (i.e., source nodes) and na actuator tasks (i.e., sink nodes)
in G. Then we say there are ns×na unique flows, each of which
has at least one path that is a sequence of adjacent tasks fully
connecting a flow. The set of paths in G is denoted by

P = {δ1, δ2, · · · , δ|P|}, (8)

where each path δi denotes an ordered set of task indices
following the path. For example, Fig. 2 has three (3 × 1)
flows and eight paths. Then deadlines are imposed upon the
paths such that newly arrived sensor data at time t1 propagates
through the DAG until it first gets out of an actuator task at
time t2 within a given deadline d (i.e., t2 − t1 ≤ d). In the
automotive industry, the above notion is commonly referred to
as reaction time constraints [14].

Fig. 3 shows continuous dynamic deadlines as the vehicle
velocity changes, where vertical dashed lines depict discrete
sensor arrivals. At each k-th sensor data arrival at time t[k],
its dynamic deadline d[k] is decided as a red point by the
vehicle velocity v[k] with a given mapping function (e.g., d(v)
in Eq. (1)). Thus, each sensor data arrival can be denoted by
(t[k], d[k]) for k ≥ 1. Although many variables representing
other physical states can be considered, this study focuses on
the velocity-dependent deadlines as an initial effort toward a
more general framework.

To efficiently manage dynamic deadlines, we employ a multi-
mode approach, where a feasible deadline range is partitioned
into m discrete modes, where each mode guarantees the shortest
deadline within its deadline range. For notational convenience,
the modes are denoted by the per-mode shortest deadlines
{d1, d2, · · · , dm}.

In Fig. 3, its deadline domain is partitioned into six equal
length modes, and at each sensor data arrival, the system
mode is decided, possibly triggering mode changes. While the
system is in a particular mode, the mode’s shortest deadline is
guaranteed, as depicted by the thick blue line.
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Fig. 3: Dynamic deadlines with discrete mode changes

C. Power Model

We use the following popular power model from [12], [15]:

P (s) = Ps + Pd(s) = β + αsγ , (9)

where Ps is the static power and Pd(s) is the dynamic power
parameterized by a speed factor s. The static power is expressed
as β independent of other parameters, whereas the dynamic
power depends on s while α and γ ∈ [2, 3] are CPU-dependent
parameters. In this work, we do not use CPU sleep states
to reduce the static power, so our focus is to minimize the
average dynamic power by minimizing s as long as satisfying
the dynamic deadlines.

For that, the average dynamic power can be calculated as
follows: For each task τi, its instantaneous dynamic power
αsγi is maintained during task’s effective execution time ei/si
affected by the speed factor. Since the power pattern repeats by
its period pi, the average power consumed in a unit time while
executing τi can be calculated as

Pi(pi, si) =
αsγi ×

ei
si

pi
=
αsi

γ−1ei
pi

, (10)

which is a function of pi and si. Then, by summing up n such
average powers with the static power and the idle-time CPU
power at smin, the total average power for the system is given
as a function of a system configuration π as

P (π) = β + α

n∑
i=1

sγ−1i ei
pi

+ αsγmin

(
1−

n∑
i=1

ei
pisi

)
. (11)

D. Problem Description

With the above system model, multi-mode deadline con-
straints, and energy model, our problem can be described as
follows: Given a DAG G of n periodic tasks and m discrete
deadline constraints, our problem is to find the following two
matrices: p11 p12 · · · p1n

...
...

. . .
...

pm1 pm2 · · · pmn

 and

 s11 s12 · · · s1n
...

...
. . .

...
sm1 sm2 · · · smn

 , (12)

where each pji and sji represent τi’s optimal period and speed
factor at the j-th mode, respectively, in terms of system-wide
energy efficiency. Besides, the solution should satisfy safe
mode changes such that the system can freely go back and
forth between modes without violating the dynamic deadline
requirements. For that, a safe runtime mode change protocol



should be developed along with a mode change delay analysis
method.

III. PERIODS AND SPEED FACTORS OPTIMIZATION

This section formulates and solves the multi-mode system
optimization problem. We begin by finding the optimal con-
figuration assuming a single fixed mode without considering
mode changes (Section III-A). Then, we extend the optimiza-
tion method such that it can guarantee safe mode changes
(Section III-B).

A. Single-Mode Formulation

This section explains how we can formulate a single-mode
optimization as a baseline for the multi-mode system optimiza-
tion. As the objective function, the average power in Eq. (11)
is used, without the constants α and β, where π denotes two
sets of decision variables pis and sis with constrained domains
as pi > 0 and smin ≤ si ≤ 1, respectively.

Then, we have two explicit constraints: (i) schedulability
constraint as already discussed in Eq. (7) and (ii) deadline
constraint, for which we need to devise an end-to-end delay
analysis model. We borrow a widely used model from [11],
which expresses the worst-case delay of a path δ as an
accumulation of periods (pis) and worst-case response times
(WCRTs) (ris) of every task in δ, like the rightmost part in

Dδ(π) =
∑
i∈δ

2pi ≈
∑
i∈δ

(pi + ri), (13)

where Dδ(π) denotes the approximated worst-case delay of a
path δ assuming a system configuration π. We approximate the
original delay model to a linear form

∑
i∈δ 2pi as calculating

the exact ri involves complex non-convex operations. Then, the
deadline constraint d is considered for every path δ in P (i.e.,
the set of paths in G). Among the per-task delay components
2pi, one pi is for the waiting time until the task reads the sensor
data (waiting delay), and the other is for processing the data
(processing delay).

Then our single-mode formulation is given as follows:

minimize
π

P (π) =

n∑
i=1

sγ−1i ei
pi

+ sγmin(1−
n∑
i=1

ei
pisi

)

subject to U(π) =

n∑
i=1

ei
pisi

≤ 1

Dδ(π) =
∑
i∈δ

2pi ≤ d (∀δ ∈ P).

(14)

B. Multi-Mode Formulation Considering Mode Changes

Naively, the method in Section III-A can be repeatedly
used to find every row of the multi-mode solution matrices in
Eq. (12). However, we cannot directly use this approach for a
multi-mode system since it does not guarantee a safe transition
between modes. Specifically, when old- and new-mode tasks
coexist during a mode change, schedulability violations can
occur even if each mode is schedulable in isolation [16]. Thus,
we add a new constraint called per-task utilization invariability,

meaning every task’s utilization ui = ei/(pisi) is invariant
across modes as

ei
p1i s

1
i

=
ei
p2i s

2
i

= · · · = ei
pmi s

m
i

= u∗i (∀i = 1, 2, ..., n), (15)

where u∗i denotes identical utilization for τi across modes.
In that manner, even in the transient interval, the system’s
instantaneous utilization is maintained unchanged, which in
turn guarantees the system schedulability [17]. Now, we use u∗i s
as our decision variables, replacing sji s, which can be decided
later by sji = ei/(p

j
iu
∗
i ). Then our multi-mode optimization

can be formulated as follows:

minimize
π̂

P (π̂) =

m∑
j=1

n∑
i=1

eγi
(pji )

γ(u∗i )
γ−1

+ sγmin(1−
n∑
i=1

u∗i )

subject to U(π̂) =

n∑
i=1

u∗i ≤ 1,

Dj
δ(π̂) =

∑
i∈δ

2pji ≤ d
j (∀j ∈ [1,m],∀δ ∈ P),

(16)
where π̂ denotes the newly defined multi-mode system config-
uration with pji s and u∗i s. The objective function is the sum
of average power in each mode, after eliminating the α and β
from Eq. (11) for the notational simplicity. The first constraint
is the system schedulability now expressed by u∗i s. The second
constraint is for the dynamic deadlines across m modes.

C. Geometric Programming-based Optimization

Our multi-mode optimization problem can be efficiently
solved by GP, which is a mathematical optimization method
for solving specially formed optimization problems through
logarithmic transformations into convex ones. As a result, GP
always finds the (true, globally) optimal solution when the
problem is feasible [9]. To use GP, the objective function and
inequality constraints should be constructed by the special form
posynomial, as in f(x) =

∑K
k=1 ckx

a1k
1 xa2k2 · · ·xank

n , with
decision variables xis, non-negative coefficients cks, and real-
valued exponents {a11, · · · , anK}. Our objective functions and
constraints are in posynomial forms except for the idle-time
CPU power terms in the rightmost part of P (π) in Eq. (14)
and P (π̂) in Eq. (16).

However, it can be removed without affecting optimality as
long as ∃si 6= smin. The optimal solutions in such cases always
have 100% system utilization without any idle time. To prove
it intuitively, assume the system utilization U < 100%, if we
pick a certain task τi and decrease si, thus increasing ei, until
U reaches 100%, the average power of τi will decrease and the
idle power term will disappear, eventually saving more energy
than the original configuration. However, when we cannot
reduce processor speeds (∀i : si = smin), the optimal case
would have U < 100% as pi increases. Such cases only occur
when the deadline is extremely long after all sis are bounded
by smin. We are not considering such extreme cases in this
work.



IV. SAFE MODE CHANGE FOR SYSTEM RECONFIGURATION

For safe system reconfigurations with dynamic deadlines, the
followings should be respected even during mode changes:

• Periodicities. Every task period before and after the
mode change instant should be guaranteed, which can be
satisfied by the per-task utilization invariability constraint
introduced in Section III-B.

• Deadlines. Unfortunately, however, the above periodicities
do not guarantee dynamic deadlines, which span across
multiple tasks possibly with different modes during a
mode change.

Thus, this section focuses on developing a safe mode change
protocol in terms of end-to-end dynamic deadlines based on
the already guaranteed per-task periodicity.

Assume the system is switching from an old mode to a
new mode, represented by each mode’s shortest deadlines,
respectively, by

dold → dnew. (17)

When dold < dnew, it is termed as relaxing deadlines and in
the opposite as shrinking deadlines. System configurations for
each mode are denoted by πold → πnew, that is,

((pold1 , sold1 ), · · · , (poldn , soldn ))→
((pnew1 , snew1 ), · · · , (pnewn , snewn ))

(18)
in its expansion form. A mode change is triggered by a sensor
data arrival at time t0 with its dynamic deadline falling above
or below the old range. Then, we consider the following mode
change methods, as depicted in Fig. 4:

• ALAP (As Late As Possible) individually triggers per-
task mode changes after the new data make progress to
every incoming edge of it. The actual mode changes will
happen at the nearest period boundary after the trigger.

• AEAP (As Early As Possible) immediately triggers every
task regardless of the new data’s progress. The mode
change completes by t0 + maxi(poldi ) in the worst case
when the longest period of πold began right before t0.

Then we deal with the two cases: (i) relaxing and (ii) shrinking
deadlines with the above methods, respectively.

(i) Relaxing deadline. In this case, we use ALAP such that
the mode changes do not adversely affect the already ongoing
progress of old sensor data. Besides, we need to ensure that the
new sensor data do not violate dnew. Note that the new sensor
data may progress through tasks possibly with different modes,
which happens due to different speeds of different paths. For
example, in Fig. 4(a), τ4 has two incoming edges, where the
upper path requests the mode change while the slower lower
path still retains the old mode. Then the upper path τ1 → τ2 →
τ4 → τ5 can have a mixture of both modes while handling the
new sensor data. Thus, the worst-case delay for the new sensor

New data

arrival

(a) ALAP: tasks gradually change modes (white → blue) as the
new data progress along paths (curved red arrows) possibly at
different speeds.

New data

arrival

(b) AEAP: the new sensor data arrival immediately triggers
(straight red arrows) every task’s mode change.

Fig. 4: Baseline mode change protocols

data during ALAP mode changes can be calculated as in the
following:

Dnew(πold → πnew) =max
∀δ∈P

(∑
i∈δ

2max(poldi , pnewi )

)

≤ max
∀δ∈P

(∑
i∈δ

2pnewi

)
= dnew,

(19)

which is less than dnew since ∀i : poldi ≤ pnewi that is true when
relaxing deadlines. This is because, when the task utilization is
fixed, the value of pisi should remain the same across modes.
Therefore, pi should increase monotonically to decrease sγ−1i

in Eq. (11), reducing the average power in the next longer
deadline mode.

(ii) Shrinking deadlines. In this case, which basically makes
the situation more challenging, we use AEAP to quickly finish
mode changes, minimizing possible extra delays. Delays for
the old sensor data are naturally kept less than dold by the
same rationale in Eq. (19) since ∀i : poldi ≥ pnewi when
shrinking deadlines. However, regarding the new sensor data,
it can suffer extra delays if any task’s old period instance that
began before the new sensor data arrival persists long enough
such that the new data’s progress is unexpectedly delayed by
that persisting old task instance. Algorithm 1 calculates the
worst-case delay considering such negative effects for each path
δ, which is an ordered set of task indices in each path. Among
the calculated delays, we can find the longest. The algorithm
gradually accumulates delays by tasks in δ. Line 1 indicates
that it is unavoidable for the new sensor data to be waited by
the old period at the first task. Then we have two cases for
the remaining tasks: (i) its mode is already changed before the
data progress arrives (Line 4) and (ii) an old instance persists
(Line 6). In the former, we simply accumulate the new delay
component 2pnewi . In the latter, the persisting old (long) period
poldi hides away the accumulated delay up to then, resetting it
to poldi + pnewi .

By the above analyses, we claim that when relaxing deadlines
with ALAP, there is no deadline miss for both the already
ongoing progress and new ones. When shrinking deadlines with



Algorithm 1: Finding the worst-case delay for AEAP
Require: {(pold1 , · · · , poldn ), (pnew1 , · · · , pnewn ), δ}
Ensure: The worst-case delay of new sensor data for δ

1: D ← poldδ[1] + pnewδ[1] . δ[1] denotes its first element
2: for i ∈ δ \ {δ[1]} do
3: if D > poldi − pnewi then
4: D ← D + 2pnewi

5: else
6: D ← poldi + pnewi

7: return D

AEAP, the already ongoing progress rather benefits from it,
whereas new sensor data can suffer extra delays. However, we
can analyze the worst-case extra delays, which can be used
when planning appropriate safety margins in design time.

V. PRACTICAL CONSIDERATIONS

A. Extension to Discrete CPU Frequency Levels

Our optimization method yields speed factors in the con-
tinuous range between smin and 1. However, because most
CPUs, in practice, support only a predefined set of discrete
frequency levels, we need to adapt the resulting speed factors
to the discrete domain. One possible approach is to emulate
the exact speed factors by modulating between two neighboring
discrete frequency levels [18], [19] to obtain the near-optimal
energy reduction similar to the continuous frequency solution.
However, using such intra-task DVFS entangles other practical
considerations such as extra time and energy overhead asso-
ciated with excessive frequency transitions [20] and possible
transient faults [21], [22].

In light of this, we propose a more conservative but safer
method that uses the closest frequency level that is higher
than the corresponding optimal speed factor. Then every task’s
actual utilization is less than or equal to the ideal utilization in
accordance with the per-task utilization invariability constraint.
Thus, even though the approximated system will consume more
energy than the continuous one, it safely ensures schedulability
and end-to-end delay constraint during mode changes.

B. Extension to Multicore CPUs

Our system model assumes a singlecore CPU, which is
still dominant in the automotive industry due to the safety
concerns and software complexity caused by multicore CPUs.
Nonetheless, high performance multicore CPUs have recently
gained acceptance in the industry, necessitating the extension
of our method to multicore CPUs. Although this issue is not
within this paper’s scope, this section briefly discusses some
ideas for the extension.

One possible approach is to incorporate one of the global
multicore scheduling algorithms that still provide utilization-
based schedulability analysis. Then, only minor modifications
are necessary in the optimization formulation, and also the
mode change protocols can be easily reused. However, this
extension approach requires multiple tasks executing in parallel
to have different CPU speed levels, which is difficult to

implement because most CPUs do not support per-core DVFS
in practice.

Another approach, which seems more practical, is to use the
RT-Gang scheduling framework [23] into our method. RT-Gang
may eliminate many multicore issues including per-core DVFS
and unpredictable inter-core memory bandwidth contention by
its one-gang-at-a-time policy. Here, a gang is a predefined
group of tasks that is allowed to run in parallel. After the
gang grouping, the system model is transformed as in our
singlecore model, where despite the gang grouping problem,
our optimization method and mode change protocol can be
used without modification. For the remaining gang grouping,
we leave it for future work.

VI. EXPERIMENTS

A. Experimental Setup

Workload. We use the DAG in Fig. 2 with ten tasks, where
their WCETs are listed in Table. I. They are derived from
the actual measurements [24] on Nvidia Jetson TX2 platform
(Denver cores) and scaled considering typical high-performance
computing systems for autonomous driving. Unfortunately,
these industry-level applications are IP protected, so we were
not able to run them on a real platform.
Energy Model. We empirically found the energy parameters
for Eq. (11), as α=842.04, β=232.81, and γ=2.64, on the same
hardware platform in [24].
Discrete frequency levels. We use 12 evenly spaced frequen-
cies between 345 MHz and 2 GHz from the same hardware
platform in [24].
Scenarios. We use real-world driving scenarios from the
comma.ai driving dataset [7], where we picked ten 60-second
driving logs with their velocity from 0 km/h to 114 km/h as
depicted in Fig. 5.
Dynamic Deadlines. We converted velocities into deadlines
using Eq. (1) with λ=20 m and amax=2.5 ms-2. The short-
est deadline (617 ms) is obtained using the highest velocity
(114 km/h), while the longest deadline (2945 ms) is bounded
by smin=0.17. Then, the number of modes is chosen arbitrarily,
m=24, partitioning the range with equal length.
Optimization. For the GP solver, we use CVX [25] on a laptop
with a quad-core Intel Core i7@2.6 GHz CPU, where our
optimization takes about 14.6 seconds.
Simulation. We implemented a simulator supporting the EDF
scheduling and our mode change protocol, by which we can
precisely estimate the exact task schedules, end-to-end delays,
and energy consumption.

B. Evaluation

The goal of our evaluation is twofold: (i) illustrate the
benefit of using multiple frequency levels in dynamic deadline
situation over conventional methods that utilize only one or two
frequencies (ii) evaluate the effectiveness of our mode change
protocol. It is of no use if it compromises safety. The following
three methods are compared in the evaluation:
• Baseline: ∀i : si = 1;
• Static: optimized for the minimum deadline (617 ms);



Fig. 5: Real-world driving scenarios from comma.ai dataset

TABLE I: Workload information at maximum speed (si = 1)

Task Camera Grabber Lidar Grabber CAN SFM Lane detection Detection Loc EKF Planner DASM
WCET (ms) 0.25 2.75 0.15 6.95 10.55 29.00 73.70 1.10 3.10 0.325
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Fig. 6: Dynamic power optimization results
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Fig. 7: Simulation results with a real-world driving scenario

• Multi mode (OURS): method in Subsection III-B.

Fig. 6 shows the dynamic power optimization results of each
method. For Single mode, we solved the problem in Subsec-
tion III-A repeatedly for each deadline. In the leftmost mode
with the shortest deadline, the three methods except the baseline
method show an equal result (58.9%). However, as the deadline
increases, the dynamic power plunges to 1.0% in the rightmost
mode with the longest deadline. Another interesting observation
is that our multi-mode results do not reveal visible performance
degradation compared with the single-mode results, meaning
that the per-task utilization invariability constraint does not
critically affect the optimization results. On top of that, there
is a 75% reduction in overall optimization time when using
multi-mode formulation thanks to fewer decision variables.

Fig. 7 shows the simulation results with one of our driving
scenarios. Only in this experiment, we partition the deadline
range into six equal length modes for better visualization. As
the deadline changes, as depicted by the green dashed line,
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Fig. 8: Energy consumption with varying driving scenarios
(continuous frequency)

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 [
%

]

1 2 3 4 5 6 7 8 9 10

100

80

60

40

20

0

Driving scenario #

Static
Multi mode (OURS)

Fig. 9: Energy consumption with varying driving scenarios
(discrete frequencies)

mode changes are sporadically triggered, depicted by the rising
and falling edges of the blue line that roughly follows the
dynamic deadline. Note the small red staircase shapes at each
falling edge, which depicts the extra delays when shrinking
deadlines analyzed by Algorithm 1. More specifically, their
height represents the extra delay, while their width represents
the transient interval for each mode change. As shown in the
figure, we do not have any deadline miss in this scenario even
after considering the extra mode change delays. Additionally,
the bottom plot shows how the normalized dynamic power
varies (between 1.0% and 13.3%) depending on the mode
changes.

Fig. 8 shows the energy consumption, including static and
dynamic power, in driving scenarios using continuous fre-
quency. Though Static achieves a significant energy reduction
of 32% from baseline, Multi mode reduces further by timely



utilizing lower frequencies. Scenarios #3, #4, and #6 show
relatively low energy reductions since they maintain the vehicle
within a high-velocity range most of the time, making the
system remain in the short deadline modes. In the others, more
than half of the total energy was saved. On average, our method
achieved 69.3% and 54.8% energy reductions compared with
the baseline and the static methods, respectively.

Fig. 9 shows the energy consumption using discrete fre-
quencies as discussed in Section V-A. A discrete frequency
that is greater than or equal to the optimal one is assigned
to each task. Therefore, we expect the energy consumption
will increase in both methods. Static achieves 24% of energy
reduction, which is smaller than the previous case. Multi mode
still shows a significant reduction from Static, however, the
energy gap between them becomes smaller. In scenarios #3,
#4, and #6, the reduced gap is very notable. This is caused
by the nonlinearity in the power model in terms of speed
factor. The difference between the optimal and mapped discrete
frequency yields bigger difference in power consumption in the
higher frequency range. On average, there was a 31.8% increase
in energy consumption when mapped to discrete frequencies.
Our method achieved 59.3% and 46.4% energy reductions on
average compared with the baseline and the static methods,
respectively.

Throughout the experiments with the industry-level appli-
cations and real-life driving scenarios, we could not find any
deadline violation with our mode change protocols. However,
as we discussed in Section IV, the extra delays when shrinking
deadlines are unavoidable and they could be an issue depending
on vehicle’s maximum acceleration and mode lengths. In that
case, the violations can be avoided by selecting a shorter dead-
line mode considering possible mode change delays analyzed
in Section IV (i.e. a safety margin) in design time analysis. We
leave the choice of optimal margin for our future work since it
requires a thorough analysis.

VII. RELATED WORK

Dynamic deadlines. Recent studies [26], [27] presented
motivating examples of dynamic deadlines in autonomous driv-
ing, where object detection systems are commonly proposed
that adapt themselves to varying deadlines, demonstrating
the unique potential of autonomous driving systems. More
specifically, Lee and Nirjon [26] support dynamic deadlines
with selective subgraph executions by considering varying
time budgets. Heo et al. [27] support dynamic deadlines by
selectively executing multiple forward propagation paths of a
neural network with different execution times. Both studies
trade dynamic deadlines (or slacks) for improving the object
detection accuracy. However, little work has been done with
dynamic deadlines for the energy optimization of autonomous
driving.

DVFS-based energy optimization. There have been many
efforts to develop energy-efficient real-time systems, most of
which, however, assume only static deadlines. Broadly, there
are two frequently used energy saving approaches in hard real-
time systems: DVFS and dynamic power management (DPM).
In DVFS approaches, there is a body of literature to find

speed levels through offline optimization [12], [28]–[30]. These
approaches try to find critical speed factors under a static
deadline constraint, which is the lowest frequency satisfying
the given static timing constraint. In contrast, our method finds
the critical speed for each deadline through multiple modes
with different timing constraints and employs a safe mode
change protocol to freely go back and forth between them.
Another body of real-time DVFS approaches tries to reclaim
dynamic slacks [31], [32], which is not to be confused with
our dynamic deadlines; instead, they define dynamic slacks as
the difference between the worst-case and the actual execution
times. Note that dynamic slack reclaiming does not conflict
with our approach and could be used together for further energy
reductions.

DPM-based energy optimization. In DPM approaches,
cores are switched off during idle periods to reduce energy
consumption. It is useful when the system is underutilized.
However, each idle period should be large enough to offset
the energy overhead of frequent switching on and offs. Many
scheduling methods have been proposed to create large idle
periods [33]–[36]. Lee et al. [33] proposed leakage control EDF
scheduling, but it requires additional hardware to calculate the
sleep period. This impractical assumption was avoided in [35]
by using a simpler sleep period calculation method and the
enhanced race-to-halt (ERTH) algorithm. With ERTH, tasks
run at full speed to secure longer sleep time. DPM and DVFS
approaches are not orthogonal and can be used in conjunction.
However, satisfying the timing constraints during mode changes
with DPM approaches requires non-trivial considerations. Thus,
we leave integrating DPM for our future work.

VIII. CONCLUSION

This study is motivated by emerging autonomous driving
applications with time-varying dynamic deadlines, where the
computing system’s excessive energy consumption is a ma-
jor concern. Unlike traditional energy optimization methods
assuming rigid static deadlines, our solution approach tries
to utilize the dynamic slack obtained by adaptively relaxing
deadlines considering the vehicle’s physical state. For that,
our GP-based optimization method proactively exploits the
dynamic deadlines to find energy-efficient multi-mode system
configurations. Moreover, our safe mode change protocol en-
ables adaptive system reconfiguration between the predefined
modes. Our experimental results show an average of 46.4%
energy reduction from the previous method with static dead-
lines, demonstrating the great potential toward energy-efficient
autonomous driving systems.

Based on the theoretical foundation presented in this paper,
in the future, we plan to extend our work to incorporate other
energy saving techniques into our adaptive reconfiguration
and to consider practical issues in COTS CPUs including
multicore processors. Also, we plan to extend our system model
considering other accelerators such as GPUs.
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