
CLAIR: A Contract-based Framework for
Developing Resilient CPS Architectures

Sidharta Andalam, Daniel Jun Xian Ng, Arvind Easwaran
Nanyang Technological University (NTU), Singapore

Email: arvinde@ntu.edu.sg

Karthikeyan Thangamariappan
Delta Electronics Inc., Singapore

Email: karthikeyan.t@deltaww.com

Abstract—Industrial cyber-infrastructure is normally a multi-
layered architecture. The purpose of the layered architecture
is to hide complexity and allow independent evolution of the
layers. In this paper, we argue that this traditional strict
layering results in poor transparency across layers affecting the
ability to significantly improve resiliency. We propose a contract-
based methodology where components across and within the
layers of the cyber-infrastructure are associated with contracts
and a light-weight resilience manager. This allows the system
to detect faults (contract violation monitored using observers)
and react (change contracts dynamically) effectively. It results
in (1) improving transparency across layers; helps resiliency,
(2) decoupling fault-handling code from application code; helps
code maintenance, (3) systematically generate error-free fault-
handling code; reduces development time. Using an industrial
case study, we demonstrate the proposed methodology.

I. INTRODUCTION

A key focus of Industrial Cyber-Physical System (iCPS) is
to reduce factory downtime by employing a more intelligent
distributed system that automatically detects faults and dynam-
ically reconfigures to recover from faults without significantly
affecting the normal operations [1], [2]. We refer to such
systems as resilient systems.

Existing cyber-architecture for Cyber-Physical System
(CPS) follows the classical layered middleware with three
different layers such as application, platform and physical
layers [3], see Figure 1. (1) The physical layer comprises
physical components such as sensors, actuators, controllers
and communication hardware. (2) The platform layer
embodies computational and communicational platforms such
as operating systems and network managers, respectively.
(3) Finally, the application layer accommodates the software
components which describe the behaviour of an application.
In this paper, we focus on the following problems that are
applicable across the layers.

Problem 1: Lack of frameworks that enable cross-layer
interactions for managing resiliency.

Traditional hardware based redundancy techniques are ex-
pensive. In contrast, software based techniques are more
affordable and flexible. However, they are not very effective
due to the lack of transparency across the layers of the cyber-
infrastructure. In the following, we illustrate how cross-layer
interactions can improve the quality of resiliency by discussing
a few existing resilient architectures. Then, we briefly discuss

our framework which enables cross-layer interactions to man-
age resiliency.

In RIAPS [4] architecture, the focus is on developing a
distributed resilient CPS. As an example, a resilient discov-
ery service (DS) was explored. Using heartbeat signals and
timestamps, DS detects a failure of a publisher/subscriber
pair. When a failure occurs, DS de-registers the pair from
the list of registered services. A publisher/subscriber needs
to re-register once they become active. The process of de-
registering or re-registering is very time consuming and it
also needs to be communicated with neighbouring nodes. In
this scenario, the cause of the failure (e.g., intermittent fault
in the physical layer) and the expected recovery time (e.g. 2
seconds or 2 hours) were not available to the discovery service
manager (residing in the platform layer). If the recovery time
information was available to the DS manager, it can choose
not to de-register a publisher/subscriber and avoid unnecessary
time consuming registration process across all neighbouring
nodes.

In iLand [5] architecture, the focus is on developing a
reconfigurable service oriented distributed system. An appli-
cation is described as a graph, where each vertex is a service
provided by a component of the system. Interestingly, each
service may have zero or more alternative services. At runtime,
the reconfiguration manger may select an alternative service
based on faults. Once again, the reconfiguration manager that
is residing in the platform layer is unaware of the fault type
or the recovery time. If the platform layer could provide
the manager with the list of services that will be affected
due to the fault, the manager can select the right order of
services in the application graph. This reduces the number of
reconfigurations. The paper does not focus on the mechanisms
for detecting faults. Also, the architecture design does not
discuss any cross-layer interactions to improve resiliency.

For industrial applications based on the IEC 61499 stan-
dard [6], [7], [8], an approach to resiliency is provided using
a runtime reconfiguration manager [2]. Failure of node n
executing a publisher p is detected by the manger using
heartbeats. Then, based on ontology [2], [9], node n′ is
identified as an alternative to host the new producer p′. The
new producer is created dynamically and the connection to
consumer is modified. Once again, the manager residing in
the application layer is unaware of the cause of the node
failure. If the platform layer could provide the manager with

ar
X

iv
:2

00
4.

04
44

4v
2 

 [
cs

.S
E

] 
 1

3 
A

pr
 2

02
0



an expected recovery time, the manager could avoid a time
consuming reconfiguration process.

Overall, we believe that there is a need to improve trans-
parency across layers such that they work together to satisfy
resiliency needs effectively and at low cost.

Problem 2: Code pollution due to intertwined application
code and fault handling code. Managing the increasing
functional and safety requirements of industrial automation
systems is a daunting process. It results in large amount of
code that are hard to understand. The problem is elevated
even further as application code is intertwined with fault
handling code due to lack of clear guidelines [10]. In typical
manufacturing applications, fault handling code on average
takes the lion’s share amounting to nearly 83% [10], [11].
Most of this code is manually written and hence error prone,
making it harder to certify.

For industrial controllers, a fault isolation methodology is
presented using diagnostics automaton that can observe an
order/pattern of events that leads to a fault [12]. This approach
is prone to the well-known state-explosion problem. Also, it
is not expressive enough to describe fault detection techniques
based on dynamic models such as Ordinary Differential Equa-
tions (ODEs) [13].

Overall, we believe that there is a need for formal approach
that systematically decouples fault-handling techniques from
application code, and automatically generate fault-handling
code with minimal user intervention.

Proposed solution. In our approach, the application and
the platform layers are described as a network of compo-
nents. Components across and within the layers of the cyber-
infrastructure are associated with a resilience manger that
ensures lightweight fault monitoring and response. We use
formal contracts to capture the assumptions on the behaviour
of the environment and guarantees about the behaviour of
the component [14]. A failure of a contract is treated as a
fault. In response to a fault, resilience manager communicates
with the resilience managers of other components to find
a feasible solution efficiently. E.g., if an object detection
component on a conveyor belt of an assembly line is unable
to meet its deadline (failure of time-based contract), as a
response the resilience manger can switch to a less time
consuming detection algorithm or communicate with the motor
to temporarily reduce the speed of the conveyor belt.

Overall, the resiliency of the system is managed by two
types of resilience managers. (a) A component-level resilience
manager (denoted as RM in Figure 1) that is associated to a
single component. (b) A layer-level resilience manager (see
top of the figure) that is associated to each layer. For the case
when a component-level resilience manager is unable to find a
feasible solution, it informs the layer-level resilience manger.
Our intuition is that at runtime, most of the resiliency issues
can be handled by the component-level resilience manager.
Finally, fault channels are used for communication between
resilience managers. The proposed methodology was briefly

introduced earlier [15]. In comparison, this paper presents a
more detailed architecture and implementation and validation
of the proposed methodology.

The proposed contract-based methodology (CLAIR) for
resiliency can be integrated with existing frameworks for
designing cyber-infrastructure for CPS such as METROII [16],
OpenMETA [17], RIAPS [4] and iLAND [5]. They present
complementary features to manage application, resources,
devices, logs and security.

Fig. 1. Proposed cyber-architecture with integrated resilience manger (RM)
enabling cross-layer component-level interactions.

Key contributions of the paper:
1) We propose a new contract-based methodology to en-

able resilient cyber-architecture. Components across and
within the layers of the architecture are associated with
contracts and a light-weight resilience manager, allowing
cross-layer interactions.

2) We use contracts to formally capture the requirements of
a component. This allows us to systematically generate
observers what are based on computational models such
as Finite State Machine (FSM), Timed Automata (TA)
and Hybrid Automata (HA). These observers are inde-
pendent of the application/component behaviour, avoiding
code pollution.

3) We implement the architecture using industry standards
such as IEC 61499 and Data Distribution Service (DDS).
Using an industrial application, we illustrate the features
of the proposed contract-based methodology.

II. THE PROPOSED FRAMEWORK

In the following we discuss some of the non-functional
requirements of the proposed architecture and our approach
towards implementing them.

1. Cross-layer Interactivity: Allows fine-grained cross-
layer communication such that a fault detection and its han-
dling can be implemented across various layers, resulting in a
cost-effective and robust cyber-infrastructure. In our approach,
component-level resilience manger interacts with components
within and across layers. This helps to reduce fault detection
and handling time. Furthermore, the layer-level resilience
manager provides a more centralised solution for resiliency.



2. Composability: We follow the well know component-
based design methodology to ensure functional properties of
a component are not influenced by other components. Com-
ponent behaviour is not altered due to the interactions with
other components. Furthermore, system-level properties can
be realised from a network of component-level properties [3].
However, non-functional requirements such as timing are hard
to guarantee as multiple components of an application layer
can be mapped to a single component of a platform layer.

3. Dynamicity:Components are added/removed dynami-
cally. The system should be flexible, self-aware and self-
optimise based on the availability of the resources [2]. In our
approach, we depend on existing discovery services [4], [18]
and the resilience manager to marshal additional resources.

4. Adaptation Quality: Given the limited shared resources
and possible conflicting recovery strategies, the system should
reason about the quality of adaptations to disturbances [19]. In
future, we plan to incorporate a multi-dimensional resilience
metric [20] to improve resiliency. The metric needs to be
abstract and integrates information across the layers. Also, we
need to understand the impact of a failure at component-level
on the system-level properties [21].

A. Overview of a component

Fig. 2. Architecture overview of a component and a resilience manager.

Figure 2 presents an overview of the component and the
resilience manager. A component is an open system that
(1) receives inputs from the environment, (2) executes a
behaviour, and (3) generates output to the environment. The
environment could be the collection of other components or
the physical world.
• Interface: It defines the Input/Output data channels of a

component.
• Behaviours: Multiple behaviours can be defined for a given

interface. The resilience manager dynamically selects the
behaviour of the component based on requirements.

• Contracts: It clearly captures the assumptions on the
behaviour of the environment, and guarantees about the
behaviour of the component [14]. At runtime, the resilience

manager can switch between contracts to react to the dis-
turbances in the system.

• Observers: It monitors the system requirements at run-
time [22], [23], [24]. We express them using formal models
such as finite state machine [23], timed automaton [25], [24]
or hybrid automaton [26].

• Resilience manager: Detects faults (using observers) and
decides (control logic) the best course of action. It also
responds to fault information from other components, via
fault channels.

B. Overview of the design flow

Figure 3 presents an overview of the design flow. In stage 1,
(a) an application is described as a component graph, (b) map-
ping between the components of the application and platform
layer is provided and (c) the requirements are captured for-
mally using contracts [14]. In stage 2, observers are generated
based on contract specifications. They check the validity of
the contracts at runtime. In stage 3, we generate computation
and communication models using industry standard such as
IEC 61499 and DDS. Finally, in stage 4, using off-the-shelf
tools we generate C-code which is executed by the platform
layer. For each stage, we now elaborate on our design choices
and their advantages.

Fig. 3. Overview of the design flow for the proposed methodology.

Stage 1. We have chosen to describe the application as
a component graph because component-based software en-
gineering has been successfully used for large-scale system
designs. It relies on the concept of developing basic reusable
components with well defined interfaces. During integration
of components, their well-defined interfaces ensure easy as-
sembly. They are used in popular software tools such as
Simulink [27].

Requirements engineering presents a major challenge for
software development. Poorly managed and ill-defined require-
ments lead to lack of visibility into changing requirements and
hinders traceability between requirements and implementation.
Using contracts [14], we (1) clearly define the requirements,
(2) improve visibility due to concise and formal descriptions.
More importantly, contracts allow us to systematically decou-
ple fault-detection code from the application code.

Stage 2. Static verification techniques are not generally
adequate to validate whether or not the contracts are satisfied.
This may be because some of the requirements can only
be verified with the data available at runtime (e.g., a sensor



producing invalid data). As an alternative, we use observers to
monitor the contracts at runtime [22], [24]. To observe static
and dynamic behaviour of a system, we express observers
using computational models such as finite state machine [23],
timed automaton [25], [24] and hybrid automaton [26]. Fur-
thermore, due to the well-defined computation models, the
executable code (fault-handling code) can be automatically
generated with minimal human intervention. This ensures
error-free production ready code.

Stage 3. Since we are targeting industrial automation,
we have chosen to implement the application based on the
IEC 61499 standard [6], [7], [8]. It uses the component-
based engineering to improve software quality and reduce
the development time. Importantly, the standard provides a
portable high-level executable specification framework for dis-
tributed automation. It also allows us to develop reconfigurable
applications enabling self-adaptive cyber-physical systems [2].

For communication between the components, we have cho-
sen to use DDS as it enables communication mechanisms that
go beyond the classic publish-subscribe model [28], [18]. It
can handle the interruptions when a publisher/subscriber is
temporarily or permanently unavailable. Furthermore, it allows
us to specify QoS parameters over the communication between
a publisher and a subscriber.

Stage 4. Finally, we have chosen C language because it is
widely supported by many micro-controllers.

III. EXAMPLE APPLICATION

Figure 4 presents the running example of this paper which
reflects a typical assembly line setup in manufacturing. The
goal of the application is to successfully identify the work
pieces (WP) by their color (red, blue and white) and sort them
into their respective storage bins (SB1, SB2 and SB3). The
application relies on input from a color sensor (to detect the
color of the WP), pulse signal from an encoder (for computing
the motor steps), and 3 light sensors to detect the position of
a work piece. Also, the application controls the actuators such
as the three ejectors (E1, E2 and E3) and a motor.

Given the assembly line is continuously moving and the
cyber-infrastructure is distributed, the challenge is to process
sensor information and to activate the ejectors at the right time
such that the work pieces reach their respective storage bins.
Furthermore, the system needs to be resilient to disturbances
in the cyber-infrastructure.

A. Application graph

The assembly line application is described as an application
graph. The nodes and edges of the graph represent components
and communication between the components, respectively.
Figure 4 shows the application graph with seven components
C1, . . . , C7. Component C1 periodically samples the pulse
signal to count the number of motor steps. The four light
barriers (LS0, . . . , LS3) are sampled periodically by Compo-
nent C2. Component C3 periodically samples from the colour
sensor (CS). Component C4 computes when an ejector needs
to be triggered based on information form the sensors. The

Fig. 4. An industrial assembly line sorting application. A colour sensor is
used to detect the colour of the work pieces (WP) on a continuously moving
conveyor belt and ejectors (E1, E2, E3) are used push the work pieces into
sorting bins (SB1, SB2, SB3). Light sensors (LS) are used as barriers to
detect a work piece. The figure shows a blue work piece being pushed into
bin SB2 by the ejector E2. The application is described as a network of
components (C1, . . . , C7) that are mapped to the components in the platform
layer (N1, . . . , N3) .

three ejectors (E1, E2, E3) are controlled via components C5.
Component C6 controls the speed of the motor (and the
conveyor belt). Finally, C7 periodically measures the pressure
to detect leaks in the air pressure controlled ejectors.

B. Mapping from application graph to platform graph

The platform layer comprises of computational plat-
forms (N1, . . . , N3) and connecting communication platforms
(M1, . . . ,M3). The mapping of the components in an appli-
cation graph to computational platforms is shown in Figure 4.
An example of a computation platform is a Linux OS and a
communication platform is a software defined network.

Earlier in Section II-A, we described that a component may
have multiple behaviours. E.g., component C1 is mapped to
the computational platform N1. Assuming that C1 has three
possible behaviours (BEH ∈ {behc1

1 , behc1
2 , behc1

3 }), based
on the platform mapping information we assume that the fixed
execution cost can be described using the function EC :
BEH → R. We also assume that the communication between
components is handled by an active network infrastructure.
Due to the dynamic nature of the network, the communication
cost may not be constant. The cost can be described using the
function CC : BEH → R.

C. Application requirements

Using the constant speed of the conveyor belt we can
compute the time taken for a work piece to travel from the
first light sensor (LS0) to an actuator like ejector E1, denoted
as ∆LS0→E1 . We assume that the decomposition of end-to-
end timing constraints (e.g., 4 seconds from LS0 to E1) into
deadlines for each component are given. E.g., Component C1

must process the pulse signal within 10ms (TPCproc).

IV. CONTRACT-BASED FAULT-DETECTION

In this section, we capture the component-level require-
ments using contracts based on an existing notation [14].



A. Timing requirements
The application component C1 executing on platform

node N1 is required to sample the pulse signal every TPCsamp.
Furthermore, the time required to process the data should be
less than TPCproc. The requirements are captured using the
following contract, denoted as symbol C 1

C1
. Symbol > denotes

that the contract does not make any assumptions/constraints.

C 1
C1

:


inputs : pc data ∈ R
outputs : c1 data ∈ R
assumptions : >
guarantees : c1 data = process(pc data)

every TPCsamp

within TPCproc

B. Observers for runtime validation
The contracts are monitored at run-time using observers. In

our approach, the observers are expressed using computational
models such as finite state machine [23], timed automa-
ton [25], [24] or hybrid automaton [26]. In this section, we
illustrate that observers can be generated from the contracts,
which capture the requirements.

1) Timed Automata (TA) as an observer: Timed automata
have been successfully used for fault diagnosis of industrial
processes [24]. For the running example, the contract C 1

C1

specifies the timing requirements on the sampling time of the
pulse counter (TPCproc) and the deadline for the processing
data (TPCproc). The observer is implemented using a timed
automata [25], see Figure 5.

ṫ = 1

Idle

initial
t = 0

ṫ = 1

Process

ṫ = 1

Error1

ṫ = 1

Error2

start!
t=0

end!
t=0

t>TPCsamp

t=0,err(1)!
t>TPCproc

t=0,err(2)!

reset!
reset!

Fig. 5. An observer implemented using a timed automata. It detects if the
process deadline (TPCproc) or sampling rate (TPCsamp) are not satisfied.
This observer implements the contract C 1

C1
. For brevity, invariants are not

shown.

V. IMPLEMENTATION OF THE CYBER-INFRASTRUCTURE

In this section, we present implementation details of the 3-
layered cyber infrastructure (see Figure 1) w.r.t. the assembly-
line example (see Figure 4). The implementation has an
application, platform and physical layers as shown in Figure 6.

A. Application layer
The application layer accommodates the software compo-

nents which describe the behaviour of an application. Earlier
in Section II-A, we described a component consisting of an
interface, behaviours, contracts and observers. Furthermore, an
application is specified as a network of components.

1) Component specifications.: An example specification
with Pulse counter (Component C1), Controller
(Component C4) and Ejector (Component C5) is presented
in Figure 6. (a) Interface: The Pulse counter has one
sensor input (0 or 1) which is a rotary encoder connected
to a mechanical switch. It has one output MotorStep that
represents the movement of the conveyor belt. For example,
a work piece takes 7 conveyor-belt steps to move from the
first light barrier to the colour sensor. (b) Behaviours: The
component Pulse counter has two behaviours to address
the noise from the mechanical switch. In Beh1, a delay of
9 ms is used when implementing the de-bounce functionality.
In Beh2, the safety margin is reduced such that the delay
period is only 4 ms. (c) The contract captures the requirement
on the sampling frequency (every TPCsamp) and the deadline
on the processing time (within TPCproc). The corresponding
observer for monitoring the contract at runtime is modelled
using timed automata, see Figure 5. Finally, at runtime the
resilience manager switches between behaviours to satisfy the
contract. Later in benchmarking, we demonstrate the response
of the resilience manager when an observer fails.

2) Translating components to function blocks of
IEC 61499 standard.: IEC 61499 framework represents a
component-based solution for distributed industrial automation
systems [29]. An application is described as a network of func-
tion blocks, see Figure 7. Given the description of a component
(see marker 1, in Figure 7), we present the translation to IEC
61499 standard.

The component’s interface and behaviours are mapped to
a basic function block, see marker 2. Due to the event-
driven semantics of IEC61499, we need to associate input and
outputs with events. E.g., pulse is mapped to the input event
pulseE and the input variable pulseData. When the event
occurs the associated data is updated internally, see inputs of
the block near marker 5. The control logic of the function
block is described using an Execution Control Chart (ECC).
It receives input events, and according to the current state,
executes associated algorithms and emits events. Marker 6
depicts an ECC with 4 states. They are Start, Init, Beh1
and Beh2. When the control reaches the Init state, the
associated algorithm AlgInit initialises the internal and
output variables (see marker 7). The IEC 61499 standard
allows the behaviour to be described using C-language.

The component’s resilience manager consists of a control
logic and a set of observers that monitor the contracts. At
runtime the resilience manager switches between behaviours
(using the behSelect) to satisfy the contracts. An example
observer based on timed automata is implemented using a
timer, see marker 4. The ECC shows that the observer mon-
itors the time between pulses (pulseE) to ensure that the
maximum time between two samples is satisfied (TPCsamp)
as input to the timer). For more details about the standard
and the function blocks, see [29]. Later in the benchmarking
section, we demonstrate the response of the resilience manager
when an observer fails.



Fig. 6. An implementation of the proposed contract based approach for resilience. Only few components of the running example are shown due to brevity.



Fig. 7. Translating the specification of the Pulse counter component (interface, behaviours, observers and the resilience manager) to IEC 61499 standard
(function blocks and control chart with states and algorithms).

3) Translating IEC 61499 standard to executable C-code:
Scheduling of function blocks can be based on either an
event-triggered or a cyclic-execution model. Event-triggered
scheduling executes a function block when one of the input
events are triggered. After execution of the block, the block
may emit events which may trigger execution of another
blocks. A queuing mechanism is used to address multiple
events. FORTE is one such runtime environment which is
integrated with 4DIAC IDE [30], [31]. Cyclic execution is an
alternative scheduling model which resembles Programmable
Logic Controller (PLC) scan cycles. Here all function blocks
are executed only once in each cycle. This execution model is
supported by an off-the-shelf tool, called ISaGRAF [32]. Both
tools depend on a complex runtime environment that is com-
putationally intensive and cannot guarantee a deterministic and
a deadlock-free execution. In contrast, a synchronous approach
for the execution of function blocks has been developed [29],
[23]. It does not require a runtime environment and provides
a deterministic and deadlock free code. The tool generated
C-code can be easily executed on a micro-controller. This
provides flexibility for our implementation as we integrate
other technologies such as DDS. Figure 6 shows the generated
C-codes for the function blocks.

B. Platform layer

The platform layer embodies computational and commu-
nicational platforms. In figure 6, the generated C-code is
executed on a Linux based computational platforms. More
specifically, we use Raspbian GNU/Linux 8.0 operating sys-
tem (kernel version 4.9.35-v7) [33].

Communication across the computational nodes is governed
by the networking middle-ware, called, Data Distribution
Service (DDS) [28], [18]. DDS enables mechanisms that go
beyond the classic publish-subscribe model. It can manage
the interruptions when a publisher/subscriber is temporarily or
permanently unavailable. Furthermore, it allows us to specify
QoS parameters over the communication between a publisher
and a subscriber. These parameters can be integrated into the
resilience manager using contracts.

C. Physical layer

All the sensors (light barriers, colour sensor, pulse switch)
and actuators (motors, air compressor, ejectors) are part of the
development kit from Fischertechnik (product #536633). Most
of the computation is performed by the microcontrollers. We
have chosen Raspberry Pi 3 due to its flexibility. The processor
is a quad core executing at 1.2 GHz and has 1 GB RAM. A



major drawback is that it does not support analogue to digital
converters. As a cost-effective solution, we used Arduino Pro
Mini development board. Ethernet is used for connecting all
the Raspberry Pis.

VI. AN INDUSTRIAL CASES STUDY

In this section, we describe the benchmarking process used
to validate the proposed contract-based approach. Figure 8
shows an implementation of the assembly line sorting appli-
cation presented earlier in Figure 4. Using the testbed, we
implemented and deployed our resilient cyber-infrastructure
and the contract-based approach. In the following, we present
two experiments. First, we validate if the end-to-end timing
requirement of the application is satisfied. Second, we present
a scenario where a resilience manager of a component changes
the component’s behaviour when a fault is detected. We
observe the fault-detection and recovery times.

Fig. 8. Evaluation tested reflecting the assembly line sorting application
presented earlier in Figure 4.

A. Experiment 1: validating end-to-end timing constraints

Earlier in Section III-C, we presented that the end-to-
end delay of the application should be less than 4 seconds.
A failure to meet the deadline may cause a late activation
of an ejector. This means a work piece is unable to reach
its respective storage bin. In this experiment we validate
the implementation by analysing an execution time sequence
graph. Figure 9 presents the graph for the three components
(Pulse counter, Controller and Ejector) that are
of interest. The three components are executing in parallel on
three different micro controllers. We observe that the Pulse
counter executes its behaviour Beh 1 for a duration of
9.1 ms. It computes the value of the new MotorSteps as 19.
This information is then published by the DDS. The total
duration to compute and send motorSteps is 9.72 ms. In
parallel, Controller receives the data and computes the
new value for triggerSteps as 37. In parallel, Ejector
awaits the value of triggerSteps to match the value
of current motorSteps which is periodically sent by the
Pulse counter. The ejector is then activated to push a
work piece from the assembly line. Finally, the measured end-
to-end delay of the implementation is 3.8 seconds which is less
than the required 4 seconds.

Fig. 9. Execution of the distributed system (without any faults).

B. Experiment 2: validating the response to a fault

For the Pulse counter (Component C1) presented in
Figure 9, the execution time sequence graph is presented in
Figure 10. The objective of the component is to increment the
value of motorStep for every pulse, see the figure. The pulse
signal is generated from a mechanical switch (the transient
noise is not shown in the figure). To address the noise, a
simple denounce algorithm with waiting time of 9 ms and
4 ms is implemented by Beh 1 and Beh 2, respectively.
Furthermore, as explained earlier, the deadline for processing
the pulse sensor is 10 ms.

During the first two pulses (0 to 300 ms) the component
does not experience any faults. The contract (deadline of
10 ms) is always satisfied because the execution time of
Beh 1 is always less than 10 ms. During the third pulse,
a fault occurs in the computational platform which results
in longer execution of Beh 1. From the figure, we observe
the execution of Beh 1 to be 259.2 ms due to the fault.
This violates the contract after 10 ms. This is also when the
architecture detects the fault. The resilience manger decides
to change the behaviour of the component from Beh 1
to Beh 2. However, we see the impact on the execution
changing only in the fifth pulse.

Fig. 10. Execution time sequence graph of the Pulse counter



The recovery period for the component is the time from
when fault occurred to the point when the contract is once
again satisfied. For our example, the recovery period is
460.5 ms, see Figure 10. Due to the fault, the end-to-end
deadline was not satisfied at the application layer. This resulted
in an incorrect motorStep value. In the worst case, all
work pieces that are on the conveyor belt when the fault
occurred may have been sorted incorrectly. Thus, the recovery
period is equivalent to the end-to-end delay of the applica-
tion which is approximately less than 4 seconds. To reduce
the application-level recovery time, we can communicate the
missed motorStep information to the Controller which
can adjust the triggerStep for when the ejectors are to be
activated.

VII. CONCLUSIONS & FUTURE WORK

To enable a resilient cyber-infrastructure for Industry 4.0,
we have presented a new contract-based methodology called
CLAIR. Applications are described as a set of modular compo-
nents that are distributed over a network. Contracts are used for
describing the component’s interaction with other components
(within and across layers). Finally, the contract are monitored
using runtime observers. We detect failures (contract violation)
and react (change of contracts) to the disturbances, providing
resiliency. Finally, using an industrial case study we have
validated the proposed architecture.

In future, we plan to explore efficient communication be-
tween resilience managers to reduce system-level recovery
period. Also, develop a multi-dimensional resilience metric
to evaluate resilience with respect to different performance
indicators such as safety, throughput, recovery time, etc.

REFERENCES

[1] L. Jay, B. Behrad, and K. Hung-An, “A Cyber-Physical Systems archi-
tecture for Industry 4.0-based manufacturing systems,” Manufacturing
Letters, vol. 3, pp. 18–23, Jan. 2015.

[2] W. Dai, V. N. Dubinin, J. H. Christensen, V. Vyatkin, and X. Guan,
“Toward Self-Manageable and Adaptive Industrial Cyber-Physical Sys-
tems With Knowledge-Driven Autonomic Service Management,” IEEE
Transactions on Industrial Informatics, vol. 13, pp. 725–736, Apr. 2017.

[3] J. Sztipanovits, X. Koutsoukos, G. Karsai, N. Kottenstette, P. Antsaklis,
V. Gupta, B. Goodwine, J. Baras, and S. Wang, “Toward a Science of
Cyber-Physical System Integration,” Proceedings of the IEEE, vol. 100,
pp. 29–44, Jan. 2012.

[4] E. Scott, I. Madari, A. Dubey, and G. Karsai, “RIAPS: Resilient
Information Architecture Platform for Decentralized Smart Systems,”
in International Symposium on Real-time Computing, IEEE, May 2017.

[5] M. G. Valls, I. R. Lopez, and L. F. Villar, “iLAND: An Enhanced
Middleware for Real-Time Reconfiguration of Service Oriented Dis-
tributed Real-Time Systems,” IEEE Transactions on Industrial Infor-
matics, vol. 9, pp. 228–236, Feb. 2013.

[6] Function blocks - Part 1: Architecture. Geneva: International Elec-
trotechnical Commission, 2012.

[7] Function blocks - Part 2: Software tool requirements. Geneva: Interna-
tional Electrotechnical Commission, 2012.

[8] Function blocks - Part 4: Rules for compliance profiles. Geneva:
International Electrotechnical Commission, 2013.

[9] D. Ratasich, O. Hftberger, H. Isakovic, M. Shafique, and R. Grosu,
“A Self-Healing Framework for Building Resilient Cyber-Physical Sys-
tems,” in Proceedings of the International Symposium on Real-time
Distributed Computing, pp. 133–140, IEEE, May 2017.

[10] M. Steinegger, A. Zoitl, M. Fein, and G. Schitter, “Design patterns for
separating fault handling from control code in discrete manufacturing
systems,” in Annual Conference of the IEEE Industrial Electronics
Society, pp. 4368–4373, Nov. 2013.

[11] K. Güttel, “Konzept zur generierung von steuerungscode für ferti-
gungsanlagen unter verwendung wissensbasierter methoden,” in VDI
Verlag, vol. 444, 2013.

[12] F. Luca, A. Massimo, and D. Alessio, “A methodology for fault isolation
and identification in automated equipments,” in IEEE International
Conference on Industrial Informatics, pp. 157–162, Jul. 2011.

[13] R. Isermann, “Model-based fault-detection and diagnosis: status and
applications,” Annual Reviews in Control, vol. 29, no. 1, pp. 71 – 85,
2005.

[14] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet,
P. Reinkemeier, A. Sangiovanni-Vincentelli, W. Damm, T. Henzinger,
and K. Larsen, “Contracts for Systems Design: Theory [Research
Report] RR-8759,” tech. rep., 2015.

[15] S. Andalam, D. J. X. Ng, A. Easwaran, and K. Thangamariap-
pan, “Contract-based methodology for developing resilient cyber-
infrastructure in the industry 4.0 era,” IEEE Embedded Systems Letters,
vol. PP, no. 99, pp. 1–1, 2018.

[16] A. Davare, D. Densmore, L. Guo, R. Passerone, A. L. Sangiovanni-
Vincentelli, A. Simalatsar, and Q. Zhu, “metroII: A Design Environment
for Cyber-physical Systems,” ACM Transactions on Embedded Comput-
ing Systems, vol. 12, pp. 49:1–49:31, Mar. 2013.

[17] J. Sztipanovits, T. Bapty, S. Neema, L. Howard, and E. Jackson,
OpenMETA: A Model- and Component-Based Design Tool Chain for
Cyber-Physical Systems, vol. 8415, pp. 235–248. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2014.

[18] “RTI Connext DDS - Fast, scalable and resilient software connectivity
platform.” https://www.rti.com/products/dds (Last visited: 26 July 2017).

[19] G. Denker, N. Dutt, S. Mehrotra, M.-O. Stehr, C. Talcott, and
N. Venkatasubramanian, “Resilient dependable cyber-physical systems:
a middleware perspective,” Journal of Internet Services and Applica-
tions, vol. 3, pp. 41–49, May 2012.

[20] I. Friedberg, K. McLaughlin, P. Smith, and M. Wurzenberger, “Towards
a Resilience Metric Framework for Cyber-physical Systems,” in Inter-
national Symposium for ICS & SCADA Cyber Security Research 2016,
(UK), pp. 1–4, BCS Learning & Development Ltd., 2016.

[21] G. Gssler and D. L. Mtayer, “A general framework for blaming
in component-based systems,” Science of Computer Programming,
vol. 113, pp. 223 – 235, 2015.

[22] S. X. Ding, Model-based Fault Diagnosis Techniques: Design Schemes,
Algorithms, and Tools. Springer, 1st ed., Jan. 2008.

[23] R. S. Z. E. Bhatti and P. S. Roop, “Observer based verification of
IEC 61499 function blocks,” in 9th IEEE International Conference on
Industrial Informatics, pp. 609–614, Jul. 2011.

[24] L. Mhamdi, B. Maaref, H. Dhouibi, H. Messaoud, and Z. S. Abazi,
“Diagnosis of hybrid systems through observers and timed automata,”
in International Conference on Control, Decision and Information
Technologies (CoDIT), pp. 164–169, Apr. 2016.

[25] R. Alur and D. L. Dill, “A Theory of Timed Automata,” Theor. Comput.
Sci., vol. 126, pp. 183–235, Apr. 1994.

[26] T. A. Henzinger, “The theory of hybrid automata,” in Proceedings IEEE
Symposium on Logic in Computer Science, pp. 278–292, Jul. 1996.

[27] “Mathworks - an environment for modelling and simulating combi-
natorial and sequential decision logic based on state machines and
flow charts..” https://www.mathworks.com/products/stateflow.html (Last
visited: 18 July 2017).

[28] G. Pardo-Castellote, “OMG Data-Distribution Service: architectural
overview,” in International Conference on Distributed Computing Sys-
tems Workshops, pp. 200–206, May 2003.

[29] L. H. Yoong, P. S. Roop, Z. E. Bhatti, and M. M. Y. Kuo, IEC 61499 in
a Nutshell, pp. 17–33. Cham: Springer International Publishing, 2015.

[30] “4DIAC - Framework for Industrial Automation and Control.”
https://eclipse.org/4diac/(Last visited: 13 Sept. 2017).

[31] A. Zoitl, T. Strasser, and G. Ebenhofer, “Developing modular reusable
IEC 61499 control applications with 4DIAC,” in Industrial Informatics,
IEEE International Conference on, pp. 358–363, Jul. 2013.

[32] “ISaGRAF - Workbench from programming IEC61499.”
http://www.isagraf.com(Last visited: 13 Sept. 2017).

[33] “Raspbian - Official operating system supported by RaspberryPi.”
https://www.raspberrypi.org/downloads/raspbian/ (Dowloaded on: 05
July 2017).


	I Introduction
	II The proposed framework
	II-A Overview of a component
	II-B Overview of the design flow

	III Example application
	III-A Application graph
	III-B Mapping from application graph to platform graph
	III-C Application requirements

	IV Contract-based fault-detection
	IV-A Timing requirements 
	IV-B Observers for runtime validation
	IV-B1 TA! (TA!) as an observer


	V Implementation of the Cyber-infrastructure 
	V-A Application layer
	V-A1 Component specifications.
	V-A2 Translating components to function blocks of IEC 61499 standard.
	V-A3 Translating IEC 61499 standard to executable C-code

	V-B Platform layer
	V-C Physical layer

	VI An industrial cases study 
	VI-A Experiment 1: validating end-to-end timing constraints
	VI-B Experiment 2: validating the response to a fault

	VII Conclusions & Future work 
	References

