
Energy-aware Resource Allocation in Multi-mode
Automotive Applications with Hard Real-Time

Constraints
Piotr Dziurzanski, Amit Kumar Singh and Leandro Soares Indrusiak

Department of Computer Science, University of York, Deramore Lane, Heslington, York, YO10 5GH, UK.
{Piotr.Dziurzanski, Amit.Singh, Leandro.Indrusiak}@york.ac.uk

Abstract—This paper presents an energy aware resource al-
location approach that benefits from modal nature of hard-
real time systems under consideration. The modal nature of the
considered applications made it possible to decrease the number
of active cores consuming high power in certain modes or to
switch into core states with lower power consumption, which
lead to considerable energy savings while still not violating any
of the timing constraints. For the considered automotive use case,
the number of required cores has been decreased by up to 75%
in a particular mode and relatively low amount of data is to
be migrated during the mode change. The trade-off between the
amount of data to be migrated and energy dissipation in the
subsequent state is also analysed.

I. INTRODUCTION

In contemporary cars the number of electronic control units
(ECUs) sometimes reaches even 100. Since building an em-
bedded system comprised of such number of devices is rather
challenging, the automotive industry gradually resigns from
their paradigm of using a separate unit for each functionality
[10]. This has led to the requirement of placing a number of
ever more sophisticated functionalities in one chip, which has
resulted in appearance of multi-core ECUs [19].

Based on the AUTOSAR (AUTomotive Open System AR-
chitecture) standard [1], atomic software components, named
runnables, are mapping statically (i.e. determined during de-
sign time) into cores since it is less complex and more pre-
dictable than dynamic resource allocation [8]. The runnables
in automotive systems are usually confined with hard real-
time constraints. Consequently, the cores have to execute all
the tasks on time even for their worst-case execution behavior,
where they take the worst-case execution time (WCET), which
is usually much higher than the average execution time [18].
The difference between the worst and average task execution
times can be decreased by exploiting modal nature of such
applications. The modal nature determines the number of ways
in which the applications can behave, referred to as modes, and
it can be known at design time.

Some modes of an example gasoline engine, together with
its relation with its throttle, RPMs and acceleration pedal are
illustrated in Fig. 1 (idea of this picture has been taken from
[11]). The starting mode, PowerUp, describes the situation
when the the key has been just inserted into the ignition. In the

RPM

idle RPM

throttle [%]

idle threshold

wide open
throttle threshold

0

0

PowerUp Stalled Cranking Idle Drive

Fig. 1. Modes in DemoCar

following Stalled mode the throttle is still closed. In cranking
mode the engine starts, so the number of RPM increses up
to the idle RPM level. Then the engine stays in the Idle
mode as long as the driver does not push the accelerator
pedal. Thereafter, the current mode changes to Drive, where
the throttle opens and the number of RPM grows above the
idle RPM level. If each mode is analysed independently, the
average execution time may be closer to the WCET determined
for that mode [13].

In different modes, the contexts of runnables that are
executed on different cores need to be migrated from one core
to another. This sets additional requirements for the available
communication bandwidth. The process of mode switching
(e.g. from PowerUp to Drive) usually incurs overhead (both in
execution time and energy), if allocation needs to be changed.
This overhead needs to be taken into account at run-time to
decide whether to change the allocation for the next mode or
not.

In hard real-time systems, even during the mode switching
process, it is essential to satisfy all the timing constraints,
i.e. the migration time of tasks must be time bounded [6].
Therefore, the worst case switching time has to be assumed
to provide the timing guarantees.

To enable energy awareness in automotive systems, Dy-
namic Voltage and Frequency Scaling (DVFS) technique om-
nipresent in CMOS circuits can be exploited [12]. It benefits
from the fact that their dynamic (or switching) power P is pro-
portional to the square of core supply voltage V and its clock
frequency f , P ∝ fV 2. Contemporary circuits usually follow

the Advanced Configuration and Power Interface (ACPI) open
standard, defining processor states known as P-states. In the
highest P-state, P0, a processor works with the highest voltage
and frequency level, but offers the best performance. In P1
and other modes, the processor works slower, but dissipates
less energy. Since any reduction of core voltage requires
an adequate decrease of the clock frequency, some trade-
off between energy savings and computation performance is
expected. Some guidance in real-time systems stems from the
fact that there is usually no additional benefits from faster
task execution as long as it is before the deadline. Therefore,
slower executions at lower voltage and frequency levels can be
performed while meeting the deadline in order to save energy
consumption.

Contribution: In this paper, we consider various modes of
automotive applications and determine the best allocation for
each mode by employing a genetic algorithm (GA) based
approach. The approach performs optimization for energy
dissipation and migration cost in terms of the context length of
the transmitted runnables. To guarantee that the mode switch-
ing migration finishes in the required time, the traditional
schedulability analysis is used to determine the necessary
network bandwidth.

This paper is organised as follows. In the next section, the
state-of-the-art solutions are reviewed. Then, in Section III,
the applied application and platform models together with
the problem formulation are described. In Section IV the
steps of the proposed design flow are presented. They are
experimentally evaluated in Section V using an engine ECU
code named DemoCar from Robert Bosch GmbH. The paper
is concluded in Section VI.

II. RELATED WORKS

Exploiting the knowledge about distinguishable operating
modes in a system is tempting and thus modal systems are
an increasingly popular subject in research. Since the number
of possible scenarios is typically prohibitively high [16], a
number of research activities aims at developing design-time
(off-line) heuristics to reduce the number of operating points.
This Design Space Exploration (DSE) process can be carried
out using classic heuristic techniques for clustering modes
so that their final number is manageable. Then during run-
time of that system, a run-time manager (RTM) determines
the current mode out of an explicitly given set by observing
some variables of the model [11].

Two different mapping approaches are proposed in [14], but
they do not allow task migration, i.e. once a task is assigned
to a processing core, it remains there until its computation is
finished. In contrast, Benini et al. [2] allowed tasks to migrate
between processing cores when the envisaged performance
gain is higher than the precomputed migration cost.

The possible modes and transitions between them can be
shown in a formal way in order to analyse the worst case
switching time between two modes. An example formal way
could be to use Finite State Machines (FSMs), as proposed

in [13]. This facilitates to identify all the allowed modes and
the transitions between them, and to check the cost of mode
switchings. In [5], for H.264 decoder, an average switching
time overhead between two modes has been measured to be
equal to 0.2% of the total system time. This slight value has
been caused due to a low number of existing modes, obtained
due to the clustering, and thus relatively lower switching. In
[17], the authors suggest to map as many tasks as possible
to the same core in various modes to avoid the data or
code items to be moved between different resources when
switching between modes. However, this condition does not
take into consideration different context sizes of the tasks. In
the proposed approach, we minimize the amount of data to be
migrated instead.

To guarantee hard real-time during task migration, a
methodology is proposed in [9]. However, a costly schedulabil-
ity analysis is performed during run-time. Further, experiments
supporting their proposed approach are not provided, but one
may predict that the overload of that dynamics could be
considerable.

The approach closest to the approach described in this paper
is that of [11], where mode transition points in an engine
management system are identified and it is shown that a
load distribution by mode-dependent task allocation is better
balanced in comparison with a static task allocation. However,
in contrast to our approach, the task migration costs have not
been considered.

In our prior work [4], an earlier version of the proposed
approach has been presented. In that version, DVFS has not
been exploited, thus only a single objective genetic algorithm
has been employed to find a quasi-optimum mapping, whereas
in this paper we use a two-objective genetic algorithm and
also encode core voltage/frequency levels into inviduals. The
contribution of that paper has focused mainly on the issue of
schedulability in each mode and also during mode changes,
whereas in this paper we present multiple solutions in a form
of a Pareto frontier to choose a solution representing a trade-
off between migration time and the energy consumed in the
future mode. Also, different modes in the DemoCar example
have been indentified.

The close observation of literature survey indicates that
designing real-time systems with distinguishable operating
modes has been mainly limited to soft timing constraints,
which means deadline violations could occur. To the best
of our knowledge, there is no proposal of any other method
guaranteing no hard deadline violation during task migrations
required to move from one mode to another while applying
low cost schedulability analysis to check the feasibility of the
task migration process.

III. SYSTEM MODEL

A. Application model

In this work we assume application model is consistent with
the AUTOSAR standard [1]. A taskset Γ is comprised of an

PowerUpPower
Down

Wait

Stalled Cranking Idle Drive

Fig. 2. FSM describing modes in DemoCar

ψ0,1 ψ1,1 ψ2,1

ψ0,0 ψ1,0 ψ2,0

π0,1 π1,1 π2,1

π0,0 π1,0 π2,0

Fig. 3. An example many-core system platform

arbitrary number of periodic runnables, Γ = {τ1, τ2, τ3, . . .},
grouped in tasks with hard real-time constraints. Their proper-
ties depend on the current mode µ of the application. The j-th
occurrence (j-th job) of runnable τi is denoted with τi,j . The
taskset is known in advance, including the WCET of each
runnable, Ci,µ in every mode µ, its period Ti, priority Pi
and its relative deadline Di equal to this period. Runnables
are atomic schedulable units communicating each other with
so called labels, which are memory locations of a particular
length. The order of read and write operations to labels
denotes the runnable dependencies, as the write operation to
a particular label should be completed before its reading. We
assume that the labels are stored in the same node that the
runnable that reads these labels. If more than one runnable
mapped to different cores read from the same label, its content
is to be replicated to all the reading nodes and the writer should
update the label value at all the locations. It means that the
writer is aware of all its readers and knows their locations in
all the possible modes.

All possible modes of the application together with the
allowed transitions between them are known. They may be
described using an FSM, similar to the one presented in Fig.
2, where 7 modes and 16 possible transitions are shown.
Deadlines for mode changing time between each neighbouring
pair of modes shall be also provided.

B. Platform model

The hardware platform assumed in this paper is a mesh
Network on Chip (NoC) with a certain number of cores π ∈ Π
and routers ψ ∈ Ψ, as shown in example in Fig. 3. Each link
is modelled as a single resource, so, for example, to transfer a
portion of data from π0,1 to appropriate sink π2,0 we need such
resources allocated simultaneously: π0,1 − ψ0,1, ψ0,1 − ψ1,1,
ψ1,1 − ψ2,1, ψ2,1 − ψ2,0, ψ2,0 − π2,0.

In every mode, each runnable is mapped to one core and a
label is stored in the local memories of the cores requesting
that label. Data transfer overhead is taken into consideration,
assuming constant time for transferring a single flit (Flow
control digIT, a piece of a network package whose length
usually equals the data width of a single link) between two
neighbouring cores if no contentions are present. Timing
constants for packet latencies while traversing one router and
one link are denoted as dR and dL, respectively. The priority
of data transfer packets are assumed to be equal to the priority
of the runnable sending them.

The processing cores can operate under a given set of
voltage and frequency levels, but the links have no P-states.

C. Problem formulation

Given a platform and an application model with a defined
set of operating modes, the problem is to determine schedula-
ble mappings for each mode so that the amount of data to be
migrated during allowed mode changes and energy consumed
by the platform are minimized. Since these two criteria may
be contradictory, a trade-off between them shall be illustrated
with a Pareto frontier.

During mode changing, the taskset should be still schedula-
ble despite the additional network traffic generated by the task
migrations. The neighbouring modes with similar runnables’
execution time can be clustered to decrease the frequency of
task migrations. Deadlines for mode changing time between
each neighbouring pair of modes must not be violated.

IV. PROPOSED APPROACH

In this section, steps of the proposed design flow are
described. Since it has been assumed that the tasksets of the
considered application are known in advance, it is possible to
perform the majority of the required computations statically.
Consequently, the mapping problem can be split into two
stages: off-line (static) and on-line (dynamic), as shown in
Fig. 4. The computation time of the off-line part is not crucial
and thus heuristics with even high complexity, such as genetic
algorithms, may be used for runnable and label mappings.

During the application run-time, detection of the current
mode is assumed to be done by observing a certain variable.
When a value of this variable has been changed, the current
runnable and label mapping might need to be changed. The
mappings have been identified at the design time while trying
to minimize the amount of data to be migrated during the static
mapping and P-state selection step. Schedulability analysis

Detection of current
mode

Mode detection /
clustering
(optional)

Spanning tree
construction

Static mapping for
initial mode

Static mapping for
non-initial modes,

generation of Pareto
frontier

Schedulability analysis
for taskset during mode

changes – bandwidth
determining

Mapping switching
Changing voltage/
frequency levels

(P-states) of cores

o
ff

-l
in

e
o

n
-l

in
e

Fig. 4. Steps of the proposed energy aware dynamic resource allocation method benefiting from modal nature of applications

guarantees that even the worst case switching time does
not violate the deadline required for mode changes. If such
violation is unavoidable, either the states can be clustered, or
the network bandwidth is to be increased.

A. Static mapping

1) Initial mode: Algorithm 1 presents a pseudo-code of
a genetic algorithm that can be used to identify a mapping
for the initial identified mode. The algorithm ensures that
no deadline violation occurs under the chosen allocation. We
propose to use two fitness functions - measuring (i) the number
of deadline violations and (ii) the total energy dissipated by
the resources. The first fitness function value is of primary
importance, as in a hard real-time system no deadline violation
is allowed. However, among fully schedulable mappings, the
one leading to a lower dissipated energy is chosen.

Each chromosome in the genetic algorithm contains genes
of two types, as shown on the top of Fig. 5. The first n genes
indicate the target cores for n runnables and the remaining
|Ψ| genes (for a mesh NoC |Ψ| = x · y, where x and y are
the mesh dimensions) specifies the P-states of the consecutive
cores.

In the algorithm, the following two main steps can be
singled out.

Step 1. Initial population initialisation (line 1). An arbitrary
number of random task mappings (individuals and P-states) is
created.

Step 2. Creating a new population (lines 3-10). For each
individual, values of the two fitness functions (the number
of deadline violations and dissipated energy (lines 3-4)) are
computed. Individuals with the same number of deadline
misses are grouped together (line 5). The groups are then
sorted with respect to the number of deadline violations in the
ascending order (line 6). Inside each group, individuals are
sorted according to their growing dissipated energy (line 7).
The tournament selection is then performed, where individuals
from a group with lower number of deadline violations are
always preferred, whereas among individuals from one group
the one with the lowest dissipated energy is to be chosen (line
8). The individuals winning the tournament are then combined

Algorithm 1: Pseudo-code of no deadline violation
with energy minimisation algorithm for the initial
mode mapping
inputs : Workload Γ;

Resource set Π;
outputs : Task mapping; Core P-states;

1 Choose an initial random population of task
mappings and P-states

2 while not termination condition do
3 Evaluate the number of deadline violations;

//criterion (i)
4 Evaluate the dissipated energy; //criterion (ii)
5 Create clusters of individuals with the same

number of deadline violations;
6 Sort the clusters by increasing number of

deadline violations;
7 Sort individuals in each cluster w.r.t the dissipated

energy ;
8 Perform tournament selection; //criterion (i) has

higher priority than criterion (ii)
9 Generate individuals using crossover and

mutation;
10 Create a new population with the best found

mappings;
end

using a typical crossover operation and mutated (line 9). Then,
a new population is created from these individuals (line 10).
Step 2 is repeated in a loop as long as a termination condition
is not fulfilled, which can be a maximal number of generated
populations or lack of improvement in a number of subsequent
generations.

2) Non-initial modes: As mentioned earlier, it is of primary
importance to migrate as little data as possible during mode
changes to minimise the migration time and energy. However,
it may be beneficial to migrate more data if the energy
consumed in the next mode is much lower than the migration
energy. Thus there could be some trade-off between migration

... ...

Runnable mapping (n genes) Core P-state (x∙y genes)

τ1

τ2

τ3

τn

...

Fig. 5. Genes in chromosomes

data (or time) and energy consumption in the next mode. It is
role of a designer to choose a proper solution from the Pareto
frontier.

Each application A includes a set of tasks and can be
represented with a vector comprised of p runnables A =
[τ1, . . . , τp]. Platform Π is composed of s processing cores,
Π = {π1, . . . , πs}. A mapping M is a vector of p core lo-
cations, M = [πτ1 , . . . , πτp], where each element corresponds
with the appropriate element of A and can be substituted with
any element of set Π.

To perform optimization for migration cost that consid-
ers the context length of the transmitted runnables, weight
vector W is introduced. Each element of this vector W =
[wτ1 , . . . , wτp] is equal to the amount of data that has to be
transferred when a particular runnable is migrated, including
the labels to be read or written.

Let Mα and Mβ be sets of mappings (i.e. set of Ms)
that are fully schedulable in a given system in mode α
and β, respectively. The elements of the difference vector
Dmα,mβ = [dτ1 , . . . , dτp] indicate which runnables are to
be migrated when the mode is changed from α to β. Each
element dδ , δ ∈ {τ1, . . . , τp}, takes value 1 if the particular
runnable/label is allocated to different cores in mappings
mα ∈Mα and mβ ∈Mβ , and 0 otherwise:

dδ =

{
1, if mα,δ 6= mβ,δ,

0, otherwise.
(1)

where mα,δ and mβ,δ denote the δ-th element of vectors mα

and mβ , respectively. The migration cost c between two modes
α and β is then computed in the following way

cmα,mβ = Dmα,mβ ·WT. (2)

Algorithm 2: Pseudo-code of a migration data
transfer and energy minimisation algorithm

inputs : A spanning tree ST based on Finite State
Machine (FSM) describing the system modes
with transaction probabilities;
W - size of each runnable memory footprint;

outputs : Runnable and label mapping for each mode;
P-states for cores in each mode;

1 Select the initial state of ST and assign it to α;
2 Find a set of schedulable mappings Mα;
3 Select mα ∈ Mα that consumes the lowest

amount of energy;
4 forall β being a direct successor of α in ST do
5 FindMappingMin(α, β, mα);

end

FindMappingMin(α, β, mα)
1.1 Find a Pareto frontier of schedulable mappings

Mβ minimizing criterion Equation (2) and
energy consumption in β using W

1.2 Select mβ ∈Mβ wrt design priorities
1.3 forall q being a direct successor of β in ST do
1.4 FindMappingMin(β, q, mβ)

end

A recursive greedy algorithm for reducing the amount of
data transferred during mode changes is presented in Algo-
rithm 2.

Since some cycles are likely to occur in a graph representing

Cluster2 PowerUp Cluster1

0.9

1

0.05

0.85

0.1

Fig. 6. FSM describing clustered modes in DemoCar

the Finite State Machine describing transitions between modes,
a spanning tree (ST) is to be built, whose branches are labelled
with the transitions probabilities (like in Fig. 6). Then the
mode corresponding to the initial state of the FSM is selected
as the current mode (line 1). For this mode, a set of schedulable
mappings is generated, e.g. with Algorithm 1 (line 2). If more
than one schedulable mapping is found, the one leading to the
lowest energy consumption is selected (line 3). Then for each
direct successor of the ST node corresponding to FSM initial
state, the FindMappingMin procedure is executed (lines 4 and
5).

In the FindMappingMin procedure, a Pareto frontier of
schedulable mappings for that successor node is found using
two criteria: i) minimal migration cost criterion Equation (2)
and ii) minimal energy dissipated in the next mode (line 1.1).
The most suitable schedulable mapping is chosen from the
Pareto frontier based on the design priorities (line 1.2). The
FindMappingMin procedure is then recursively run for each
direct successor of the ST node provided as the function
parameter (lines 1.3 and 1.4).

More mappings could be delivered to the FindMappingMin
procedure to browse a larger search space by skipping lines
3 and 1.2 in the algorithm and providing all elements of Mα

instead of just one. It is the role of a designer to set priorities
between the migration time and energy dissipation to select
the most suitable solution from the Pareto frontier.

B. Schedulability analysis

The proposed task mapping technique aims to benefit from
modal nature of applications, but it also possess new chal-
lenges. If the modes are treated independently from each
other, the end-to-end schedulability of runnables and packet
transmission in each mode can be analysed using equations
from [15].

It is the instant of transition between the modes that requires
special attention. During transition, the task migration time can
be computed with equations from [15], where the packet size
is equal to the sum of the header length and the size of the
payload including the whole context of runnables and labels
to be migrated. To guarantee taskset schedulability during
migration, we propose to treat a migration process as any other
asynchronous process in schedulability analysis, i.e. to use
so-called periodic servers, which are periodic tasks executing
aperiodic jobs. When a periodic server is executed, it processes

pending task migration. If there is no pending migration, the
server simply holds its capacity. Similarly to [9], we split
a runnable context into two parts: i) invariant, which is not
modified at runtime, and ii) dynamic, including all volatile
memory locations. We assume that an upper bound of the
dynamic part size of all runnables is known in advance. This
part shall be migrated at once using the last instance of the
periodic server. It means that the local memory locations that
can be modified by the runnable must not be precopied, but
migrated after the last execution of the runnable in the old
location. This requirement can influence the minimum periodic
server size (i.e. the time allocated to it by a scheduler in each
period) and, consequently, the network bandwidth, as it must
be then wide enough to guarantee migration of dynamic part
before the next runnable execution (in the new location).

In the proposed approach, any kind of periodic servers
can be used, however, the trade-off between implementation
complexity and ability to guarantee the deadlines of hard real-
time tasks, as described for example in [3], shall be considered.

C. On-line usage

In the proposed approach, only two steps are performed
on-line: Detection of current mode and Mapping switching.

We assume that the system modes are defined explicitly
and there is a possibility of determining the current mode by
observing some system model variables1, similarly to [11].

When the mode change is requested, an agent residing in
each core prepares a set of packages with runnables to be
migrated via the network. This agent is configured statically
and is equipped with a table with information about runnables
that need to be migrated during a particular mode change.
Then the precopy of these runnables is performed. In the fol-
lowing hyperperiods, runnables are transported using periodic
servers of the length determined statically using schedulability
analysis, as described earlier. The agent is aware of the number
of periodic server instances that have to be used during the
whole migration process, and have the volatile portion of
the context identified. If this instance number elapses, the
runnables that have been migrated are killed on the earlier
core.

Simultaneously, the same agent can receive migration data
from other agents in the network. After the appropriate number
of hyperperiods, the contexts of these runnables are fully
migrated and are ready to be executed by the operating system.

The details of the agent depend on the underlying operating
system. Regardless its implementation, Detection of current
mode shall be characterised with low computational com-
plexity and thus shall impose low overhead for the system
during run-time. The number of the hyperperiods required for
performing task migration during Mapping switching depends
on the size of runnables and labels to be transferred, mappings,
and network bandwidth, in particular flit size and timing

1In DemoCar such variable is named sm and is stored in runnable
OperatingModeSWCRunnableEntity.

constants for packet latencies while traversing one router and
one link dR and dL.

V. EXPERIMENTAL RESULTS

As an example application, we consider a lightweight engine
control system named DemoCar. It consists of 18 runnables
and 61 labels. All runnables are periodic and combinational,
i.e. their outputs depend only on input values. In Fig. 2,
7 identified modes of this application are presented. These
modes have been identified by inspecting the code of the
runnable named OperatingModeSWC, which computes values
of transaction and output functions of the FSM steering this
engine.

The transitions between modes: Stalled, Cranking, Idle,
Drive, are to be performed between two consecutive execu-
tions of their runnable occurrences, which is upperbounded
with 5ms for 9 runnables. Since performing task migration
during such short time window would require a bandwidth
of considerable size, these modes have been clustered into
Cluster1 (Fig. 6). For a similar reason, Wait has been clustered
with PowerDown into Cluster2. Finally, three modes can be
identified after the clustering step: PowerUp, Cluster1 and
Cluster2, as presented in Fig. 6.

The energy consumption of the multi-core system consid-
ered in this paper has been determined using the technique
described in [7]. They are averages obtained during a series
of simulations.

The processing core consumes 2.08E-4µJ when idle and
3.74E-4µJ when busy. An idle link dissipates 17.86E-6µJ
whereas a link transporting a package dissipates 46.10E-6µJ.
The core energy has been scaled using relation P ∝ fV 2 and
P-states, where the maximum voltage/frequency level has been
assigned.

For the PowerUp (initial) mode of DemoCar to be executed
on a multi-core embedded system, we estimate makespan and
number of violated deadlines during one hyperperiod (i.e. the
least common multiple of all runnables’ periods) by allocating
runnables and labels to different cores.

The size of the NoC mesh has been initially configured as
2x2 with no idle cores, since this size had been earlier checked
(also using Algorithm 1) and is large enough to execute
DemoCar in the most computational intensive mode, Cluster1,
not violating any of its timing constraints. The flit size has
been fixed to 16 bits. The genetic algorithm is executed
again to perform assignment of tasks to cores with timing
characteristics for the initial PowerUp mode. The genetic
algorithm has been configured to generate 100 generations of
20 individuals each. The first fully schedulable allocation has
been found in the 1st generation, which suggests that it might
be possible to allocate the taskset to a lower number of cores.

After performing further search it has appeared that the
taskset in the initial mode is schedulable even when mapped
to one (out of four) active core. The lowest makespan for the
NoC with three idle cores is equal to 8622µs. The energy
consumed in this mode equals to 3093.01µJ per hyperperiod

Data to be migrated [bytes]

E
n
e
rg

y
 u

s
e
d
 i
n
 m

o
d
e
 C

lu
s
te

r_
1
 [
μ
J]

9650

9700

9750

9800

9850

9900

9950

10000

10050

10100

200000 400000 600000 800000

Fig. 7. Pareto curve illustrating the trade-off between minimal amount of
data to be migrated and minimal energy consumed in the next mode

(100 ms). Thus, thanks to the modal approach, one can switch
off 75% of the cores while the application is in the Cluster1
mode.

Regardless of the mode, the application has been mapped in
a 2x2 mesh Network on Chip without deadline violations. For
the PowerUp mode, schedulable mappings have been found
even if three of the four NoC cores remain idle. It means
that in this mode three cores can be switched off, leading to
considerable energy savings. Similarly, two cores can remain
idle in the Cluster2 mode. However, despite intensive search
using a genetic algorithm, all four cores are needed in the
Cluster1 mode to have the taskset fully schedulable. Thus,
when the current mode changes from PowerUp to Cluster1,
three cores have to be activated, whereas two cores can be
switched off after leaving the Cluster1 mode.

Next we focused on the transition between the PowerUp
and Cluster1 modes. For PowerUp, only one core is active and
thus all runnables are to be mapped to the only active core.
However, in other cases a larger set of mappings that are fully
schedulable on active NoC cores would have been identified.
A Pareto frontier using two criteria: minimal amount of data to
be migrated and minimal energy consumed in the next mode
has been constructed and drawn in Fig. 7. If energy dissipation
is crucial for the design and longer switching time can be
accepted, the rightmost solution from the Pareto curve shall
be chosen. On the contrary, the leftmost solution from the
Pareto curve is appropriate for the system with switching time
more bounded, where some energy loss may be tolerated. The
remaining 6 solutions form a compromise between these two
extremes.

Assuming that minimal energy consumption is crucial for
the system, the solution leading to consumption of 9719.45µJ
(in the next mode) should be chosen. Then, using the same
priority, the mapping in the Cluster2 mode would consume

TABLE I
NUMBER OF HYPERPERIODS (100MS) REQUIRED FOR SWITCHING

BETWEEN MODES PowerUp TO Cluster1 IN DEMOCAR DEPENDING ON
ROUTER (dR) AND ONE LINK LATENCIES (dL)

No. of hyperperiods
dR [ns] dL [ns] solution A solution B

100 200 1 1
100 400 1 2
200 500 1 2
400 800 2 3
500 1000 2 3

5909.37µJ.
We also have evaluated the number of hyperperiods required

to migrate tasks from PowerUp to Cluster1, depending on
constants dR and dL are presented in Table I. Two extreme
solutions from the Pareto frontier illustrated in Fig. 7 are
analysed: A is the mapping with the lowest amount of data to
be migrated, B is the solution with the lowest energy dissipated
in mode Cluster1. The hyperperiod length for DemoCar equals
100ms and this time is enough to migrate all data when
the router and link latencies are equal to 50 and 100ns,
respectively.

VI. CONCLUSIONS

An approach for task migration in a multi-core network-
based embedded system has been proposed as a way to
decrease the number of cores needed for guaranteing safe
execution of a hard real-time software. Applying different
value/frequency levels (P-states) to cores facilitates decreasing
of energy dissipation even further. The poposed approach is
comprised of steps to be performed statically (off-line) and
during runtime (on-line). The approach has been illustrated
with DemoCar, a simple gasoline ECU. A Finite State Ma-
chine describing mode changes has been extracted from its
code and transaction probabilities have been identified during
simulation. The closely related modes have been merged into
clusters. A genetic algorithm has been used to determine
the runnable-to-core mapping for the initial mode. Similarly,
a multi-objective genetic algorithm minimizing the migrated
data and the energy dissipated in the next state has been used.
Each Pareto-optimal solution determines the runnables to be
migrated when a change of the current mode is requested.
The migration time has been evaluated using schedulability
analysis depending on the network bandwidth.

The proposed approach requires development of an agent
realising the migration process. Since its architecture details
depend on the underlying operating system, its implementation
and evaluation in real embedded environments are planned as
a future work.

ACKNOWLEDGEMENT

The research leading to these results has received funding
from the European Union’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement no. 611411.

The authors would like to thank Björn Saballus from Robert
Bosch GmbH for providing the DemoCar use case.

REFERENCES

[1] AUTOSAR: AUTomotive Open System ARchitecture,
http://www.autosar.org, 2015.

[2] L. Benini, D. Bertozzi, and M. Milano, ”Resource management policy
handling multiple use-cases in MPSoC platforms using constraint pro-
gramming,” Logic Programming, Springer Berlin Heidelberg, pp. 470–
484, 2008.

[3] R.I. Davis and A. Burns, ”A survey of hard real-time scheduling for
multiprocessor systems,” ACM Comput. Surv., vol. 43, no. 4, art. 35,
pp. 1–44 , 2011.

[4] P. Dziurzanski, A.K. Singh, L.S. Indrusiak, and B. Saballus, ”Hard
real-time guarantee of automotive applications during mode changes,”
Proceedings of the 23rd International Conference on Real Time and
Networks Systems (RTNS 2015), pp. 161–170, 2015.

[5] S.V. Gheorghita et al., ”System-scenario-based design of dynamic em-
bedded systems,” ACM Trans. Des. Autom. Electron. Syst., vol. 14, no.
1, art. 3, pp. 1–45, January 2009.

[6] J.R. van Kampenhout, ”Deterministic Task Transfer in Network-on-Chip
Based Multi-Core Processors,” Computer Engineering, no. 18, 2011.

[7] K. Latif et al., ”An Integrated Framework for Model-Based Design and
Analysis of Automotive Multi-Core System,” Forum on specification
& Design Languages, FDL’15, Work-in-Progress Session, Barcelona -
Spain, 2015.

[8] A. Monot, N. Navet, B. Bavoux, and F. Simonot-Lion, ”Multisource
Software on Multicore Automotive ECUs - Combining Runnable Se-
quencing with Task Scheduling,” IEEE Transactions on Industrial Elec-
tronics, vol. 59, no. 10, pp. 3934–3942, 2012.

[9] P. Munk, B. Saballus, J. Richling, and H.U. Heiss, ”Position Paper:
Real-Time Task Migration on Many-Core Processors,” 28th International
Conference on Architecture of Computing Systems (ARCS’15), pp. 1–4,
2015.

[10] M. Di Natale and A.L. Sangiovanni-Vincentelli, ”Moving From Feder-
ated to Integrated Architectures in Automotive: The Role of Standards,
Methods and Tools,” Proceedings of the IEEE, vol. 98, no. 4, pp. 603–
620, 2010.

[11] J. Park et al., ”Mode-Dynamic Task Allocation and Scheduling for an
Engine Management Real-Time System Using a Multicore Microcon-
troller,” SAE Int. J. Passeng. Cars - Electron. Electr. Syst., vol. 7, no.
1, pp. 133–140, 2014.

[12] E. Quinones, J. Abella, F. J. Cazorla, and Mateo Valero, ”Exploiting
intra-task slack time of load operations for DVFS in hard real-time multi-
core systems,” SIGBED Rev. vol. 8, no. 3, pp. 32–35, 2011.

[13] L. Schor, I. Bacivarov, D. Rai, H. Yang, S.H. Kang, and L. Thiele,
”Scenario-based design flow for mapping streaming applications onto
on-chip many-core systems,” ACM International conference on Compil-
ers, architectures and synthesis for embedded systems, pp.71–80, 2012.

[14] A. Schranzhofer, J.J. Chen, and L. Thiele, ”Dynamic Power-Aware
Mapping of Applications onto Heterogeneous MPSoC Platforms,” IEEE
Trans. on Industrial Informatics, vol. 6, no. 4, pp. 692–707, November
2010.

[15] Z. Shi and A. Burns, ”Real-time communication analysis for on-chip
networks with wormhole switching,” ACM/IEEE International Sympo-
sium on Networks-on-Chip (NOCS’08), pp. 161–170, 2008.

[16] A.K Singh, M. Shafique, A. Kumar, and J. Henkel, ”Mapping on
multi/many-core systems: survey of current and emerging trends,” Pro-
ceedings of the 50th Annual Design Automation Conference (DAC),
2013.

[17] S. Stuijk, M. Geilen, B. Theelen, and T. Basten, ”Scenario-aware
dataflow: Modeling, analysis and implementation of dynamic appli-
cations,” International Conference on Embedded Computer Systems
(SAMOS’11), pp. 404–411, 2011.

[18] R. Wilhelm et al., ”The worst-case execution-time problem-overview of
methods and survey of tools,” ACM Trans. Embed. Comput. Syst., vol.
7, no. 3, art. 36, pp. 1–53, 2008.

[19] D. Zhu and C. Qian, ”Challenges in Future Automobile Control Systems
with Multicore Processors,” Workshop on Developing Dependable and
Secure Automotive Cyber-Physical Systems from Components, 2011.

