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Figure 1: Fixation maps of dancer sequences with uniform temporal sampling every 30 frames.

ABSTRACT

Perceptual quality assessment of Dynamic Point Cloud (DPC) con-
tents plays an important role in various Virtual Reality (VR) appli-
cations that involve human beings as the end user, understanding
and modeling perceptual quality assessment is greatly enriched by
insights from visual attention. However, incorporating aspects of
visual attention in DPC quality models is largely unexplored, as
ground-truth visual attention data is scarcely available. This paper
presents a dataset containing subjective opinion scores and visual
attention maps of DPCs, collected in a VR environment using eye-
tracking technology. The data was collected during a subjective
quality assessment experiment, in which subjects were instructed to
watch and rate DPCs at various degradation levels under 6 degrees-
of-freedom inspection, using a head-mounted display. The dataset
comprises 5 reference DPC contents, with each reference encoded
at 3 distortion levels using 3 different codecs, amounting to a total
of 9 degraded DPC contents. Moreover, it includes 1,000 gaze trials
from 40 participants, resulting in 15,000 visual attention maps in
total. The curated dataset can serve as authentic benchmark data
for assessing the performance of objective DPC quality metrics.
Additionally, it establishes a link between quality assessment and
visual attention within the context of DPC. This work deepens our
understanding of DPC quality and visual attention, driving progress
in the realm of VR experiences and perception.
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1 INTRODUCTION

Volumetric video has become available for representing real-world
objects, due to the rapid development of capture devices, transmis-
sion technologies, and computational capabilities. Point cloud has
emerged as one of the most popular formats for volumetric video
representation. Specifically, Dynamic Point Cloud (DPC) can be
used for automotive/robotic navigation [50], medical imaging [5],
virtual video conferencing [20,42], among others. A point cloud can
be defined as a set of points in space represented in a 3D coordinate
system. A DPC is essentially a sequence of individual point cloud
frames played in succession. However, each point cloud frame re-
quires a large number of points to faithfully represent the content and
achieve a good Quality-of-Experience (QoE). Therefore, effective
compression is essential before transmission, storage, rendering, and
display. Quality degradation will be inevitably introduced during
this end-to-end pipeline, which deteriorates the visual quality and af-
fects the perception. Exploring the distortion characteristics of DPC
and effectively measuring them in 6 Degrees-of-Freedom (DoF) is a
challenge in both subjective and objective quality assessment [1].

Subjective quality assessment leads to ground-truth ratings for
visual impairments that appear in a stimulus. Subjective quality
assessment for DPC has been explored in desktop viewing condi-
tions [46,47] or in immersive environments with users consum-
ing the contents through a Head-Mounted Display (HMD) under
6DoF [38,43]. In the latter case, information about users’ movement
can be captured in addition to subjective quality ratings, to under-
stand how users navigate and observe objects in VR space. A more
accurate representation of the user’s consumption is given by gaze
data, which highlights the specific areas of content being viewed
with focused attention. This information aids in the creation of
visual attention maps. Incorporating visual attention into quality as-
sessment has demonstrated potential improvement for predicting the
visual quality of 2D/3D image/video [23,49]. Nonetheless, visual
attention for DPC is still in its infancy, thus hindering the utilization
of its outcomes in aiding visual quality assessment.

A summary of existing subjective quality assessment and visual
attention datasets for point clouds is shown in Table 1. Most of
the studies in the literature involving DPCs are conducted with 2D
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Table 1: Publicly available subjective quality assessment and visual attention datasets for point clouds.

Dataset |  Type | Degradation | Stimuli | Time | Display | Interaction | Opinion Score | Visual Attention
VsenseVVDB [46] Dynamic down-sampling, VPCC 32 6.6s | 2D monitor X 4 X
VsenseVVDB2 [47] | Dynamic Poinygfgﬂifa(c;ggg]agpcc 12386 10s | 2D monitor X X

.. . Mesh: TFAN, FFmpeg .

Owlii [45] Dynamic Point Clouds: VPCC, FFmpeg 20 20s 2D monitor X v X
Subramanyam et al. [38] | Dynamic CWI-PCL, VPCC 5s HMD v v X
ViAtPCVR [3] Static Only reference 8 - HMD v X v
QAVA-DPC(Ours) | Dynamic | VPCC,GPCC,CWIPCL | 50 | 10s | HMD | «/ | v \ v

monitors: the DPCs are pre-recorded and playback to the user using
conventional video software [45—47]. However, the passive nature
of display restricts user freedom, as DPCs can only be presented
according to a predetermined trajectory. On the other hand, an
immersive HMD-based display with 6DoF allows for a complete
representation of the entire DPC, but typically involves a smaller
number of DPCs (20), usually static or with shorter time duration (5
seconds), due to technical limitations that prevent a smooth playback
in real time [38]. Due to such constraints, no visual attention dataset
specifically designed for DPC has been released so far; existing re-
search has primarily explored the attention of static point clouds [3],
confining the scope to a few undistorted contents. There is currently
a lack of studies that connect visual attention and visual quality
specifically for DPC.

Visual attention of point cloud can benefit a myriad of vision tasks,
such as segmentation, localization, and registration [13]. Improve-
ment has been reported by using visual attention maps to weight
quality maps for perceptual quality prediction [25]. By connecting
visual attention and visual quality for DPC, the quality allocation
between the salient region and the remaining area, saliency-aware
compression and streaming, and saliency-aided objective quality
metrics can be further investigated and optimized.

In this paper, we aim to create an eye-tracking-based Quality
Assessment and Visual Attention dataset for DPCs (QAVA-DPC),
which consists of diverse contents and encompasses various types
of distortions. The associated visual attention maps can thereby
enhance the understanding of human behavior within 6DoF envi-
ronments, ultimately contributing to the optimization of QoE. Our
contributions can be summarized as follows:

* We propose a new dataset, namely, QAVA-DPC, which con-
tains 5 reference DPCs; each DPC is encoded by 3 codecs,
with each codec configured at 3 distortion levels. Fixation
maps are constructed, collected, and presented for both the
reference and distorted sequences as heatmaps overlaid on top
of the stimuli frames. To the best of our knowledge, this is
the first time connecting visual attention and visual quality for
DPC in VR.

e We release all raw data, containing the opinion scores and gaze
samples collected in our study, alongside the software used to
perform the experiment, and the scripts used to to export visual
attention maps, at the following link: https://github.com/
cwi-dis/ISMAR_PointCloud_EyeTracking.

2 RELATED WORK
2.1 Eye Tracking Experiment for 3D contents

Owing to the human vision system’s selectivity in responding to
the most attractive features in the visual field, it’s inappropriate to
treat each voxel equally [23]. To explore visual attention for 3D con-
tents, eye-tracking experiments remain the main way to understand
human visual behavior. Sitzmann et al. [35] capture and analyze
gaze and head orientation data of users exploring stereoscopic, static
omnidirectional panoramas, for a total of 1,980 head and gaze tra-
jectories for three different viewing conditions. They found the
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existence of a particular fixation bias, which can be used to adapt
existing saliency predictors to immersive VR conditions. Nguyen et
al. [27] introduce a large saliency dataset for 360-degree videos with
a new methodology supported by psychology studies with HMD.
They describe an open-source software implementing this method-
ology that can generate saliency maps from any head tracking data.
Lavoué et al. [21] present a dataset that records the eye-movement
data for rendered 3D shapes. During their experiment, 3D meshes
are rendered using different materials and lighting conditions under
different scenes, and the rendered videos of 3D meshes are shown
on the screen for subjects to observe. Ding et al. [8] propose a novel
6DoF mesh saliency dataset that provides both the subject’s 6DoF
data and eye-movement data, and a 6DoF mesh saliency detection
algorithm based on the uniqueness measure and the bias preference
is developed. Alexiou et al. [3] conduct an eye-tracking experiment
in an immersive 3D scene that offers 6DoF. A method to exploit the
high-quality recorded gaze measurements is introduced based on
per-session profiling, and a scheme to determine areas of fixations
in a point cloud is proposed.

To the best of our knowledge, no dataset has been yet released for
visual attention of DPCs, which is our main contribution.

2.2 DPC Quality Assessment

Whereas subjective and objective quality assessment of static point
clouds has been explored in more detail in the literature [2], anal-
ogous research on DPCs is still a sophisticated and challenging
problem, owing to numerous factors such as the evaluation method-
ology, rendering method, display equipment and so forth. Subjective
quality scores, such as Mean Opinion Score (MOS) or Differential
MOS (DMOS), are commonly used to quantify the subjective per-
ception of visual artifacts. Zerman et al. [46] conduct a subjective
experiment on two DPCs (VsenseVVDB) using MPEG VPCC com-
pression [33]. The same author compares the mesh and point cloud
representation formats (VsenseVVDB2) for a volumetric video com-
pression scenario utilizing state-of-the-art compression techniques.
The results show that meshes provide the best quality at high bitrates,
while point clouds perform better for low-bitrate cases [47]. Hooft
et al. investigate how and to what extent various aspects have more
impact on the user’s QoE, via extensive objective and subjective
evaluation of volumetric 6DoF streaming [40]. Mekuria et al. eval-
uate the subjective quality of the CWI-PCL codec performance in
a realistic 3D tele-immersive system in a virtual 3D room scenario,
in which users are represented and interact as 3D avatars and/or 3D
point clouds [26]. The results show that the degradation introduced
by CWI-PCL is negligible. However, these experiments are all with
a desktop setting in a passive manner. Viola et al. compare two
different VR viewing conditions enabling 3/6 DoF, along with a
desktop setting, to understand how interaction in the virtual space
affects the perception of quality [43]. Results show no statistical
difference between scores given in a desktop and VR setup; how-
ever, qualitative results highlighted the added value of interactive
evaluation. One main limitation of the study lies in the length of the
sequences used for the evaluation, as the authors use 150 frames for
their study. Subramanyam et al. [39] evaluate the performance of
several adaptive streaming solutions in an interactive VR experiment.
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In their setup, they compare the performance of MPEG VPCC with
respect to CWI-PCL, using various adaptive streaming strategies.

In our study, we aim to complement existing literature by perform-
ing an experiment comparing the visual quality of several state-of-
the-art compression techniques for DPC. We do so in an interactive
manner, using an HMD-based VR rendering of 10s sequences from
various datasets, which has not been done before in the literature in
combination with eye-tracking.

2.3 Eye-Tracking based Objective Quality Assessment

Recent literature in eye-tracking-based visual saliency for immersive
contents has mainly focused on task-free experiments to gather
visual attention maps [29, 36]; no study has been conducted to
link visual attention to visual quality assessment for volumetric
contents. The literature suggests that visual attention might be
beneficial for understanding the process of perception of visual
quality for 2D images/videos; in fact, different metrics for Image
Quality Assessment (IQA) have been extended with a computational
model of visual attention [23], but the resulting gain on the metrics’
performance is so far unclear. To better understand the added value
of including visual attention in the design of objective metrics for
2D images, some works in the literature have taken advantage of
recorded visual attention data. Lin et al. [24] perform two eye-
tracking experiments: one with a free-looking task and one with a
quality assessment task. They found a tendency that adding saliency
to a metric yields a larger amount of gain in performance. The extent
of the performance gain tends to depend on the specific objective
metric and the image content. In addition, the gain is small for
objective metrics that already show a high correlation with perceived
quality for a given distortion type. Zhang et al. [49] propose a new
methodology to eliminate the inherent bias due to the involvement
of stimulus repetition. The refined methodology result in a new eye-
tracking dataset with a large degree of stimulus variability. Based
on ground-truth labeling, the statistical evaluation shows that visual
attention of both the referenced and distorted scene is beneficial for
IQA metrics, but the latter tends to further boost the effectiveness of
the integration of attention in IQA metrics. Jin et al. [18] utilize the
eye-tracker to create foveation-compressed VR datasets and evaluate
both the foveated and non-foveated objective image/video quality
assessment algorithms.

To better understand whether the findings regarding visual
saliency and quality assessment on 2D images/videos can hold for
volumetric contents, ad-hoc datasets that combine the two aspects
are needed. That is the research gap we aim to fill with this paper.
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3 QAVA-DPC CONSTRUCTION
3.1 Stimuli Selection

For the creation of the dataset, we selected 5 DPCs from 3 public
datasets, namely VsenseVVDB2 [47], 8i [9] and Owlii [45]. To show
the diversity of DPCs, we considered the Spatial Information (SI)
and Temporal Information (TI) for each content [15]. We projected
the source point cloud into 4 views, which are the left, right, front,
and back view, of its bounding box to apply SI and TI separately,
then obtain the maximum value among the 4 views over all the first
300 frames as the final SI/TI for one sequence. The distribution of
all DPCs can be seen in Fig.2, we finally choose dancer, exercise,
long dress, rafa2, and soldier as the contents in our dataset. The
dispersed state in SI (horizontal axes)/TI (vertical axes) shows the
diversity of our contents in the spatial/temporal domain.

3.2 Stimuli Processing

Before conducting the subjective experiment on DPC, specific pro-
cedures are necessary due to the codec implementations. These
procedures, including pre-processing, encoding, and rendering, are
aimed at minimizing additional influencing factors.

3.2.1

The sequences mentioned above are selected from different datasets,
which means the resolution, position and orientations vary. The
DPCs should be life-size so to create a realistic tele-immersive
scenario. To do so, we normalize the DPCs to a similar bounding
box. The geometry precision of dancer and exercise is voxelized
from 11 to 10. The source models are processed with rotation,
translation, and scaling. Additionally, since the VPCC encoder fails
to deal with decimals, the coordinates of DPCs are rounded before
VPCC compression. CWI-PCL encoder has specific requirements
for the resolution of DPCs, so before CWI-PCL compression the
coordinates go through the scaling operation.

3.2.2 Encoding

Distorted versions are generated using the state-of-the-art MPEG
PCC reference software Test Model Category 2 Version 18 (TTMC, V-
18.0) and Category 1&3 Version 14 (T'MC;3V-14.0) from now on
referred to as VPCC and GPCC [33]. We also adopt the CWI-
PCL [26] codec as a comparison. GPCC is proposed mainly for
the aim of compressing static point cloud, VPCC is developed for
DPC compression, and CWI-PCL is mainly used to comply with
real-time requirements. To compare them in a fair way, we set the
GPCC encoder with Region-Aptive Hierarchical Transform (RAHT)
to compress point-wise color attributes and Octree for geometry
representation; the VPCC encoder with All Intra (AI) mode, which
adapts intra-prediction for one frame; and the CWI-PCL intra frame,
geometry coded with octree subdivision and color attributes encoded
based on JPEG.

To define the configuration parameters for the encoders, the
MPEG Common Test Conditions [37] are followed. To compare
different codecs and different distortion levels, we select the dis-
tortion levels that can reveal a similar low-medium-high quality
range among the 3 codecs. Specifically, for GPCC we select three
distortion levels, namely R02, R04, and ROS5, by setting position-
QuantizationScale and QP parameters. For VPCC, we select three
distortion levels, namely RO1, RO3, and ROS5 by setting different
geometry QP, attribute QP, and occupancyPrecision parameters. For
CWI-PCL, we choose three combinations of octree depth with JPEG
QP parameters to match a similar quality range, by looping over
octree depth from 7 to 9 and JPEG QP from 25 to 95 (step size =
10). When testing on the dataset, the above parameter settings for
the three codecs yielded subjectively similarly from the perspective
of the quality range. Specific parameter settings are shown in Ta-
ble 2. Each DPC has 3 compression codecs, and each codec has 3
distortion levels, for a total of 45 distorted DPCs.

Pre-processing
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Table 2: Parameter sets for the selected encoders

Encoders | Distortion Level
GPCC RO2 R0O4 RO5
(Octree-RAHT) | (0.125,46)  (0.5,34)  (0.75,28)
RO1 RO3 RO5
VPCCAD | 3042 4y (24,32,4) (16,22,2)
RO1 RO2 RO3
CWI-PCL (725 (8,95 (9,95
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Figure 3: Schematic diagram with the hardware and software modules
together with their inter-dependencies.

3.2.3 Rendering

Rendering is the process of producing a visual representation that
can be consumed by users using an available display. In the case of
point clouds, different rendering methods have a significant impact
on perceived quality [17]. In our experiment, we choose to render
the point clouds without any additional processing (e.g., surface
reconstruction), directly using the point cloud data (point-based).

Our experiment software is developed in Unity (version
2021.3.10.f1), exploiting the SteamVR plugin (version 1.24.7) to
connect with VR headsets and controllers. CWI Point Cloud
(CWIPC) supported unity package (version 0.10.0) helps us im-
port the DPCs and playback them inside Unity [30]. A high-level
diagram indicating the hardware/software dependencies is provided
in Fig.3. Notably, a large size of DPC file might take up too much
memory and cause a system hang. So we first transform the DPC
data to CWIPC-supported point cloud playback format to improve
the software stability. To ensure smooth playback of DPC, we take
advantage of the Unity Coroutine scheme to preload each DPC into
memory before the user switches to next DPC. 5 DPCs with their
corresponding operation are selected in our test. It should be noted
for each sequence, we only choose the first 300 frames from the
source model. The frame rate for playback is 30 frames per second,
hence each video lasts for 10 seconds. We use HTC Vive Pro Eye
devices with eye-tracking capabilities and Vive hand controllers for
participants to interact in our experiment. To develop eye-tracking
applications for the Vive Pro Eye we use the native HTC Vive SRa-
nipal SDK. The sampling frequency (binocular) of the eye tracker is
120 HZ.

For the same stimuli, both reference and distorted versions are
watertight by adjusting the point size to the average distance among
its 10 nearest neighbors all over all points in the point cloud [38].
Within a DPC, we utilize the same point size for all frames. All the
point clouds are rescaled to a similar size, around 1.8m in height,
to mimic a realistic tele-immersive scenarios. The VR scene is
illuminated by a virtual lamp on the ceiling centralized above the
models. The lamp is set as an area light with intensity values of 2 in
Unity to simulate ordinary lighting in a room.

3.3 Experimental Procedure

Since there is no specific recommendation for designing subjective
quality assessment experiments for DPC in VR, we have made an
effort to adhere to existing ITU recommendations on images/videos
[12,14,16] to establish an appropriate assessment methodology for
DPC. In our subjective study, we opted for Absolute Category Rating
with Hidden Reference (ACR-HR). Each time only a single DPC was
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shown to the observer; test materials included impaired DPC with
randomly inserted intact HR sequences, represented as any other test
stimulus. To avoid the effects of contextual or memory comparisons,
we randomly generated a playlist for each subject, and care was
given to avoid displaying the same DPC model consecutively.

Before the experiment, the visual acuity and color vision of every
subject was tested using Snellen [11] and Ishihara [6] charts. Each
subject was informed in advance about the manner and purpose
of the study as part of the informed consent procedure. At the
beginning of the session, the inter-pupillary distance was measured
and the headset was adjusted by the subject accordingly. Then, a
training session was conducted to help familiarize the subjects with
the system, including the controllers and the naming of each button
to communicate more easily. One training sequence, namely /oot,
was used, which was not included in the dataset. The quality range
of loot was similar to the quality range of the test videos, giving
the subjects a sense of what they would see in the formal sessions.
The subjects always started at the same location, which is 1.5 meters
away from the center of the virtual room, but could move freely
from there onward. A DPC was located in the center of the virtual
room, and each DPC was randomly rotated between [0°,360°] to
avoid bias. During the experiment, the subjects were instructed to
view each model carefully in the VR environment, by moving freely
during the playback of each DPC. The subjects were also required
to stand still while doing the calibration and error profiling. A fixed
distance was set between the subjects and the error profiling scene,
which was a circle composed of 9 eye-ball markers.

After feeling comfortable with the set-up, the participants were
informed about the task that is assigned to them: “we ask you to
examine a set of human DPC models, each model will be looped
three times, each loop is last for 10 seconds; after visualization,
we will ask you to rate the quality of the stimuli you are looking
at, and in the same time, we will record your gaze-related data”.
To determine the number of loops, we referred to related papers
on video quality assessment and eye-tracking-based visual saliency
detection [7,22,41,48]. Additionally, in [28], the effect of exposition
time by repeating the same video from 1 to 4 loops was explored,
concluding that more loops do not necessarily result in more unique
fixation points for most videos. Hence we chose 3 loops instead
of once or an unlimited number. There were two dummy objects
at the beginning of each session to familiarize the subject with the
testing procedure and the rating scales. For each subject, the test
was split into two rounds, lasting for around 30 minutes each, with
a mandatory 5-minute break in between. Before and after each
round, participants were requested to fill in a Simulator Sickness
Questionnaire (SSQ) on a 1-4 discrete scale (1=none to 4=severe)
[19]. For every model and subject, a round was split into four
consecutive steps:

1 Calibration is the process by which the geometric character-
istics of a participant’s eyes are estimated as the basis for a
fully customized and accurate gaze point calculation, which
is implemented to optimize the eye tracking algorithm. Cali-
bration was done at the beginning of the experiment, and only
when calibration was successful users could enter into the DPC
playback stage.

2 Inspection of models is the step where the participants are
visualizing DPC, while their trajectory and gaze-related infor-
mation are recorded.

3 Quality evaluation of models requires the subject to rate DPC.
The rating button was marked with labels ranging from “Poor”
to “Excellent” to facilitate anchoring the rating process, and
subjects could use their controllers to select and submit a score
without taking off the headset.
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4 Error profiling is issued as the last step in order to estimate the
accuracy of the gaze measurements due to calibration inaccura-
cies, or HMD displacements. A regular circle of 9 markers at
pre-defined positions in the virtual scene was presented to the
user. Based on the recorded gaze measurements, the average
angular error was computed per marker online. This procedure
allowed us to decide whether the gaze data obtained from a
certain session was accurate or not.

A total of 40 participants took part in the subjective tests of this
study, with a diverse composition that includes 1 non-binary indi-
vidual, 19 males, and 20 females. The participants’ ages ranged
from 20 to 34, with an average age of 26.90 and a standard devi-
ation of 3.51. Each participant observed half of the DPCs among
all stimuli, leading to 20 opinion scores per sequence. In terms of
occupation, the majority (80%) of the participants were students,
ranging from bachelor to PhD levels. The remaining 20% were
researchers, postdoctoral fellows, and one auditor. Regarding famil-
iarity with VR devices, 7 participants had never experienced VR
before the experiment, 26 participants had intermediate experience
(using VR 1 to 3 times), and 7 of them were considered experts,
having backgrounds as VR designers or researchers. Additionally,
22 out of 40 participants wore glasses during the experiment.

3.4 Data Processing
3.4.1 Processing of SSQ Data

SSQ comprises 16 symptoms which are further grouped into three
different categories: Oculomotor, Nausea, and Disorientation; we
also computed the total score. Fig. 4 suggests that simulator scores
are increasing after performing the experiment. However, it can be
seen that breaks help in reducing simulator sickness.

3.4.2 Processing of Opinion Scores

After removing the scores of the first two dummy objects, out-
lier detection was performed according to ITU-T Recommenda-
tions P.913 [16]. The recommended threshold values r; = 0.75
and r, = 0.8 were used. No outliers were found in our test. After
outlier detection, the MOS was computed for each DPC. The asso-
ciated 95% Confidence Intervals (ClIs) were obtained assuming a
Student’s t-distribution. Additionally, the DMOS was obtained by
applying HR removal, following the procedure described in ITU-T
Recommendations P.913 [16].

3.4.3 Processing of Gaze Data

One subject walked into the body of two DPCs in the VR envi-
ronment when observing, so the corresponding gaze data was not
included. We ignored the initial 400 ms gaze data of each user to
avoid unintentional gaze because of the unexpected appearance of
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Figure 6: Fixation map comparison with/without filtering by DBSCAN.

the DPC. Then, only the valid gaze samples provided by the SRani-
pal SDK were selected. Each valid gaze sample was processed as
follows:

1 Verify the data validity of gaze data: A barycentric interpo-
lation with weights equal to corresponding angular errors ob-
tained from the profiling was applied. A threshold of 7.5°
was used to discard unintentional gaze. After displaying each
target, 0.8 seconds will be waited before including the samples
in actual calculations. This delay accounts for the initial mo-
ments in eye-tracking data during the actual experiment, which
can be influenced by factors such as calibration stabilization,
participant adaptation, and gaze analysis during fully engaged
periods [34]. We used GazeMetrics [4], an open-source tool
for measuring the data quality of HMD-based eye trackers, to
compute the angular error. Finally, we applied a compensatory
weighted average angular error to each gaze sample. This was
repeated for every user gaze sample to maintain high-quality
estimations while avoiding discarding useful data. Fig.5 illus-
trates the estimation of angular error for gaze data in 2D, g
represents the intersection between the gaze ray and the plane
formed by nine markers denoted as m1 to m9. These markers
were positioned at a distance of 1.25 meters relative to the
camera within the VR environment.

2 Identifying fixation points of gaze data: Taking into account
the dynamic nature of our content, we chose the Dispersion-
Threshold Identification (I-DT) [31] method. I-DT leverages
the fact that fixation points, owing to their reduced veloc-
ity, tend to cluster in close proximity [44]. It identifies fixa-
tion points as groups of consecutive points within a particu-
lar dispersion, or maximum separation. The I-DT algorithm
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requires two parameters, the dispersion threshold and the du-
ration threshold. We set the dispersion threshold equal to 3°
and the duration threshold equal to 100 ms, separately. Thus
we took the average of these gaze points within the duration
threshold as the fixation point.

3 Mapping gaze data to DPC frames: We proceeded by associat-
ing the filtered gaze data with the currently viewed frames and
translating the gaze data (x,y,z) from world space into fixation
points within that corresponding frame. As a result, we got all
the gaze data in an endeavor to cover 300 frames in total. We
adopted the truncated-cone-sector algorithm to assign weights
to points in a given DPC frame [3].

Fusing multiple users’ gaze data to DPC frames: A fixation
map is the aggregation of fixation points from all users viewing
the same DPC frame at a given timestamp, which can mark the
region of interest. In our experiment, unintentional observation
could cause isolated fixation points on DPC frame after map-
ping. Thus, it was necessary to filter out these noisy fixation
points. We choose the Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) [10] algorithm to filter
out noisy fixation points. Based on the density of fixation
points on the point cloud, the DBSCAN is configured to re-
move the noisiest fixation points in clusters with high density
at the same time be able to retain certain core fixation points
in clusters with less density [27]. Fig.6 illustrates the effect of
filtering noisy fixations. DBSCAN requires two parameters: €
is the radius of the circle to be created around each data point
to check the density and 6 is the minimum number of points
required inside that circle for that data point to be classified as
a core point. O should increase as the point size o of a point
cloud becomes small, which means a high-density point cloud.
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The minimum number of points is computed as

|

€ is decided by k-distance graph [32]. We took the average of
fixation maps generated by multiple users, which is defined as

27

1+20*a}' M

1 N
VSp=5 Y (vS,).

n=1

(@)

where VS r is the fixation map for each DPC frame, V'S,, is the
fixation map for each DPC frame by one subject, specifically,
V'S, also takes the average number of times a frame is viewed
by one subject. N denotes one specific frame that has been
viewed by N subjects in total. After we got the averaged
fixation map for one DPC frame, we applied the DBSCAN
filtering operation to get the final fixation map.

4 EXPERIMENTAL RESULT
4.1 Analysis of Opinion Scores

Fig.7 shows the results of the subjective quality assessment of the
contents in 6DoF viewing conditions. In particular, the MOS scores
associated with the compressed contents are shown with solid lines,
along with relative CIs, whereas the dashed lines represent the re-
spective DMOS scores. The HR scores for each content are repre-
sented with a solid line to indicate the MOS, and a shaded plot for
the corresponding Cls.

While evaluating the point cloud codecs, we observe that, under
similar bitrates, VPCC codec exhibits the best perceptual quality,
GPCC the second, and CWI-PCL is the last codec for all 5 contents.
This observation is consistent with [38,47]. From the perspective of
contents, MOS and DMOS present similar trends, as the MOS for
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Figure 8: The fixations for each subject and for each content. Each row denotes the fixations on a specific content and each column denotes the
fixations for each subject, respectively. R1 (low), R2 (medium), and R3 (high) indicate the bitrates of each codec, while R0 denotes the reference
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Figure 9: Fixations against bitrates, expressed in Mbps. The average
number of fixations is expressed with a line. Each color denotes a
content, specifically, rafa2 is in blue, dancer is in red, exercise is in
yellow, long dress is in purple and soldier is in green.

the HR contents is between 4 and 5. The only exception to the trend
is rafa2, for which the MOS for the reference content remains at
around 3. This is likely related to the reconstruction error: compared
with other contents captured in more professional studio settings, the
reference version of rafa2 does not offer a satisfactory quality. The
calculated DMOS is between [3, 5], due to the fact that the reference
content was rated so low.

4.2 Analysis of Gaze Data

To understand how and what users explore DPC in VR, we analyze
the relationship between fixations and bitrates. Fig.8 represents the
number of fixations of each subject on each content. It should be
noted that the fixations are the filtered ones on individual DPC in-
stead of the raw fixations of subjects. Fig.9 depicts the exact number
of fixations across all subjects on difterent bitrates. Combining Fig.2,
8, 9, we have the following observations:

* Subjects are more interested in the high-motion DPC (i.e., with
higher TI) compared with the low-motion one. For example,
the average number of fixations on dancer and long dress is
higher than rafa2 and soldier, which have less TI on average.

e There is no indication that low-quality contents will receive
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Figure 10: Fixation map on the hair and heal of long dress

less attention. In fact, we do not observe any particular trend re-
garding the number of fixations changing with varying quality
levels. Visual attention for dynamic scenes should be consider-
ing both motion and quality.

 Certain subjects consistently exhibit a higher number of gaze
fixations (e.g., user 27 and 38 in Fig. 8), possibly due to the
individual differences of the participants or the accuracy of the
device during the experiment.

We also explore where the subjects are looking at the DPC in
VR, and how the quality degradation will impact the visual attention
in a dynamic scene. Subjects pay attention to unrealistic rendering
artifacts, such as high-heeled shoes and hair of long dress. Fig.10
depicts the fixation map on these two areas. Certain frames miss the
heelpiece; certain frames exhibit unnatural hair rendering. Fig.11
shows the fixation map of both the reference and all distorted long
dress point cloud frames. We can see subjects are interested in the
face and the area with high motion. For all 5 contents, subjects tend
to focus on the faces and the front view of the DPC, despite the
random rotation of the DPC itself. No differences are observed for
the salient area in different distortion levels. The heat values on the
face are consistent across all the distortion levels; the heat value
in high-motion areas floats with the motions; the heat value on the
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Figure 11: The referenced and distorted versions of point cloud long dress (frame 128) with corresponding visual attention maps based on the
proposed processing protocol. Figures 11a is the reference version. Figures 11b-11j are the distorted version of long dress from low bitrate to high
bitrate. Specifically, 11b-11d: VPCC, 11e-11g: GPCC, 11h-11j: CWI-PCL.

remaining area has no pattern. This randomness may come from
unintentional fixation or the random rotation of DPCs.

5 DISCUSSION
5.1 Dataset applications and prospective extensions

QAVA-DPC, encompassing MOS/DMOS, users’ gaze data, and
our meticulously processed visual attention maps, holds significant
potential as a foundational reference for the following aspects: 1)
Since it includes the raw data alongside the visual attention maps,
the dataset can be used by researchers and practitioners to develop
and test novel algorithms for the post-processing of gaze data and
the creation of visual attention maps; 2) The dataset can be used for
the development of objective quality metrics and visual attention
prediction models for DPC without needing to conduct resource-
intensive user studies; 3) Existing point-based objective quality
metrics can be refined and tailored for DPC, to explore how to
incorporate visual attention, and what is the added value; 4) Visual
attention maps can be used as a comparison to static point clouds,
to find the intrinsic differences between visual attention in dynamic
and static contents in terms of perceptual quality assessment.

5.2 Task-dependent visual attention

As our experiment was devoted to evaluating the visual quality of the
DPCs, the attention of our participants might have been focused on
parts of the contents that assisted them in the task: for example, areas
with patterns on which distortions would easily be spotted. That does
not necessarily mean that the same area would be a salient region
had the test been administered with a different task or task-free.
Further experiments are needed to understand how visual attention
changes based on the context of the task.
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5.3 Influence of reference quality

Our results highlight how the same content, when mixed among dif-
ferent sets of contents, can receive different ratings: thus, the quality
ratings of one content should always be considered in the context
of the content set in which they are placed. Our results also show
the importance of selecting the right set of contents for a subjective
experiment. Reference quality should be considered in order to
avoid biasing the subjects towards one or another content despite the
SI-TI information. How to automatically perform such prediction of
reference quality is, however, an open research issue [1].

6 CONCLUSION

In this study, we collect a dataset that includes gaze and quality
scores for DPCs inspected in 6DoF. As part of the dataset, we
additionally release the software used for the subjective experiment,
the raw data that were collected, and the post-processing scripts
used to compute visual attention maps. The dataset includes 50
DPCs, using 5 contents, and 9 distorted and 1 reference versions per
content. A total of 15,000 visual attention maps for each DPC frame
are finally provided. The main task of the presented study was to
evaluate the quality of DPCs. In the future, we aim at expanding
the dataset to include a task-free eye-tracking experiment, to make a
comparison of these two visual attention maps and explore how the
task impacts visual attention in virtual reality.
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