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Abstract—In addressing physical layer security issues, hard-
ware fingerprinting has been proven to be a reliable method.
Additionally, Visible Light Communication (VLC) technology
offers a solution to the spectrum congestion in next-generation
wireless communications and is noteworthy for its high security.
However, there is currently a lack of a comprehensive and
systematic description of the hardware fingerprints and their
extraction mechanisms for VLC devices. This study aims to
bridge this gap by thoroughly analyzing the hardware finger-
prints of VLC devices and proposing an innovative extraction
mechanism, thereby enhancing the security and reliability of the
physical layer. An Optic Fingerprint (OF) model is proposed
based on the LED’s inherent circuit characteristics, capable
of extracting and processing unique feature vectors with high
precision. Through extensive experiments, we demonstrate the
model’s efficacy, achieving up to 99.3% accuracy in identifying
the same manufactured white LEDs under variable conditions,
marking a significant improvement in authentication robustness
and interference resistance.

Index Terms—Visible light communication, physics-based LED
circuit model, optic fingerprint, machine learning.

I. INTRODUCTION

HE transaction from 5G to 6G networks marks a sig-

nificant leap in communication technology but raises
emergent and complex security challenges [1], [2]. The clas-
sical cryptographic solutions fall short in these novel chal-
lenges due to their complexity-based paradigms. Consequently,
innovative security approaches, particularly tailored for 6G
systems, are desired from both the industry and academia.
Device Fingerprint (DF) is the most potential technology in
Physical Layer Security (PLS) enhancing approaches, owing
to its unique and secure identification capabilities. It leverages
the inherent hardware characteristics of devices, guaranteeing
non-replicability and distinctive identification [3], [4], offers a
more robust and adaptable security framework, well-suited to
meet the demands of 6G and IoT applications [5]-[9].

Most of the existing research on DF focuses on Radio
Frequency (RF) application scenarios. Researchers proposed
the concept of Radio Frequency Fingerprint (RFF) to achieve
the 92.29% accuracy of base station authentication for Wi-Fi,
LTE, ZigBee, and etc. [10]-[15]. Whereas in the future 6G era,
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the available spectrum extended to the optical band promoting
heterogeneous physical layer technologies [16]. Visible Light
Communication (VLC) [17], leveraging signal spectrum from
380nm to 780nm to transmit signal through the optical wireless
channel, possesses attributes like high capacity, ultra-high data
rates, low latency, and inherent security due to the limited
penetration of optical signals.

However, few researches address the issues of DF in the
VLC domain. Existing studies utilize frequency response
measurements, notably the S21 parameter, to develop a DF
model [18] [19] and employ machine learning or deep learning
approaches [20] to detect DF features, aiming to authen-
ticate device identities effectively. These studies, however,
are largely limited to static environments, overlooking the
impact of environmental and spatial fluctuations, such as
distance, angle, and signal noise interference. Such neglect
results in compromised anti-noise and spatial stability, thereby
undermining the adaptability of these models in complex
environments.

This paper proposes a new DF model in the VLC sys-
tem, which is named the Optic Fingerprint (OF) model, and
the corresponding machine learning-based feature extraction
mechanism. Significant contributions of this study include:

¢« An OF model is proposed to characterize the unique
nonlinearity attributes of LEDs to form a reliable feature
vector.

o The extraction scheme for OF and the security identifica-
tion framework is developed, utilizing power spectrum
analysis and a machine learning classifier for precise
device identification against an authorized fingerprint
database.

o Numerous experiments are performed to validate our
proposed OF model. The proposed OF model shows a
high accuracy of 99.3% in identifying commercial white
LEDs. Compared to the traditional S21 fingerprint, the
proposed OF model presents a lower complexity with
better performance of anti-environmental interference.

The rest of this paper is organized as follows. Section II
outlines the OF model and extraction methodology. Section
IIT details the feature extraction and verification process.
Section IV presents the identification accuracy of the proposed
fingerprint. Section V concludes the paper, discussing the
implications of our future directions.



II. PHYSICS-BASED OPTIC FINGERPRINT MODEL
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Fig. 1: The typical VLC link diagram.

A novel OF model is proposed based on the physics
variations of LED devices for security enhancement in this
context. Generally, as shown in Fig. 1, an LED-based VLC
system comprises a VLC transmitter, Free Space, and VLC
receiver. Specifically, the power amplifier amplifies the signal
to drive LEDs with lower AC impedance, while the LED driver
converts the voltage signal into a current signal, achieving
amplitude modulation of the LED luminous intensity. The
optical modulated signal emitted by the VLC transmitter
travels through the channel and is intensity-detected by the
VLC receiver. It is noteworthy that despite belonging to the
same batch, the hardware components of the VLC transmitter,
including the power amplifier, driver, and LED, may ex-
hibit slight variations due to manufacturing tolerances. These
hardware differences influence the optical signal, which is
subsequently transmitted to the receiver. The received optical
signal, denoted as y(t), can be expressed as
o0

y(t) = GPAGDHCGRe/ l’(t)hLED(t — T)d’T, (1)

x(t) denotes the electrical signal source. Gpa, Gp represent
the gain of the power amplifier and driver, respectively. More-
over, hpgp(t) is the impulse response of the LED. It is worth
noting that the LED, as a bandwidth-limited communication
device, is the main source of hardware nonlinearity and
variance. Since the non-line of sight (NLoS) component of
the VLC channel is very weak, the channel response H¢ is
considered to be a constant loss when only considering the
line of sight (LoS) component, which can be calculated as
o= T DA oo )y cos(), @

where m = —In2/In(cos¢; /7) is the Lambertian emission
order and ¢ /5 is the emission semi-angle of LED. A, is the
physical detection area of the receiver front-end. The channel
loss is related to the distance d (between the LED and the
receiver front-end) and the irradiance angle ¢ of the light [21].

Thus, amplifier, driver, and channel impulse responses can
all be considered linear parameters. Therefore, modeling the
nonlinearity of LEDs is key to characterizing the distinc-

tive feature of each device. Numerous generic mathemati-
cal modeling methods have been proposed to characterize
the modulation nonlinearity of LEDs, such as the memory
polynomial model, Volterra model, and Hammerstein model
[22]. However, these modeling methods typically exhibit high
implementation complexity and fail to capture the inherent
common modulation nonlinearity of LEDs, which are strongly
correlated with the physical structure of the LED. Our previous
work modeled the GaN LED from the physics aspect, through
the analysis of carrier concentrations in each LED layer, the
carrier diffusion, capture, thermal escape, and recombination
are formulated by carrier rate equations [23]. Based on the
previous work, the physics-based LED model is improved to
completely characterize the high-frequency characteristics in
this paper, and a novel OF model is proposed.
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Fig. 2: (a) The physical structure and (b) the equivalent circuit
model of the MQW LED.

As shown in Fig. 2(a), silicon carbide (SiC) and sapphire
are the common substrates used in the LED. Due to the MQW
being wrapped by a cladding layer, it is necessary to consider
the capacitance and resistance effects of the quantum well in
the LED model. Thus, R, and C represent the equivalent
resistance and capacitance of MQW, respectively. Specifi-
cally, the current through R, represents the recombination
of electrons, and C reflects the charge storage effect in the
quantum well [24]. Moreover, R, is the equivalent resistance
distributed in p- and n-Cladding layers. Cj is the sum of
the barrier capacitance and the parasitic capacitance. Thus,
the corresponding equivalent circuit model is schematically
illustrated in Fig. 2(b). It is worth noting that h represents the
external quantum efficiency. 7, is the response of phosphor.
The blue wavelength photons emitted by the LED are excited



by the phosphor to produce yellow light and are mixed into
white light to provide white lighting services to users. The
analytical expression of the LED’s impedance Zpgp(w) can
be written as follows.

1 1
V4 = ——//(Re+ Ry// ——
LED (W) JuC, //(Re + q//jwcq) )
B Re+ Ry + jwR.R,C,
1 —-w?R.R,C,Cj + jw(R,Cy + R.Cj + R,C))’

where w is the angular frequency and j is the imaginary
unit. The operator // denotes the parallel calculation in the
circuit. Thus, the parameters of the LED equivalent model can
be extracted from the measured impedance curve. However,
this method is less practical, as it necessitates additional and
complex experiments to obtain device impedance features. In
this context, the frequency response of the LED is exploited
to extract model features, allowing the utilization of existing
communication data for obtaining the transmission response
without additional experiments. Specifically, the transfer func-
tion of the LED-based VLC system can be expressed as

Hyic(w) = GpaGpHcGreHrep (W)
_ GpaGpHcGRreh 4
1-— U)2RCRquCj + ]U)(chq + RCC]‘ + Rqu) '

As Gpp, Gp, Hc, GRre, and h remain constant at a specific
measurement point, a uniform ( is employed to represent these
parameters, simplifying the transmission formulation. There-
fore, the feature parameters of the proposed LED model are
summarized as a five-dimensional vector R., C;, R4, Cy, and
¢, which can be derived from the VLC system response Hy1.c.
Additionally, H¢ excludes the phosphor response component,
as the receiver typically employs a blue light filter to eliminate
signal transmission delays. Therefore, the feature parameters
R., C;, Ry, Cy, and ¢ of the proposed LED model can be
derived from the VLC system response Hyry,c(w).

A= [Re, Cj, Ry )

The values of R., C;, and R, form the OF model rep-
resented by the three-dimensional feature vector A. It is
important to note that the factors ¢ and C, are omitted from
the OF model. This exclusion is justified by the fact that ¢
primarily relies on the testing equipment types and specific
positions, rather than the intrinsic characteristics of the LED.
Additionally, Section IV provides further evidence that Cj
lacks distinct characteristics among different LED devices. A
depends on the inherent non-linearity characteristic of each
LED, which indicates its unique fingerprints.

III. EXTRACTION AND IDENTIFICATION
A. Optic Fingerprint Extraction

Fig. 3 illustrates the OF feature extraction process. The LED
is the device for the proposed OF feature extraction, which
acts as the access point within the VLC system. The test
signal, encompassing options such as a swept, baseband, or
modulated signal, undergoes LED-induced nonlinearity and is

captured by the VLC receiver. The system response data S21,
derived from processing the received signal, is utilized for
parameter extraction in the proposed OF model. The extrac-
tion algorithm employs the nonlinear least squares method.
Specifically, given an initial fingerprint value, the fingerprint
feature value continuously updates to minimize the residual
ot €2(f;) between the fitted system response data and the
measured data. Note that n denotes the frequency points of
S21 data. The optimal extraction result is then recorded as
the LED’s fingerprint feature. Subsequently, numerous LEDs
are incorporated into the OF database after feature extraction,
facilitating device security authentication.
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Fig. 3: The extraction scheme of the proposed OF model.

B. Security Identification Scheme

Fig. 4 presents an intricate security identification architec-
ture predicated on our OF identification methodology. This
system is engineered to preemptively negate network security
breaches perpetrated by eavesdroppers (Eve) through identity
falsification and unauthorized data acquisition. In the edge
network, OF data for registered devices are meticulously cata-
loged within the OF database. The Security Validation Server
(SVS) engages in conjunction with the VLC Access Point
to periodically solicit OF data from user equipment (UE).
The SVS rigorously evaluates the OF against the established
registry of the authenticated user (RegU) fingerprints within
the database, subsequently conveying the verification results
to the Network Management System (NMS) housed within
the Internet Cloud to complete the security validation process.
The NMS, predicated on the analysis, orchestrates access
authorization via the Access Control Server (ACS) or initiates
preemptive alerts through the Identity Services Engine (ISE).
The detection mechanism’s protocol unfolds as follows:

1) The VLC Access Point periodically retrieves OF data

from UEs.

2) The extracted data are then transmitted to the SVS

within the edge network.

3) The SVS concurrently retrieves and analyzes corre-

sponding OF data from the database.

4) The SVS’s verdicts are dispatched to the NMS to

facilitate security services.

5) The NMS adjudicates network access or restricts it

through the ACS based on the analysis.



1Secure Connections

(0J6)

_
OF Database ®
:-S-eélzr-e-l;h-y-si-c;ll- _______________________________ Identification Process:
' VLC Access Point Extract user fingerprint
Avcess :: @ Identify device identity
( Extract data from fingerprint database
@ Identity authorization
[0) [0} H (® Provide corresponding services
[0) | Registration Process:
\ (D Extract user fingerprint
@) Identify device identity
L= ' Extract data from fingerprint database
E i G Register or update fingerprint database
o H (® Identity authorization
Eve RegU NewU H (® Provide corresponding services

Remote Radio Light HeadE

Fig. 4: Security identification scheme based on OF model.

Further, the framework accommodates the registration of
new users (NewU), integrating them seamlessly into the net-
work. The registration process entails:

1) Upon a NewU’s registration request, the VLC Access

Point captures pertinent user data and transmutes it into
OF data.

2) This data is relayed to the SVS for processing.

3) The SVS concurrently retrieves and analyzes corre-

sponding OF data from the database.

4) The SVS updates the OF database with new entries to

the OF database

5) The SVS concurrently communicates with the NMS.

6) The NMS, leveraging the ISE, disseminates new regis-

tration details and provisions services accordingly.

This meticulously orchestrated sequence of operations for-
tifies the network’s defense mechanisms against illicit access
while contemporaneously ensuring the OF database remains
current, thus fostering a secure and adaptable network milieu
for both extant and nascent users.

IV. EXPERIMENT SETUP AND RESULTS
A. Experiment Setup

The experiment test-bed for acquiring the OF is shown
in Fig. 5. Specifically, the vector network analyzer (VNA,
Rohde&Schwarz, ZNB20) is employed to measure the fre-
quency responses of the LED. The measurements utilize a
continuous wave (CW) frequency-sweep technique. Four LED
samples (Cree, XPE2-White) are exploited to establish the OF
database. Here, the VNA injects a CW signal with an electrical
power of -5 dBm into the power amplifier (Mini-circuits,
ZHL-6A-S+), sweeping the modulation frequency from 100
KHz to 100 MHz. Bias-T (Mini-Circuits, ZX85-12G-S+) is
exploited to drive the LED with the amplified signal. The
VNA then assesses the amplitude and phase variations between
the transmitted and received signals, providing the frequency
response of the test setup, which includes the wireless link
and the optical front ends. The measurements are taken at
15 distinct positions, with each position measured 10 times,
totaling 150 measurements per LED. It is worth noting that
the longest test distance is 60 cm due to the limited power of a

single LED. These measurements form the basis for extracting
the normalized feature vectors of each LED.

E
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Fig. 5: Schematic diagram of the experiment setup.

Moreover, for each LED, 50% of the dataset was randomly
allocated as the training set, with the feature vectors serving
as signatures for authenticated devices. A range of machine
learning algorithms—Fine Tree (F-Tree), Kernel Naive Bayes
(KNB), Quadratic Support Vector Machine (Q-SVM), Fine
K Nearest Neighbor (F-KNN), Ensemble Bagged Trees (EB-
Trees), Ensemble Subspace K Nearest Neighbor (ES-KNN),
and Narrow Neural Network (NN-Network)—was applied to
stratify the training data into four clusters. Following this reg-
istration, the remaining data constituted the test set. Alongside,
the original, unprocessed S21 parameter data were subjected to
the same machine learning classification to provide a baseline
for performance comparison.

To rigorously evaluate the identification process, noise dis-
turbances were superimposed onto the test dataset and the
unprocessed S21 data. These disturbances ranged from 0 dBm
to 90 dBm in 5 dBm increments, resulting in a total of 2550
sets of data, emulating various channel conditions, and testing
the robustness of the machine learning models. The analysis
compared the performance of the models on both the noise-
augmented dataset and the original S21 data, highlighting the
efficacy of the OF features in maintaining high identification
accuracy despite the presence of environmental noise.

B. Results and Analysis

The training OF database comprises 300 samples from
4 LED samples. OF extraction is accomplished by fitting
S21 to the objective function Eq. (4). Fig. 6 illustrates the
fitting results, compared to 300 S21 measured samples. The
frequency response of four LEDs shows different amplitudes
due to the various test locations. Moreover, it can be seen from
the subfigure in Fig. 6 that fitted dots show good coincidence
with the measured lines, yielding an average Mean Squared
Error (MSE) of less than le-4.

Furthermore, Fig. 7 presents the five extracted parameters
of the equivalent circuit model based on the aforementioned
curve fitting. It can be seen that the circuit model parameters
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Cy and ¢ of four LED samples are difficult to distinguish.
This is because the impact of different test points on ¢ blurs its
individual, and (|, is in the nF range making its characteristics
challenging to distinguish between LEDs. Thus, the feature
vectors [R., Cj, Ry] are chosen as the proposed OF model.
Fig. 8 shows the clustering result of the proposed OF for
four LED samples, which are clearly clustering at different
locations in the space.
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Fig. 7: The extracted features of four LED samples.

In the subsequent analysis, various machine-learning algo-
rithms are employed to assess the classification accuracies and
validate the efficacy of the proposed OF model. As depicted in
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Fig. 8: The clustering of the proposed OF model [R., C};, R,].

Fig. 9, the OF model consistently achieves remarkable accu-
racy ranging from 99.3% to 95.0% with different algorithms.
In contrast, the S21 fingerprint model [18], under the same
machine-learning evaluations, exhibits a broader spectrum of
accuracy rates, peaking at 93.7% and dropping to as low as
42.0%. Notably, the OF model requires only three features,
whereas the S21 fingerprint model relies on 750 features.
This substantial reduction in feature count, combined with
superior accuracy and stability, highlights the advantages of
our proposed OF model over the conventional S21 model,
offering improved efficiency and reduced data complexity.
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Fig. 9: The accuracy comparison of different algorithms using
traditional S21 fingerprint and OF models.

Finally, the reliability of the OF model is analyzed by
adding Gaussian white noise of varying powers to both the
OF and the traditional S21 fingerprint models. Fig. 10 il-
lustrates that the proposed OF model consistently achieves
accuracies exceeding 80% across a noise power range from
-90 dBm to -20 dBm. In contrast, the S21 fingerprint model



demonstrates inferior noise immunity, with accuracy declining
to below 62%. Furthermore, while the performance of the
OF model begins to degrade for noise levels surpassing -20
dBm, it remains superior to the S21 fingerprint model. This
indicates that fingerprint feature vectors extracted from LED
models inherently capture the LED’s characteristics, exhibiting
robustness against changes in external channel conditions.
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Fig. 10: The comparison of anti-noise performance between
traditional S21 fingerprint and proposed OF models.

V. CONCLUSION

This paper introduces a novel Optic Fingerprint (OF) to
apply for enhancing the physical layer security of the sixth-
generation network. Four LED samples were exploited to
verify the mechanism of the proposed OF model. High
classification accuracies were achieved based on the generic
machine learning algorithms, which up to 99.3%. Moreover,
the OF model was compared with the traditional S21 fin-
gerprint model, showcasing a lower complexity with better
performance of anti-environmental interference. It is worth
noting that the LED samples with more different types and
manufacturers will be discussed in future work. The effects
introduced by the different receivers will be considered as
well, ensuring its effectiveness in the sixth-generation security
framework.
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