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Abstract—Smart contract is the building block of blockchain
systems that enables automated peer-to-peer transactions and
decentralized services. With the increasing popularity of smart
contracts, blockchain systems, in particular Ethereum, have been
the “paradise” of versatile fraud activities in which Ponzi, Honey-
pot and Phishing are the prominent ones. Formal verification and
symbolic analysis have been employed to combat these destructive
scams by analyzing the codes and function calls, yet the vulner-
ability of each individual scam should be predefined discreetly.
In this work, we present SCSGuard, a novel deep learning scam
detection framework that harnesses the automatically extractable
bytecodes of smart contracts as their new features. We design
a GRU network with attention mechanism to learn from the N-
gram bytecode patterns, and determines whether a smart contract
is fraudulent or not. Our framework is advantageous over the
baseline algorithms in three aspects. Firstly, SCSGuard provides
a unified solution to different scam genres, thus relieving the need
of code analysis skills. Secondly, the inference of SCSGuard is
faster than the code analysis by several order of magnitudes.
Thirdly, experimental results manifest that SCSGuard achieves
high accuracy (0.92~0.94), precision (0.94~0.96%) and recall
(0.97~0.98) for both Ponzi and Honeypot scams under similar
settings, and is potentially useful to detect new Phishing smart
contracts.

Index Terms—Ethereum, Smart Contract, Scam Detection,
Bytecode Pattern, Gated Recurrent Unit.

I. INTRODUCTION

Blockchain is an open, distributed and append-only ledger
in which all transactions between two parties are recorded
verifiably and permanently [1]]. Every block is linked to the
previous one via a cryptographic hash, thus forming a chain of
blocks. Ethereum [2] is one of the largest blockchain system
in term of market capitalization, second only to Bitcoin. It is
built on top of Bitcoin’s principles, but significantly augments
the functionality of Bitcoin through “smart contracts”. In fact,
the smart contracts are computer programs that are stored
and executed via the Ethereum Virtual Machine (EVM), and
they can be deployed, invoked, and removed from Ethereum
through transactions. However, along with the popularity of
smart contracts, Ethereum has been targeted by various severe
cybercrimes [3|] such as the DAO hack in 2016 [4] and
the Parity wallet hack in 2017 [5] that result in a total
loss over 400 million USD. A recent trend on Ethereum
smart contract security is the proliferation of less harmful
but more latent scams including Ponzi schemes, Honeypots
and Phishing scams. Outwardly, they camouflage themselves
as ordinary smart contracts, while enticing benign users to
transfer cryptocurrency to the attackers. Therefore, finding out

the scams from a haystack of smart contracts has become an
urgent security issue in Ethereum.

Symbolic analysis of smart contracts has demonstrated to
be valuable in the detection of vulnerabilities. As a pre-
deployment bug detector, Oyente [6] uses symbolic exe-
cution to capture traces of smart contracts that match the
predefined characteristics of vulnerabilities at the bytecode
level. However, it is neither sound or complete due to its
design flaws that might result in several false alarms even in
simple contracts [7]]. Another tool, Maian [8]], which employs
interprocedural symbolic analysis, was able to find many well-
known bugs by specifying and reasoning trace properties
precisely. Maian classifies vulnerable contracts into three cat-
egories - suicidal, prodigal, and greedy. With the bytecode of
Ethereum smart contracts, Maian can detect different kinds of
vulnerabilities after multiple invocations. However, this code
analysis is time consuming, and its accuracy is throttled by
the exhaustiveness of the search, i.e. invocation depth, leaving
some vulnerabilities uncovered. Recently, with the increasing
volume of Ethereum transactions, machine learning becomes
almost imperative to extract patterns automatically for fraud
detection. A tool based on sequence learning algorithms to
detect vulnerabilities in smart contracts is discussed in [9]].
Machine learning method is also used in some specific attack
detection tasks such as Ponzi schemes [26].

In this work. we introduce SCSGuard, a framework based on
n-gram features and attention neural network to detect scams
in smart contract using bytecode of contracts which is available
for all contracts on the Ethereum platform. Unlike many
previous works that have applied static and dynamic analyses
to find vulnerabilities in smart contracts, we do not attempt
to define any features; instead, we aim to explore methods
of machine learning techniques to create accurate models to
detect scams in smart contracts at large scale. A significant
advantage of SCSGuard is that it requires no specific bug
patterns or unique rules defined by human experts. Thus, the
labor cost will be reduced considerably. To the best of our
knowledge, our proposed method is the first machine learning
approach based on n-gram features of bytecodes for scam
detection in Ethereum smart contracts. SCSGuard applies a
sequence learning neural network GRU with an attention layer
to catch hidden information in the bytecode of smart contracts.
We evaluate SCSGuard on several well-known scams, and the
experimental results show our method performs well in these
detection tasks. SCSGuard achieves an accuracy of 0.922 for



Ponzi scheme detection and 0.947 for honeypots detection.
Other evaluation metrics including precision, recall and F1-
score also demonstrate the efficiency of SCSGuard.

The rest of the paper is organized as follows. Section
IT introduces fundamental concepts of our work, including
Ethereum platform, scams in smart contracts and n gram
method. Section III offers the description of our data and
features. The implementation details of our proposed model
are presented in Section IV and results of experiments are
showed in Section V. Finally, we conclude our work in Section
VI

II. BACKGROUND
A. Ethereum and Smart Contract

Ethereum allows users to create their own applications
within several lines of code, is currently one of the most
popular platforms for cryptocurrency based on Ethereum Vir-
tual Machine (EVM), Like Bitcoin, Ethereum also relies on a
public, append-only ledger. Transactions in certain periods will
be packaged into blocks and then append into the blockchain
by miners independently with a consensus algorithm. The fee
for the transaction is the user-defined Gasprice multiplying
the consumed Gas (measure the work a transaction takes
to perform). Users and contracts can store money in their
addresses or send/receive ether to other users and contracts.
Once deployed, no modifications can be made to the contract.

Smart contracts are programs typically written in a high-
level language. The most popular used programming lan-
guage of smart contract is Solidity. After deploying on the
Ethereum blockchain, smart contracts will be compiled into
series of EVM executable bytes, which are stored, verified,
and executed on the blockchain. EVM bytecode is composed
of a series of bytes, each of which is an operation code
corresponds with a mnemonic form and a special function.
These opcodes represent the operations to be performed. For
example, the byte Ox11 corresponds to GT, which means
greater-than comparison. The complete form of EVM bytecode
and its corresponding opcode is available in the appendix of
Ethereum yellow paper [2].

B. Scams in Smart Contracts

Recently, smart contracts have seen various adoptions
in many domains [10-12], with the rapid development of
blockchain technology. Meanwhile, there have also appeared
increasingly frauds in the name of digital currency trading
because platforms like Ethereum operate in open networks
which arbitrary participants can easily join without acquiring
permission. The main attacks and threats of smart contracts
were discussed in [13]. In addition to smart contracts threats,
a series of studies focused on the detection of fraud contracts
in the Ethereum platform [14-21]. According to [14], the first
empirical study of blockchain financial scams, more than 7
million USD been gathered in only a year. Four categories
of scams were defined: Ponzi schemes, mining scams, scam
wallets and fraudulent exchanges. Other frauds like honeypots,
phishing scams are discussed in [16-21]. These frauds can

be quite damaging due to the autonomy and immutability of
blockchain system. Thus, it highlights a strong requirement
for the detection of such security problems of smart contracts.

We briefly go over some common financial attacks in smart
contract, including Ponzi scheme, honeypot and phishing scam
in the following.

1) Ponzi Scheme: Ponzi scheme is a kind of classical fraud
that appeared almost 100 years ago. It typically uses revenue
paid by new investors to generates returns for older investors.
However, if there is not enough circulating money, participates,
especially those new investors, will lose their money. Ponzi
schemes also emerge in blockchain recent years. To deal with
the problem that Ponzi schemes usually use many addresses
at the same time, in the work of [16], a clustering method to
detect Bitcoin Ponzi schemes were proposed. Meanwhile, in
the work of [15], a study about Ponzi schemes on Ethereum
were conducted, it collected 16 million transactions from July
2015 to May 2017, and a total 17,777 transactions were found
to be related to Ponzi schemes.

2) Honeypot: Honeypots smart contracts are contracts that
are designed to look like an easy target to attract users. The
source code of honeypots is usually publicly available; users
will be easily tricked into believing that the contract contains
a vulnerability. For example, user can easily be fooled to
believe that the contract will return the total amount of its
balance after receiving some money. However, the condition
to transfer money (msg.value > this.balance ) will never be
satisfied, because the balance will increase before the function
execution. A symbolic execution to detect smart contract
honeypots was used in the work of [17], it also developed a
taxonomy of honeypot. In [18], a machine learning approach
based on transaction data, source code, and flow of funds was
used to detect several specific kinds of honeypots.

3) Phishing Scam: Phishing scam is a form of electronic
identity theft using the method of disguising as an honest firm,
aiming at obtaining private information such as usernames
and passwords from users who visit them [19]. A traditional
phishing attack typically begins by sending an electronic letter
that seems to be from an authentic organization. This email
encourages the victims to click on the provided address,
which will further direct them to an illegal website. Recently,
phishing scams also emerge in the trading system of Ethereum.

C. N-gram Classification Method

The n-gram model is one of the most common used
language models in natural language processing and has been
successfully used in many tasks, such as language modeling
and speech recognition [21]. N-gram means the N-character
slice of a long string, which is a useful substring because all
substrings of the file have a fixed length n [23]]. The Common
N-Gram analysis method has been successfully used in many
NLP tasks including text clustering, automatic authorship
attribution, etc. N-grams can not only capture statistics about
substrings of length n, but also capture frequencies of longer
substrings. This characteristic is noted in NLP, that though
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Fig. 1. The sample bytecode of a smart contract at address 0xOlade83-
a7ac7d13ab01£322d68bc2{8fe371ed27.

2-grams or 3-grams seem to be too short to be useful, they
indeed frequently obtain sound results.

N-grams also perform well in malicious code detection. N-
gram could capture specific features according to the coding
styles or behaviors of code authors. Besides, many code
writers tend to write and compile their code with tools. N-
grams could also detect the specific features of certain tools,
such as code generators, compilers, etc. Since the captured
n-gram features are implicit, it would be difficult for virus
writers to write viruses without being discovered by n-gram
analysis deliberately, even though they may know the detection
algorithm.

Most of these studies represent the inspected files by
extracting byte n-gram-pattern features. Encouraged by their
promising results, in this study, we also represent n-grams of
smart contract bytecodes, then use them to capture the inside
features of vulnerable smart contracts.

III. DATA AND FEATURE EXTRACTION
A. Data Source

The source code of a contract is an essential part to analyze
its function and detecting hidden vulnerabilities. However,
many smart contracts do not open its source code for public
inspection, only less than 1% of them are open source. Consid-
ering this problem, in this work we only rely on bytecodes of
smart contracts, which are publicly available for any contract
to be implemented by the Ethereum blockchain.

First, we collect addresses of the verified smart contracts
reported by previous studies [19]. With an attempt to
evaluate our proposed model, we collected three kinds of
scam-related contracts: honeypots, Ponzi schemes and phish-
ing scams. We collect 412 verified honeypots addresses, 183
verified Ponzi schemes addresses, and 7799 verified safe smart
contracts addresses in all. Then, we use Etherscan Website
http://etherscan.io, which is a block explorer and analytics
platform for Ethereum, to automatically collect the bytecode
of these verified smart contracts. As is seen in Figure 1, given
the address of a smart contract, by using Etherscan, we can
get its bytecode information easily.

0s: Stop and Arithmetic Operations

All arithmetic is modulo 2%°° unless otherwise noted. The zero-th power of zero 0" is defined to be one

Value Mnemonic 4 a Description

0x00 STOP 0 0 Halts execution.
0x01 ADD 2 1 Addition operation.
H[0] = 41, [0] + g, 1]
0x02 MUL 1 Multiplication operation
Hs(0] = (0] x g, [1]
0x03 SUB 2 1 Subtraction operation
0] = 1, [0] - pa,[1]
0x04 DIV 1 Integer division operation.
0 it p,[1]=0
w.lol {m_[up,;_[m mn“::\'.(,»
0x05 SDIV 1 Signed integer division operation (truncated)

ifp,f1] =0

Fig. 2. Correspondance of bytecode and opcode.
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Fig. 3. Sample bytecode of an smart contract

60 60 60 40 52 63 ff ff ff £ff 7c 01 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 60 00 35 04 16 63 41 cO0
el b5 81 14 60 3¢ 57 5b 60 00 80 fd 5b 34 15 60
46 57 60 00 80 fd 5b 60 4c 60 4e 56 5b 00 5b 73
0d 7f 11 53 6f 61 ff 47 Tb cb 4f 44 0d 67 72 96
de 60 e7 d3 ff 5b 56 00 al 65 62 7a 7a 72 30 58
20 ce ab a2 27 69 dc c2 ea a9 1f b4 b7 8a 35 77
63 d9 07 32 6e d8 7b 06 9a d7 19 Te 7d ec 42 46
31 00 29

Fi

=

g. 4. Sample bytecode after splitting into two characters.

B. Feature Description

Fraud detection based on machine learning algorithms needs
appropriate and informative features. However, initial feature
selection for this task is particularly laborious and challenging
due to the absence of strong natural and obvious features.
Defining patterns of scams through domain knowledge is a
desirable method, but it is hard to cover various types of
new scams, let alone some malicious adversaries that may
intentionally break standard rules. Therefore, in this work, we
do not predefine any patterns for fraud-related smart contracts.

Ethereum smart contracts usually have transaction history
and code open to the public. All transaction data will be
recorded on Ethereum due to the nature of blockchain.
However, transaction data is growing continuously, and any
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contract could send a transaction to another contract at any
time. Hence, it is difficult to use transaction data to detect
frauds in smart contracts. Code includes source code and
bytecode, but source code is not available for all contracts. As
a result, we focus on the analysis of EVM bytecode of smart
contracts which can be obtained directly from the blockchain
even if the corresponding source codes are unpublished.

To exploit treats of smart contracts bytecode, we need to
convert them to a vectorial representation first. The bytecode of
a smart contract, as shown in Figure 1, is a string of low-level
instructions. Unfortunately, it is hard to find the inside features
based on the raw bytecode, since the lengths of the bytecode
of smart contracts can vary from several lines to thousands of
lines and it is hard to figure out the inside features.

However, according to Ethereum yellow paper [2], each
value corresponds to an opcode (operational code), as it is
shown in Figure 2, there are 256 different opcodes defined
to have specific meanings. To take advantage of this feature,
we need to split the bytecodes into a series of bytes each
contains two characters that each byte can reveal some features
of smart contracts. Figure 3 and Figure 4 gives an example of
the transformation of smart contract.

These bytes need to be converted into a vectorial repre-
sentation before being used as inputs of our algorithms. Byte
n-grams have been commonly used as features in many works
in natural language processing and its application in malicious
code detection is attractive in works [24]. Inspired by
this, we use byte N-gram method to transform them into
vectorial representation by regarding the unique combination
of every n consecutive bytes as an specific feature. The size
of vocabularies (number of distinct n-grams) extracted for
the bytecode n-grams representation is of 257, 19600, 67148,
150898, for 1-gram, 2-gram, 3-gram and 4-gram respectively.
Later, the bytecode n-grams are transformed into vectors,
which served as the inputs of the following machine learning
classifiers.

IV. IMPLEMENTATION

In this section, we first give a brief introduction of our
approach and then describe the implementation details. In a
high-level picture, SCSGuard takes the bytecode of a smart
contract as the input. In terms of the output, SCSGuard
generates a bug report of the input smart contract.

A. Overview of SCSGuard

Our approach aims to explore methods of machine learning
techniques to create accurate detectors for scams in smart
contracts. The methodology can be summarized into four
phases: Data Collection, Sequence Preprocessing, Smart Con-
tract Analysis and Detection Report. The structure of our
algorithm can be seem in Figure 5.

For the first phase, we crawl the bytecode of smart contracts
using the open public Website Etherscan, as has been discussed
in section III. During the second phase, SMRdetector splits the
bytecode into a two-character set. Then, the n-gram features of
bytecode will be generated. After the two preparation phases,
we use the features and labels of smart contracts to train a
classification model. The last step is to generate the fraud
detection report of a smart contract.

The overall process of designating smart contracts as ma-
licious or benign is divided into the training, validating and
testing phases. First of all, a training-set of smart contracts is
provided to the classifier model. Each bytecode of the contract
is parsed, and a vector representing each contract is generated.
The vectors of the contracts and their labels are the input
for the learning model. By processing these vectors, aiming
to minimize the loss function, a classifier is trained. Next,
during the validation process, the high-level parameters of
the classifier will be modified. Then, in the testing phase, a
collection of new contracts which did not appear in the training
and validation phase will be classified by the learning model.
Finally, the performance of the generated learning model is
evaluated by metrics, including accuracy, precision, recall and
Fl-score.
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B. Feature Attention Mechanism

We propose a classifier based on attention mechanisms to
detect scams in smart contracts. The overall architecture of
our Attention Network is shown in Figure 6. In this section,
we first describe the use of the attention mechanism in our
architecture.

After feature extraction in Section III, we get the n-
gram features of smart contracts. However, not all features
contribute equally to the representation of a smart contract.
When applying n-gram features to neural networks, there is
a high number of the features; thus, it will be challenging to
learn the overall structure of smart contracts. Hence, during
the detection process, we introduce an attention mechanism
to extract such features that are important to the meaning of
smart contracts.

There are various attention mechanisms in the field [35]], in
this work, we mainly focus the analysis on scaled dot-product
attention [33]], which is one of the most common use attention
mechanisms. Consider an input token sequence of length m :
T = T1,To,...,Ty, Where x; is the ¢-th input token whose
representation before the attention layer is h; € R?.. The token
representation h; can be the output of an encoder or the word
embedding. An intuitive understanding of attention function
it to map a query and a set of key-value pairs to an output,
where all the query, keys, values, and output are vectors [32].

Then, the attention score for the i-th token which captures
the absolute importance of it is:

T
aj; = M, (1)
Vd
where v/d is a commonly used scaling factor used to normalize
the dot products, and V' € R? is the context vector that can
be viewed as the value obtained from a fixed query with the
input sentence (key).
The corresponding attention weight which indicates the
relative importance can be calculated as:

exp (a;)

S e (o) ”

Then, the i-token after the attention layer can be represented
as ojh;, which can be feed into the next layer.

During the training section, assume we have N labeled
smart contracts, then the training set can be represented as:
D = {(z@,yD)]i=1,2,...,N}.Where 2() € R? is the
extracted features associated with the ¢-th smart contract,
y € {0,1} is the verified label of the contract. If the contract
is a verified as a scam, the label y will be 1. Otherwise, y will
be equal to 0.

Unlike traditional classification models that usually return
the class label directly, the last layer of our model is a Sigmoid
function, and the output will be a probability between 0 and
1. If the predicted probability is smaller than 0.5, the contract
will be considered as a safe contract. Otherwise, it will be
recognized as a scam.

The objective of our classifier is to determine whether a
given contract is a scam. In the training process, we aim to
minimize the following objective function:

Obj(6) = L(6) + (). 3)

where L is the training loss, and {2 is the regulation term.

The training loss function L(#) measures the sum of losses
on the training data. Since the loss provided by each training
data point, we expect the classifier model can learn from the
errors.

Loss function plays an essential role on the performance of
the model, so it is usually selected specifically for its applica-
tion. The most common ones are squared loss, softmax, and
cross-entropy loss (logarithmic loss). In this work, considering
our model is a binary classification, we choose the cross-
entropy loss function:

L) = _% N [y(i) In (@(z‘)) I (1 _ y(i)> In (1 B y@')ﬂ
t=1

“)

As for the regulation term €2(6), which can help to prevent

overfitting by penalizing the complexity of the model, we
define it as:

1
2(0) = SAllw]” 5)
where A is the parameter of the model and
|w|? = whw = wi +w? +... +wk (6)

As the network improves its estimation accuracy, the cross-
entropy loss tends towards zero, indicating that during the
training process, the model gradually grows to be more ac-
curate in classifying smart contracts, it minimizes the distance
between the desired output y and the output estimate g.

C. Performance Measures and Validation

To evaluate the performance of classification models, the
test accuracy, Eq (7), is the simplest metric which measures
the fraction of predicted correctly class among all instance.

true positive + true negative
total tested

Accuracy =

)
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Fig. 7. The performance(accuracy and loss) of SCSGuard on Ponzi scheme and honeypot detection over 100 epochs.

However, we face the problems with imbalanced class
distributions, among all the verified contracts, the malicious
ones only occupy a small part. We denote the majority class
as the negative class and the rare class as the positive class.
In the imbalanced distribution problem, the accuracy metric
losses its effect, because if the classifier predicts all instance as
a negative class, it can still achieve a high accuracy. Therefore,
we further check the performance of classification models
using three other metrics including precision score, recall score
and F1-score. We denote a positive instance correctly classified
as true positive, a positive instance wrongly classified as
false megative; a negative instance correctly classified as
a true negative and a negative instance being classified
wrongly as a false positive.

true positive

Precision = — — 3
true positive + false positive
Recall = .tr.ue posttive - )
true positive + false negative
Precision x Recall
F1— score = 2 x — ot * 1Cd (10)

Precision + Recall

The precision metric measures the ability of a model not
to mislead safe smart contracts as a scam, and the recall
metric can measure the ability of a model to find all negative

instances. We also present F1 score in equation (10), which is
the harmonic mean between precision and recall F1.

V. EXPERIMENTS AND RESULTS

In this part, we illustrate the performance of SCSGuard
using three kinds of scams. We also evaluate the performance
of SCSGuard by involving different constructions of neural
networks and compare it with other state-of-the-art classifica-
tion models.

A. Performance of SCSGuard

Our proposed classification model-SCSGuard, has 689,473
parameters in all. The classifier result is based on a binary
sigmoid activation function. In the training process, we found
that our model was easier to train on a balanced dataset.
We first divided the data into 60% training, 20% validation,
and 20% test. Then we undersample 1000 unique safe smart
contracts randomly from the dataset. Also, we oversample the
negative training smart contracts to an equal number to obtain
a balanced training dataset.

We evaluated the performance of our model on the task
of detecting Ponzi schemes and honeypots respectively. The
performance of SCSGuard is shown in Figure 7.

During the test session, as shown in TABLE I and TABLE
II, SCSGuard can achieve 92.2% accuracy, 97.1% F1-score



TABLE I
PONZI SCHEME DETECTION MEASURES
Classfication Performance Measure | SCSGuard(%)
Test Accuracy 0.922
Precision Score 0.963
Recall Score 0.978
F1-Score 0.971
TABLE II

HONEYPOTS DETECTION MEASURES

Classfication Performance Measure | SCSGuard(%)
Test Accuracy 0.947
Precision Score 0.942
Recall Score 0.989
F1-Score 0.964

in the detection of Ponzi schemes, and 94.7% accuracy,
96.4% F1-score in the detecion of honeypots. The evaluation
measures show that SCSGuard can achieve high scores in
fraud detection tasks.

We also test SCSGuard on a small set of phishing scams, the
result shows that SCSGuard can find 4 in 5 phishing scams. It
proves the potential of SCSGuard on finding unknown scams.

B. Analysis of the Architecture of SCSGuard

There are several critical designs in SCSGuard, including
n-gram features in the contract embedding layer, and the
attention layer which used to align the hidden states produced
by the networks. In this part, we provide an intuitive under-
standing of the construction of SCSGuard. The experiment
results show that the n-gram feature embedding and the
attention mechanism are two essential parts of SCSGuard.

1) Contribution of N-gram Feature Embedding: To use
bytecode information to detect scams in smart contracts, we
need to convert bytecode into vectors before feeding into
our learning models. We compare the results with different
feature embedding. The first neural network model without n-
gram feature selection is named Feature Directly Embedding
Method. In this method, we convert the bytecode of a smart
contract into one-hot vector representations.

TABLE III
COMPARISON OF DIFFERENT FEATURE EMBEDDING METHODS

Methods Precision  Recall ~ F1-Score
Feature Directly Embedding | 0.682 0.719 0.699
1-gram Feature Embedding 0.818 0.820  0.818
2-gram Feature Embedding 0.963 0.978 0.971
3-gram Feature Embedding 0.958 0.979 0.968

We can observe that n-gram feature embedding significantly
improve the performance of the classification model. If we use
Feature Directly Embedding layer, the test accuracy is 0.682.
However, with the n-gram feature added, the performance of
learning model is significantly improved. Since the numbers
of features for 1-gram, 2-gram, 3-gram are 257, 19600, 67148

accordingly, the time for training will increase similarly. So
we choose n-gram feature embedding as our method without
affecting the performance of SCSGuard.

2) Contribution of Attention Mechanism: There are a large
number of parameters after the embedding layer, and not
all parameters are equally important to the model. Attention
mechanism, which improves the performance of many natural
language processing tasks, can make the classification model
pay more attention to more relevant and useful features. We
add the attention layer after feature embedding layer.

To evaluate the function of attention mechanism in SCS-
Guard, we compare different neural network structures:

TABLE IV
FUNCTION OF ATTENTION MECHANISM

Network Architecture | Precision  Recall  F1-Score
RNN 0.858 0.942 0.898
RNN+Attention 0.943 0.976 0.959
LSTM 0.818 0.820 0.818
LSTM+Attention 0.952 0.978 0.964
GRU 0.893 0.976 0.932
GRU+Attention 0.963 0.978 0.971

The performance of SMSGuard is improved by adding an
attention layer. As is shown in TABLE IV, GRU with attention
mechanism can achieve the best evaluation results, so we use
this neural network structure in our final classification model.

C. Comparison of Different Classification Models

To evaluate the performance of our proposed algorithm,
we also compare the performance with other classifiers to
figure out which one is the most suitable algorithm for this
classification task. These machine learning models including
support vector machine (SVM) [25]], Random Forests (RF)
[28]], and XGBoost [27].

We compare the performance of these algorithms on the
detection of Ponzi schemes and honeypots respectively:

TABLE V
PONZI SCHEME DETECTION PERFORMANCE

Algorithm | Accuracy Precision Recall Fl-score

SVM 0.831 0.957 0.800  0.871

RF 0.922 0.978 0.900  0.937

XGBoost 0.909 0.957 0.898  0.926

SCSGuard | 0.922 0.963 0978  0.971
TABLE VI

HONEYPOTS DETECTION PERFORMANCE

Algorithm | Accuracy Precision Recall Fl-score
SVM 0.761 0.958 0.775  0.857
RF 0.953 0.979 0913  0.945
XGBoost 0.946 0.958 0933  0.945
SCSGuard | 0.947 0.942 0.989  0.964

We can observe that the performance of SCSGuard is better
than other algorithms obviously. In performance metrics of



SCSGuard, we can see that the recall score, which is the
fraction of scams that have been uncovered accurately, is
exceptionally high compared with other algorithms. It means
our proposed algorithm will the least likely to miss scams,
which is the most important part of fraud detection task.

VI. CONCLUSION

Financial scams based on blockchain and cryptocurrency
have become an important research problem. We have pro-
posed a new approach based on the bytecodes of smart
contracts to detect scams. We proposed an n-gram pattern-
based learning algorithm with attention mechanism applied.
We have demonstrated encouraging results of our method in
detecting several popular scams. Our method achieves high-
performance measures and outperforms other state-of-the-art
classification models in the detection of Ponzi schemes and
honeypots.
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