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Abstract—In dense wireless networks, inter-cell interference
highly limits the capacity and quality of service perceived by
users. Previous work has shown that approaches based on
frequency reuse provide important capacity gains. We model
a wireless network with Inter-Cell Interference Coordination
(ICIC) at the flow level where users arrive and depart dy-
namically, in order to optimize quality of service indicators
perceivable by users such as file transfer time for elastic traffic.
We propose an algorithm to tune the parameters of ICIC schemes
automatically based on measurements. The convergence of the
algorithm to a local optimum is proven, and a heuristic to
improve its convergence speed is given. Numerical experiments
show that the distance between local optima and the global
optimum is very small, and that the algorithm is fast enough to
track changes in traffic on the time scale of hours. The proposed
algorithm can be implemented in a distributed way with very
small signaling load. 1

Index Terms—Wireless Networks;Queuing Theory;Traffic
Engineering;Self-Organizing Networks;Stochastic Approxima-
tion;Stability;OFDMA;Load Balancing;Self configuration;Self
Optimization

I. INTRODUCTION

As wireless networks become increasingly dense to ac-

commodate the rising traffic demand, inter-cell interference

becomes one of the limiting factor as far as performance is

concerned. Interference can be managed at various layers and

time-scales. At the physical layer, two promising approaches

are multi-user detection ([1]) and multi-antenna techniques

such as beam-forming and network Multiple Input Multiple

Output (MIMO). At the MAC layer, inter-cell scheduling is

believed to provide large capacity gains ([2]). On a slower

time scale, which we consider in this article, approaches based

on frequency reuse other than reuse 1 can provide significant

performance improvements ([3]). Soft reuse and fractional

reuse are two such approaches.

In this article we propose self-optimizing algorithms to

automatically tune the parameters of frequency reuse schemes

based on measurements. The self-optimization allows to con-

figure the network and adapt it to daily traffic patterns auto-

matically. The proposed algorithms fall within the scope of

Self-organizing networks (SON) ([4]). The SON technology is

1This work has been partially carried out in the framework of the FP7
UniverSelf project under EC Grant agreement 257513

expected to enable complex and costly network management

tasks such as node deployment and configuration, parameter

optimization and troubleshooting to be performed automati-

cally.

Previous work on self-organizing ICIC in wireless networks

([5], [6]) does not take into account flow-level dynamics i.e

users arrival and departures explicitly and adopts a static

approach. Namely, it is assumed that the number of active

users and their position remain constant for a sufficient amount

of time, so that the transmit powers of the Base Stations

(BSs) can be adjusted to maximize a utility function of the

users throughput. The flow level performance is then assessed

through simulation.

For N active users in the network, define Dn as the

throughput of the n-th user. A popular approach for ICIC is

to adjust transmit powers to maximize the α-fair utility ([7]):

∑

1≤n≤N

D1−α
n − 1

1− α
. (1)

There is a strong interaction between the chosen rate

allocation (the value of α) and the congestion process, i.e

the stochastic process describing the number and location of

active users as a function of time. In the context of wired

networks, [8] investigates the topic and suggests that α = 2 is

appropriate for elastic traffic. Numerical studies in [6] confirm

that α = 2 is adequate for ICIC in wireless networks with

elastic traffic. The problem with this utility-based approach is

that the optimal value of α is not known a priori, making the

design complex.

Our contribution : Our contribution is to propose a new

approach: we model the system at the flow level taking into

account users arrivals and departures, and optimize directly

functions of the loads of stations. All flow-level performance

indicators such as blocking rate and file transfer time can be

expressed as function of the loads, so this approach allows to

prove mathematically the convergence of the proposed mech-

anism to a configuration which is optimal at the flow level.

This flow level approach to SON was used in [9] to adjust cell

sizes automatically based on network measurements.

We propose an algorithm to tune the parameters of ICIC

schemes automatically based on measurements. The conver-



gence of the algorithm to a local optimum is proven, and a

heuristic to improve its convergence speed is given. Numerical

experiments show that the distance between local optima and

the global optimum is very small, and also that the algorithm

is fast enough to track changes in traffic on the time scale

of hours. The proposed algorithm can be implemented in a

distributed way with very small signaling load.

The remainder of the paper is organized as follows: in

section II we state the traffic model and the calculation of

the network flow-level performance. In section III we expose

the three main ICIC schemes that have received attention in

the literature, and explain how to calculate user data rates with

each of them. In section IV we present a general algorithm

to tune the parameters of the ICIC schemes, we prove its

convergence and demonstrate that it can be implemented in a

distributed way with very little signaling load. In section V we

illustrate the performance of the proposed scheme numerically.

Section VI concludes the paper.

II. MODEL FOR ELASTIC TRAFFIC

We write A ⊂ R2 the network area. There are Ns BSs, and

we define As the area covered by BS s. Users arrive in the

network according to a Poisson process on A×R of measure

λ(dr × dt) = λ(dr) × dt. Namely the mean number of users

who arrive in the network during time [t1, t2) in any (Borel)

region A′ ⊂ A is equal to (t2 − t1)λ(A
′).

The data rate of a user located at r ∈ A who is attached

to BS s and is the only user served by s is denoted by

Rs(r). Elastic traffic is appropriate for modeling File Transfer

Protocol (FTP)-like services. Users want to download a file

of size σ, with E [σ] < +∞ and E
[

σ2
]

< +∞. Round-

Robin scheduling is used: when BS s has ns active users, the

throughput of a user located at r is
Rs(r)
ns

. Each station can be

modeled by a M/G/1/PS(Processor sharing) queue ([10]). The

load of BS s is:

ρs = E [σ]

∫

As

λ(dr)

Rs(r)
, (2)

and BS s is stable if ρs < 1 i.e the distribution of the number

of active users tends to a finite stationary distribution. The

average number of active users in s in stationary state is:

E [ns] =
ρs

1− ρs
(3)

Using Little’s law ([11]), the mean file transfer time in the

network is given by the expected number of active users

divided by the arrival rate:

E [F ] =
1

λ(A)

Ns
∑

s=1

ρs
1− ρs

. (4)

With admission control the blocking rate is:

Bs =
ρNmax
s

∑Nmax

i=1 ρis
(5)

with Nmax - the maximal allowed number of active users in

a BS.

III. INTERFERENCE COORDINATION SCHEMES

In order to perform ICIC, we must show the link between

the powers transmitted by BSs and the data rates Rs(r). The

data rate calculation is done for several ICIC schemes that

have received attention in the literature.

While this article is written with Orthogonal Frequency-

Division Multiple Access (OFDMA) networks in mind, the re-

sults hold for any access scheme where the radio resources can

be divided in a set of parallel orthogonal channels. The term

“resources” stands for: time-frequency blocks for OFDMA,

codes for Code Division Multiple Access (CDMA) (when

inter-code interference can be ignored), and time slots for

Time Division Multiple Access (TDMA). We denote by Nr the

number of resources, hs(r) - the signal attenuation comprising

path loss and shadowing between BS s and location r, and φ -

the mapping between Signal to Interference plus Noise Ratio

(SINR) and data rate on a resource, for an Additive White

Gaussian Noise (AWGN) channel. In subsequent sections, we

will choose φ as:

φ(S) = bW log2(1 +
S

a
), (6)

with W being the bandwidth for a resource, and a ≥ 1, b ≤
1 two constants. For a = 1 and b = 1, (6) is simply the

Shannon formula. a represents the loss of efficiency due to

practical (finite length) coding schemes, and b the proportion

of effectively usable bandwidth, since part of the bandwidth

is used for signaling in practical systems. A very good fit

between (6) and link-level simulations was shown by [12],

and suggested that a = 1.25 and b = 0.75 were the correct

values for Long Term Evolution (LTE) systems.

We define Zs(r) the amplitude of the channel fading be-

tween BS s and location r on a resource, with E [Zs(r)] = 1.

We assume independence of the fading processes on different

resources. We further assume independence of the fading

across BSs, i.e Zs(r) ⊥⊥ Zs′(r), s 6= s′. The coherence time of

the channel is much smaller than the time scale on which users

arrive and depart, so that the throughput of a user in a given

user configuration can be considered equal to the expected

data rate, when expectation is taken on the fading.

A. Fractional load

1) Data rate calculation: The first scheme is denoted

Fractional Load (FL), as introduced in [13]. Instead of using all

available resources, BS s uses each resource with probability

0 < ps ≤ 1. This enables reducing inter-cell interference since

the average interference caused by BS s to its neighbours is

proportional to ps. This scheme is completely decentralized,

since each BS chooses the resources used for transmission

independently of the decision taken by other BSs. If a BS

uses a resource, it transmits at a fixed power Pmax. We

define a random variable Us ∈ {0, 1}, with P [Us = 1] = ps,

and Us ⊥⊥ Us′ , s 6= s′, since BSs take their decisions

independently. Let Ss(r) denote the SINR between BS s and



location r on a resource, when it is used:

Ss(r) =
Pmaxhs(r)Zs(r)

N2
0 +

∑

s′ 6=s Pmaxhs′(r)U ′
sZs′(r)

, (7)

with N2
0 the thermal noise power on a resource. The total data

rate is proportional to the number of used resources:

Rs(r) = NrE [Usφ(Ss(r)] = NrpsE [φ(Ss(r))] (8)

The expression in (8) can be calculated by BS s since:

• Pmax is known

• Channel attenuations hs(r), ∀s, the distribution of the

channel fading Zs(r), ∀s and the resource utilization ps,

∀s can be known through measurements done by the

users.

2) Simplified calculation: Although the data rate in (8) can

be calculated, it involves a fairly large amount of signaling

between users and the BSs, in particular to know the channel

statistics Zs(r), ∀s. In practical scenarios, the calculation can

be made much simpler as long as we can assume that there

are a large number of interfering BSs. In this case we can

calculate the data rate (8) replacing the interference by the

mean interference. [14] shows that for hexagonal networks in

a urban environment, the approximation is very accurate.

We write Is(r) the mean interference at location r when

served by station s:

Is(r) = Pmax

∑

s′ 6=s

ps′hs′(r) (9)

Using Jensen’s inequality we obtain a lower bound for the

data rate:

Rs(r) ≥ NrpsE

[

φ(
Pmaxhs(r)Zs(r)

N2
0 + Is(r)

)

]

, (10)

which is considerably simpler to calculate than (8) since it

does not involve the distribution of the fading of interfering

signals Zs′(r), s
′ 6= s.

B. Fractional frequency reuse

1) Data rate calculation: Another scheme is Fractional

Frequency Reuse (FFR), which is based on frequency planning

and is considered in [5] as a basis for self-organizing ICIC.

Resources are divided into Nb sub-bands of equal size. The

BSs use all the resources, but they do not transmit the

same power on all sub-bands. Namely, if a BS transmits at

strong power on a given sub-band, then its neighbors should

transmit at smaller power in order to avoid creating too much

inter-cell interference. Reuse patterns appear in the network,

which enables mitigating the inter-cell interference. Each user

receives each resource of each sub-band an equal amount of

time, i.e Round-Robin scheduling applies.

Let Ps,b denote the power transmitted by BS s on a resource

of sub-band b and Ss,b(r) - SINR at location r, on a resource

of sub-band b when served by BS s:

Ss,b(r) =
Ps,bhs(r)Zs(r)

N2
0 +

∑

s′ 6=s Ps′,bhs′(r)Zs′ (r)
(11)

The data rate is:

Rs(r) =
Nr

Nb

∑

1≤b≤Nb

E [φ(Ss,b(r))] . (12)

2) Simplified calculation: As said in III-A2, the data rate

calculation in (12) can be simplified. The mean interference

at r when served by BS s on a resource of sub-band b is:

Is,b(r) =
∑

s′ 6=s

Ps′,bhs′(r). (13)

The simplified expression for the data rate is:

Rs(r) ≥
Nr

Nb

∑

1≤b≤Nb

E

[

φ(
Ps,bhs(r)Zs(r)

N2
0 + Is,b(r)

)

]

. (14)

C. Soft frequency reuse

1) Data rate calculation: The last scheme considered is

called Soft Frequency Reuse (SFR), and performance studies

in [3] show that it enables a significant increase in capacity

in dense networks. Region As served by BS s is divided into

two regions denoted “center” and “edge” As,c and As,e, based

on a path-loss threshold, i.e users far from the BS are called

edge users and the other are called center users. [3] further

shows that it is optimal to choose the path-loss threshold as

the median path-loss in the cell. Resources are divided in 3
sub-bands of equal size. One sub-band is used to serve edge

users on which BS s transmits at maximal power Pmax, and

two sub-bands are used for center users on which it transmits at

low power Pmaxκs. Typical values for κs are around −10dB
([3]). We define Bs,e the sub-band used by BS s to serve edge

users, and Bs,c the set of two sub-bands used by BS s to serve

center users. Using the same notations as for FFR, we have

that Ps,b = Pmax if b ∈ Bs,e and Ps,b = Pmaxκs if b ∈ Bs,c.

The SINR Ss,b(r) is calculated as for FFR by (11).

The data rate for edge users Rs,e(r) is:

Rs,e(r) =
Nr

Nb

∑

b∈Bs,e

E [φ(Ss,b(r))] , (15)

and the data rate for center users Rs,c(r) is:

Rs,c(r) =
Nr

Nb

∑

b∈Bs,c

E [φ(Ss,b(r))] . (16)

The previous remark III-A2 on the simplified data rate calcu-

lation remains valid.

2) Queuing model: Each station can be modeled as 2
parallel M/G/1/PS queues ([3]) with loads:

ρs,e = E [σ]

∫

As,e

λ(dr)

Rs,e(r)
, (17)

ρs,c = E [σ]

∫

As,c

λ(dr)

Rs,c(r)
. (18)

As previously, the mean number of active users in BS s is:

E [ns] =
ρs,e

1− ρs,e
+

ρs,c
1− ρs,c

. (19)



IV. SELF-ORGANIZING INTERFERENCE COORDINATION

In order to compute ρs, we need to know the data rates at

every point of the cell Rs(r) and the arrival intensity λ(dr).
To compute the data rate Rs(r), using the calculations of

Section III, we need to know the signal attenuations from all

the BSs hs(r) , 1 ≤ s ≤ Ns. In practice, this information is

not available. In this section, we show that the loads can be

estimated by observing users arrivals and file sizes. This allows

to optimize a function of the loads in an “online” fashion: the

characteristics of the arrival process are not known and the

system is optimized based on successive observations. The

observations are by nature noisy, and we will show that an

optimum can still be found using stochastic approximation

theorems.

A. Load estimation

We denote by {Tn, rn, σn}n∈Z the marked point process of

users arrivals, locations and file sizes. Namely Tn is the instant

at which the n-th user arrives, rn his location of arrival, and

σn its file size. Time is divided in time slots of size T , and the

k-th time slot is [kT, (k + 1)T ). We assume that T is larger

than a typical flow duration. We define ρs[k] the load estimate

for BS s during the k-th time slot:

ρs[k] =
1

T

∑

n∈Z

σn

Rs(rn)
1[kT,(k+1)T )(Tn). (20)

We further need to calculate the derivatives of the loads

for our optimization algorithm. For the calculations not to

depend on the considered ICIC scheme, we denote by θ the

parameters of interest. Namely, θ stands for {ps}1≤s≤Ns
for

FL, {Ps,b}1≤s≤Ns,1≤b≤Nb
for FFR and {κs}1≤s≤Ns

for SFR.

We define ∇θρs[k] the gradient with respect to θ of the load

estimate for BS s during the k-th time slot:

∇θρs[k] = −
1

T

∑

n∈Z

σn

∇θRs(rn)

Rs(rn)2
1[kT,(k+1)T )(Tn). (21)

The formulas for calculating ∇θRs(r) are given in Ap-

pendix A. Loads and their derivatives are estimated without

bias, as stated by theorem 1. Furthermore, the standard devi-

ation of those estimates is proportional to 1√
T

.

Theorem 1. (i) E [ρs[k]] = ρs(θ[k]) ,

(ii) E [∇θρs[k]] = ∇θρs(θ[k]),
(iii) varρs[k] and var∇θρs[k] are both finite and propor-

tional to 1
T

.

Proof: see appendix B

It is noted from the expressions of the data rates that

∇θρs[k] can be computed by BS s provided that it knows θ,

the derivative of φ, the value of the path-loss at the locations

of arrivals of users that arrived during the k-th time slot,

and the fading distributions. Once again, from the remark

in III-A2, when the number of interfering BSs is large, the

interference can be replaced by the mean interference. Then

only the distribution of the fading between the serving BS and

the users is needed, and the computation is simpler.

B. Load optimization

1) Optimization objective: We write ρ = (ρ1, · · · , ρNs
) the

load vector. The objective is to minimize a given function of

the loads U(ρ). A case of particular interest is to minimize

the average file transfer time, and according to (4), this can

be done by choosing

U(ρ) =

Ns
∑

s=1

ρs
1− ρs

, (22)

where we have ignored the total arrival rate λ(A) since it does

not depend on θ.

For our proof we will assume that U is differentiable with

bounded derivatives. For the file transfer time, we will either

assume that the loads are bounded away from 1, or we will

replace f(ρs) =
ρs

1−ρs
by a smooth function g such that f = g

on [0, 1−d) and g is linear on (1−d,+∞), with d an arbitrarily

small constant. Another case of interest is when we try to

minimize the load of the most loaded station, i.e U ≡ max.

In this case we can use the smooth approximation:

U(ρ) =
1

τ
log(

Ns
∑

s=1

exp(τρs)), (23)

with τ a smoothing parameter.

2) Constraint sets: For each ICIC scheme, parameter θ is

constrained to a compact convex set P . For FL the constraint

set is:

{p|pmin ≤ ps ≤ 1}, (24)

where pmin > 0 since ρs →
ps→0+

+∞. For FFR the constraint

set is:

{P|Pmin ≤
∑

1≤b≤Nb

ps,b ≤ Pmax, 1 ≤ s ≤ Ns}, (25)

with Pmax the maximal allowed total transmit power of a

BS and Pmin > 0 since ρs →∑
b Ps,b→0+

+∞. For SFR the

constraint set is:

{κ|κmin ≤ κs ≤ 1}, (26)

with κmin > 0 since ρs,c →
κs→0+

+∞. We define a constraint

set for the loads C = [0, ρmax]
Ns for FFR and FL, and

C = [0, ρmax]
2Ns for SFR. We define πP [.] and πC [.] the

projection on P and C respectively. We denote by ∂U
∂s

the

partial derivative of U with respect to its s-th parameter.

3) Algorithm: We define the filtered loads C[k] for the k-th

time slot:

C[k + 1] = πC [(1 − δ)C[k] + δρ[k]], (27)

with 0 < δ a filtering parameter. We define the update vector

for the k-th time slot:

Y [k] =
∑

1≤s≤Ns

∇θρs[k]
∂U

∂s
(C[k]). (28)



θ is updated at each time slot and projected back on the

constraint set P :

θ[k + 1] = πP [θ[k]− ǫY [k]]. (29)

with ǫ > 0 a small step size. Theorem 2 demonstrates

that when ǫ, δ → 0 with ǫ
δ

→ 0, the sequence {θ[k]}k∈N

converges in distribution to U , the set of local minima of

U on the constraint set P . The proof is based on stochastic

approximation. The performance gap between local optima

and the global optimum will be discussed in Section V, and

we will show that it is small.

Theorem 2. For ρmax large enough, {θ[k]}k∈N converges in

distribution to U when ǫ → 0, δ → 0 and ǫ
δ
→ 0. Namely, for

all β > 0:

lim sup
k

P [dU (θ[k]) > β] →
ǫ,δ, ǫ

δ
→0

0, (30)

with dU (θ) = inf
u∈U

‖θ − u‖ the distance to set U .

Proof: See appendix C

C. Numerical considerations

While the algorithm (29) can be proven mathematically to

converge to a local minimum, its performance can further be

improved due to the specificity of the problem considered

here. After extensive numerical experiments, we suggest a

modification of (29) which makes it much more efficient

in practice, especially when traffic is not stationary and the

algorithm must be fast enough to “track” the traffic variations.

The efficiency will be illustrated numerically in Section V.

When Ps,b is small, ∂U
∂Ps,b

has a large absolute value and

its sign varies quickly which forces us to use a small value

of ǫ to avoid instability. However when Ps,b is large, | ∂U
∂Ps,b

|
is close to 0, which causes the algorithm to “get stuck” in

regions where Ps,b is large for a long time, unless ǫ is large.

Hence we suggest to work with powers on a logarithmic scale

(in dB) so that the steps at low power will be smaller than

the steps taken at high power. Furthermore, instead of taking

steps proportional ∇θU , we take steps of constant size. Our

modified algorithm can be written:

θ[k + 1] = πP [exp (log(θ[k])− ǫ sign(Y [k]))]. (31)

where sign(x) is a vector whose components are the signs

of the components of x, and sign(0) = 0. This modification

enables very good tracking performance.

D. Distributed implementation and signaling load

Since our algorithm runs in real-time, we must show that it

can be implemented in a distributed way, where each BS con-

trols its own parameters, with a small signaling load. Namely,

we write θs the components of θ which are parameters of BS

s. That is: θs = ps for FFR, θs = {Ps,b}1≤b≤Nb
for FFR

and θs = κs for SFR. Assume that U is additive and can be

written:

U(ρ) =

Ns
∑

s=1

u(ρs), (32)

with u a scalar function.

We define Ns the set of neigbours of BS s, such that
∂ρs

∂θs′
=

0 if s′ /∈ Ns. This means that, in order to be able to calculate

the gradient ∂U
∂θs

, BS s only needs to know the derivative of the

loads of its neigbours. Hence at each time slot, each neighbor

of BS s, BS s′ ∈ Ns will communicate to BS s the value of

∇su(ρs′), and in this way the algorithm can be implemented

in a distributed way, with the only assumption that there exists

an interface between neighboring BSs. Such an interface exists

in LTE (X2 interface).

The amount of signaling (exchanged every T seconds) per

base station is proportional to the number of components of

θs multiplied by the number of neighbours. In practical cases,

we will have 3 components for FFR, and 1 for FL and SFR,

T = 60s and 6 neighbours (hexagonal network). Assuming

that floating numbers are coded on 32 bits, the signaling per

BS will be of 3×32×6
60 = 9.6 bits/s which is indeed very small

for current networks. It is also noted that since information is

exchanged every 60s or so, the interface delay will not be

problematic, since the typical delay value for the X2 interface

is 50ms.

V. NUMERICAL EXPERIMENTS

In this section we illustrate the performance of the proposed

schemes numerically. We show two main features of our

method: the algorithm is fast enough to track the changing

traffic on the time scale of hours and that although the

algorithm is proven to converge to a local optimum, the

distance to the global optimum is small.

A. Simulation setting

We perform simulations for a hexagonal network with 12
BSs. In order to avoid introducing border effects, we use a

wrap-around, which is equivalent to placing the stations on a

torus. The measurement interval length is T = 60s. T should

be reasonably larger than flow durations (a few seconds) in

order to avoid sudden changes of the data rate for active flows.

In our simulation, we assume that the arrival rate varies slowly.

We want to show that the proposed algorithm is able to adapt

to the changing traffic distribution. This is essential in practical

settings since traffic intensity and distribution changes on the

time scale of hours or so. For our numerical experiments we

choose the traffic variation to be sinusoidal:

λ(dr × dt) = (λ1 + λ21A1
(r) sin(

2πt

4
))dr × dt, (33)

with t in hours. The arrival rate is the sum of a uniform traffic

which does not vary with time, and a traffic in BS 1 which

varies sinusoidally. Namely, there is a “hot spot” in BS 1
which appears and disappears periodically. We will compare

the performance of the proposed algorithm to a reference

scenario (denoted as “no SON”) in which all BSs transmit

at full power on all resources. Other simulation parameters

are given in Table I.



Simulation parameters

Network layout Hexagonal
Antenna type Omni-directional
Number of base stations 12
Inter-site distance 500m
Network Area 1km× 1km
Access technology OFDMA
Link Model SISO, AWGN + Rayleigh fading
Number of resource blocks 100
Resource block size 180kHz
BS maximal transmit power 46dBm
Thermal noise −174dBm/Hz
Path loss model 128 + 37.6 log10(d) dB, d in km
Shadowing standard deviation 6 dB
Average file size 10Mbytes

TABLE I
SIMULATION PARAMETERS

B. Results

On Figure 1, we plot the file transfer time in the network

as a function of time for different ICIC schemes. During

high traffic periods, the network becomes critically overloaded,

which results in a high file transfer time. All ICIC schemes

bring some improvement and are indeed able to adapt to

the changing traffic. The FFR scheme performs the best and

greatly reduces the file transfer time, followed by the SFR and

the FL comes in last.

For FFR, the transmitted powers by BS 1 and 2 as a function

of time are represented on figures 2 and 3 respectively. BS 1
and BS 2 are neighbors. We first notice that BS 1 transmits

most of its power on band 2, while BS 2 transmits most of

its power on band 3. Since BSs are neighbors, they should

indeed avoid transmitting at strong power on the same band,

and this shows that the algorithm creates reuse patterns in

the network in a autonomous, self-organizing manner. We

also notice that during high traffic periods BS 1 increases its

transmitted powers noticeably on bands 1 and 3 in order to

serve its users faster and avoid congestion.

For FL, the proportion of used resources by BS 1 and 2 as a

function of time is represented on figure 4. During the periods

of low traffic, both BSs use their resources fully, while during

the high traffic periods, BS 2 uses 80% of its resources in

order to create less interference to BS 1 which is overloaded.

For SFR, the edge/center power ratio for BSs 1 and 2 as

a function of time is represented on figure 5. At low traffic,

both BSs use the same power ratio, and at high traffic, BS 1
transmits at stronger power to serve its users faster, while BS 2
transmits at a weaker power in order to create less interference

to BS 1 and help reducing its congestion.

On figure 6, we compare the distance between the global op-

timum and the local minima found by the proposed algorithm.

For each ICIC scheme, we first derive the global optimum of

U through a global search heuristic (particle swarm was used

here). Then we run the proposed algorithm for 1 hour (i.e 60
iterations if T = 60s) a hundred times, each time starting

from a random point in the constraint set P . We then plot

the cumulative distribution function (c.d.f) of the performance

over those 100 trials (the first point of the c.d.f being the

global optimum). We can see that for the three ICIC schemes,

the performance of the proposed algorithm is very close to

the global optimum. This is a very interesting result because it

indicates that a simple local search achieves good performance

without the need to spend possibly an extensive amount of

computing power and signaling for a global search.
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VI. CONCLUSION

We have considered self-organizing ICIC in wireless net-

works taking into account flow level dynamics where users

arrive and depart dynamically, in order to optimize quality of

service indicators perceivable by users such as file transfer

time for elastic traffic. We have proposed an algorithm to

tune the parameters of ICIC schemes automatically based on

measurements. The convergence of the algorithm to a local
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optimum is proven, and a heuristic to improve its convergence

speed is given. Numerical experiments show that the distance

between local optima and the global optimum is small, and

that the algorithm is fast enough to track changes in traffic

on the time scale of hours. The proposed algorithm can be

implemented in a distributed way with very small signaling

load.

APPENDIX A

CALCULATION OF ∇θRs(r)

We calculate the derivatives of the data rates with respect to

the parameters for the three ICIC schemes. We will always use

the so-called simplified formulas since they apply in practical

scenarios. We denote by φ′ the derivative of φ. The most

important message is that BS s can always calculate ∇θRs(r)
as long as it knows:

• Path loss for both useful signal and interfering signals:

hs′(r) , 1 ≤ s′ ≤ Ns,
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Fig. 5. Edge/center power ratio for BS 1 and 2 as a function of time for
SFR
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Fig. 6. Comparison of file transfer time achieved through multiple runs for
FFR, FL and SFR, comparison between local and global optima

• The distribution of the fading of the useful signal Zs(r).
BS s does not need to know the distribution of the fading

of interfering signals Zs′(r) , s′ 6= s,

• φ′ the derivative of the φ.

All those quantities are either assumed to be known (e.g the

function φ′) or can be measured and transmitted to BS s by

the users it serves.

A. FL

To ease notation we define:

Ss(r) =
Pmaxhs(r)Zs(r)

N0 + Is(r)
. (34)

We have that:

∇ps
Rs(r) =

Rs(r)

ps
, (35)



and for s′ 6= s:

∇ps′
Rs(r) = NrpsE

[

−Pmaxhs′(r)
Ss(r)

N0 + Is(r)
φ′(Ss(r))

]

.

(36)

B. FFR

To ease notation we define:

Ss,b(r) =
Ps,bhs(r)Zs(r)

N2
0 + Is,b(r)

. (37)

We have that:

∇Ps,b
Rs(r) =

Nr

Nb

E

[

Ss,b

Ps,b

φ′(Ss,b)

]

, (38)

and for s′ 6= s:

∇Ps′,b
Rs(r) =

Nr

Nb

E

[

−hs′(r)
Ss,b(r)

N2
0 + Is,b(r)

φ′(Ss,b(r))

]

.

(39)

C. SFR

The formulas for SFR are deduced from the FFR case.

APPENDIX B

PROOF OF THEOREM 1

Theorem 3. Consider {Tk, rk}k∈Z a Poisson process on R2×
R with measure λ(dr) × dt, and marks {σk}k∈Z which are

independent and identically distributed (i.i.d) and independent

of {rk, Tk}k. Consider f : R2 → R positive and measurable,

t2 > t1, and define:

F (t1, t2) =
∑

k∈Z

σkf(rk)1[t1,t2)(Tk). (40)

Then:

E [F (t1, t2)] = E [σ] (t2 − t1)

∫

R2

f(r)λ(dr), (41)

and:

varF (t1, t2) = E
[

σ2
]

(t2 − t1)

∫

R2

f(r)2λ(dr). (42)

Proof: We recall the Campbell formula ([15]):

E

[

∑

k∈Z

g(rk, Tk)

]

=

∫

R2×R

g(r, t)λ(dr)dt, (43)

with g : R2 × R → R an arbitrary positive measurable func-

tion. The first statement is proven by applying the Campbell

formula with g(r, t) = f(r)1[t1,t2)(t).
Applying the Campbell formula at the second order we have

that:

E
[

F (t1, t2)
2
]

=E
[

σ2
]

(t2 − t1)

∫

R2

f(r)2λ(dr)

+

(

(t2 − t1)

∫

R2

f(r)λ(dr)

)2

, (44)

so that:

varF (t1, t2)
2 = E

[

σ2
]

(t2 − t1)

∫

R2

f(r)2λ(dr), (45)

proving the second result.

APPENDIX C

PROOF OF THEOREM 2

We use a two-time scale stochastic approximation argument

for proving convergence. The following conditions are true:

• {Y [k]}k∈N , {ρ[k]}k∈N are both uniformly integrable

since they are bounded in mean square

• (θ, C) 7→
∑

1≤s≤Ns
∇θρs(θ)

∂U
∂s

(C) and

θ 7→ ρ(θ) are continuous

• For a fixed value of θ, the Ordinary Differential Equation

(ODE)

Ċ = ρ(θ) − C, (46)

has a unique globally asymptotically stable point which

is ρ(θ). Once again θ 7→ ρ(θ) is continuous.

The mean ODE for the “slow time scale”is:

θ̇ = −∇θU(ρ(θ)), (47)

and U the set of local minima of U is a Lyapunov stable

attractor for this ODE. Then applying [16][Theorem 6.1,

chap 8, page 287] guarantees that θ[k] converges to U in

distribution. Namely:

lim sup
k

P [dU (θ[k]) > β] →
ǫ,δ, ǫ

δ
→0

0, (48)

for all β > 0 which concludes the proof.
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