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Abstract—This paper studies the performance of Mobile Ad
hoc Network (MANET) when the nodes, that form a Poisson point
process, selfishly choose their Medium Access Probability (MAP).
We introduce a pricing scheme based on the transmission energy
requirements and compute the symmetric Nash equilibrium MAP
in closed form. It is shown that by appropriately pricing the nodes
the selfish behavior of the nodes can be used to achieve the social
optimum at equilibrium. Goodput and delay are considered as
the performance metric that each node is interested in optimizing
taking into account the cost it incurs. The Price of anarchy is then
analyzed for these games. When utility with delay is considered,
we bound the price of anarchy and study the effect of system
parameters. When utility with goodput is considered it is shown
that PoA is infinite at the price that achieves global optimal
density of success.

Index Terms—Game Theory; Mobile Ad hoc Networks
(MANET); pricing; Poisson Point Process; Stochastic Geometry

I. INTRODUCTION

In this paper we study competition over network resources at
the medium access control (MAC) layer. It is well known that
computing the Nash equilibria in games is in general a hard
problem. Indeed, this problem falls into a class of problems
introduced by Christos Papadimitriou in 1994, called PPAD
(Polynomial Parity Arguments on Directed graphs). In view
of this complexity, it becomes attractive to identify classes
of games for which one may compute the equilibria at a low
complexity. We thus study a MAC game under some statistical
assumptions on the mobility pattern, which are on one hand
reasonable in many real scenarios, and on the other hand, allow
for tractable and in several cases, even explicit expressions for
the Nash equilibrium.

We consider slotted time, and assume that the mobiles are
synchronized. The basic assumptions on our model are

• The location of the transmitters at each time slot forms
a homogeneous Poisson point process,

• Mobility is high, so that the location of the mobiles at dif-
ferent slots is an independent and identically distributed
(IID) process.

• Medium access is controlled using Aloha
• Transmission success is based on SINR being larger than

some threshold.

In particular, our assumptions characterize a uniform distri-
bution of mobiles over the space: given their number in any
finite region, their locations are IID and uniform.

We study several game problems that arise in ad-hoc net-
works, in which mobiles are located on the plane according to

a spatial Poisson point process. We assume saturated sources,
i.e. every mobile has always a packet to send.

We first consider the problem in which each mobile is
a player: it chooses the transmission probability so as to
maximize its own performance metric. We consider utility
functions that model the tradeoff between quality of service
indicators (such as the expected goodput or the expected delay)
and power consumption related to the transmission.

Our goals are to obtain a symmetric Nash equilibrium (SNE)
and study its properties. We are interested in particular in
the case where the power consumption disutility represents
a pricing decision of the network that wishes to determine a
pricing that will induce an efficient equilibrium (in terms of
the achieved goodput). Alternatively, the pricing may be taken
such as to maximize the network’s revenues.

Our main findings are:

1) Considering the goodput as as the quality of service to
be maximized, we observe the tragedy of the commons
[13]: the utility at equilibrium is zero for large values
of the pricing parameter. Thus the price of anarchy is
infinite. We show however that there exists a pricing
parameter for which the goodput at equilibrium equals
the one obtained under global cooperative throughput
maximization.

2) Considering the expected delay as the quality of service
to be minimized, we observe that the price of anarchy
is bounded. Here too, there exists a pricing that allows
one to obtain the global optimal expected delay at
equilibrium. We show that SNE is not unique. The
range of price parameters for which two SNE exist is
characterized.

As the price of anarchy is infinity for certain price factors it
may seem therefore that high prices have a negative effect on
the network performance. However if we consider instead the
network performance or the monetary profit of the operator,
we discover that pricing can induce an equilibria for which
these measures coincide with the global optimal values.

The Poisson assumption on the location of nodes allows us
to obtain utilities in a surprisingly simple explicit form, which
in turn allows us to obtain much insight on the property of
the equilibria and on the role of the pricing. In [17], in the
context of cellular networks explicit expression are obtained
for coverage and throughput with the Poisson assumption
on the base stations. We discuss the validity of the Poisson
assumption in the concluding Section.
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There are several papers that model the nodes in the
Aloha system as selfish users. In [16] a game theoretic
model is proposed to analyze the performance of the Aloha
network. It is assumed that when collusion occurs some of
the transmissions can be successful. Authors in [15] study the
performance of slotted Aloha with n nodes that are selfish.
Any collision results in the loss of the packet and there is
a cost associated with the unsuccessful transmission. They
characterize the equilibrium point as a function of n and study
its liming behavior. In [18] slotted Aloha is considered with n
selfish users and the distributed choice of the retransmission
probabilities are analyzed. By adding a retransmission cost it is
shown, numerically, that the throughput at equilibrium equals
the optimal team throughput. Pricing is used in the context of
the power control games in [20] to improve the performance
at equilibrium.

All these paper do not take into account the geometric
aspects of the node location, which is important when the
nodes are mobile. We consider in this paper the geometric
aspects of the MANET and analyze the network performance
at equilibrium. For games that take geometric aspects into
consideration see [19].

The paper is organized as follow. In Section II Poisson
bipolar MANET is set up and performance metrics of interest
are discussed. Section III considers the team case in which all
nodes use the same MAP. Section IV considers a scenario
in which all nodes are selfish. A medium access game is
modeled between the nodes. Section V studies this game with
a utility function that is based on the goodput and transmission
energy costs. Section VI studies the medium access game with
another utility that includes delay as performance metric and
transmission costs. Section VII analyzes the price of anarchy
for these games. We end with some remarks on validity of
Poisson process assumptions and future work in Section VIII.

II. MODEL AND SETUP

Consider the simplified mobile ad hoc network (MANET)
model called the Poisson bipolar model proposed in [2].
Assume that each node follows the slotted version of the
Aloha medium access control (MAC) protocol. Each dipole
of the MANET consists of a transmitter and an associated
receiver. We assume that each node has an infinite backlog
of packets to transmit to its receiver. Nodes are scattered in
the Euclidian space according to an homogeneous Poisson
point process of intensity λ. Each node is associated with
a multi dimensional mark that carries information about the
transmission status, fading condition, and the distance to
receiver. We follow the notation of [12]. Let Φ̃ = {Xi,Mi}i≥1

denote an independently marked Poisson point, where

• Φ = {Xi}i≥1 denotes the Poisson point process of
intensity λ, representing the location of nodes in the
Euclidean plane.

• {Mi = (Si, ei)}i≥1 denotes the independent marks of
the Poisson point process Φ, which are made of three
components:

– S = {Si}i≥1 denotes the channel condition between
nodes and their associated receivers. It is assumed
that channel conditions are independently and identi-
cally distributed (IID) across the nodes with a generic
distribution denoted as F with mean 1/µ.

– e = {ei}i≥1 are indicator functions that take value
1 if a given node decides to transmit in a given
time slot; otherwise they take value zero. They are
assumed to be IID across the nodes.

– The processes S, e are assumed to be independent of
each other.

• We assume that distance between the transmitter and its
associated receiver is at a fixed distance r.

Let l(x, y) denote the attenuation function between any two
given points x, y ∈ R2. We assume that this function just
depends on the distance between points, i.e., |x − y|. With a
slight abuse of notation we denote this function as l(x, y) =
l(|x− y|). We assume the following form for this attenuation
function

l(x, y) = (A|x− y|)−β for A > 0 and β > 2. (1)

The marks {ei}i≥1 indicate if a given node transmits in a
given time slot. Then the probability that the ith node transmits
is p := Pr{ei = 1} = E[e] (Medium Access Probability
(MAP)). Note that Φ defines a pair of independent Poisson
process representing transmitters Φ1 = {Xi, ei = 1} and
non transmitters Φ0 = {Xi, ei = 0} with intensities pλ and
(1 − p)λ respectively. We assume that the channel between
the receiver of a given node and the transmitter of any other
node is also distributed as random variable S. All the nodes
transmit at a fixed power denoted as P . Signal transmitted
by a transmitter located at Xi is successfully received at its
associated receiver at location yi if the signal to interference
and noise ratio (SINR) at location yi is larger than some
threshold T , i.e.,

SINRi :=
PSl(|Xi − yi|)
IΦ̃1 +W

> T, (2)

where W denotes the thermal noise power at the receiver and
IΦ̃1 denotes the shot noise of the Poisson point process Φ1

namely IΦ̃1 =
∑

Xi∈Φ1 PSl(|Xi − yi|).
Consider a typical node at the origin, X0 = 0 with mark

M0 = (S0, e0). The typical node is said to be covered if
(2) holds given that the it is a transmitter. Then the coverage
probability of the typical node is

P0

{
PSl(r)

IΦ̃1 +W
> T

∣∣∣∣ e0 = 1

}
, (3)

where P0 denotes the Palm distribution [8][Chap. I] of the sta-
tionary marked Poisson point process Φ̃. By using Slivnyak’s
theorem [8], the coverage probability of a typical nodes when
all other nodes use MAP p is evaluated in [2][12] and denoted
as pc(r, pλ, T ). Let the MAP of the typical node be p′. Then
the typical node is a transmitter with probability p′ and a non
transmitter with probability (1 − p′). We call the product of
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the MAP and the coverage probability of the typical node the
goodput and denote it as

g(p′, p) := p′pc(r, pλ, T ). (4)

For the typical node we shall also consider the delay in
successfully transmitting the packets to its associated receiver.
We assume that if a packet transmission fails then the packet
is retransmitted till success. We also assume that nodes can re
sample the channel in each slot. Recall our assumption on the
mobility model that locations of the nodes are IID across the
time slot. Then by Little’s theorem [14] the mean delay for a
typical node is given by reciprocal of its goodput. Let t(p′, p)
denote the delay of the typical node that uses MAP p′ when
all other nodes use the MAP p. Then

t(p′, p) := 1/g(p′, p). (5)

In the following sections we consider two scenarios. First
we assume that the nodes of the MANET cooperate, i.e.,
use the same MAP that is assigned to them in each time
slot. The value of a MAP that optimizes the spatial network
performance are evaluated. We then consider a game scenario
in which each node is selfish and aims to choose a MAP
that optimize their own performance taking into account the
transmission costs. We study the effect of the transmission
costs on the network performance at equilibrium and look
for a price value that results in improved spatial network
performance at equilibrium.

III. RATE CONTROL: THE TEAM CASE

In this section we assume that all the nodes belong to a
single operator, and transmit at the MAP set by the operator. If
nodes have information about other nodes in their vicinity, they
can achieve a better goodput by cooperating: Nodes moving
from dense cluster to sparse clusters can increase their MAP
as chances of collision reduce. Nodes moving from sparse
clusters to dense clusters can reduce their MAP as chances of
collision increase. We assume that, because of mobility, nodes
can’t gather such information in each time slot and transmit
with a MAP that is set by the operator. With some abuse of
notation we denote the goodput again by g(p), which is the
same for all nodes as all of them transmit with the same MAP.
In the rest of the paper when we write goodput with a single
argument the team case is assumed. When we write it with two
arguments, as in (4), game scenario is assumed (see section
IV). We use the same convention when delay is considered as
the performance metric. The following Lemma immediately
follows from [2][Lemma 3.2]

Proposition 1: Let each node in MANET Poisson bipolar
model transmit with MAP p and S be Rayleigh distributed
with mean 1/µ; then the goodput is

g(p) = p exp

{
−2πλp

∫ ∞

0

u

1 + l(r)/(T l(u))
du

}
×ψW (µT/P l(r)), (6)

where ψ
W
(·) denotes the Laplace transform of the noise power

W .

Corollary 1: For exponential S, zero noise power W ≡ 0,
and the path loss model in Equation (1), the goodput of a
typical node is

g(p) = p exp{−2πλpr2T 2/βK(β)}, (7)

where K(β) = Γ(2β)Γ(1−2/β)
β and Γ(x) =

∫∞
0
zx−1e−z.

Hence forth we adopt the assumptions of Corollary 1 in all
the subsequent calculations. However, our results hold when
W has any distribution with finite mean, as it appears as a
constant multiplicative factor in Equation (7). For notational
convenience we write C := C(β, T, r) = 2πr2T 2/βK(β).

The operator is interested in optimizing the social per-
formance of the network. In particular, we assume that the
operator aims at maximizing the mean goodput per unit area
or minimizing the mean delay per unit area. The performance
seen by a typical node can be used to derive the spatial per-
formance of the Poisson bipolar MANET. Campbell’s formula
[8][Sec. 2.1.2] for stationary Poisson point processes ensures
that the performance experienced by a typical node is also that
of the average performance of the Poisson MANET. The mean
goodput per unit area is then the product of the intensity of
the Poisson point process and the goodput, i.e., λg(p). This
quantity is referred to as the density of success and denoted by
dsuc(r, pλ, T ) in [9][Chap. 16]. We denote this term simply as
ds(p). Similarly, the mean delay per unit surface area is given
by λt(p). We denote this spatial performance metric as dt(p)
and refer to it as spatial delay density. Note the the density of
delay success is the reciprocal of density of success multiplied
by a factor λ2. Hence the MAP that maximizes the ds(p)
also minimizes dt(p). The MAP that optimizes the density of
success is given in [9][Prop 16.8] and [9][Corol. 16.9] :

Proposition 2: Under the assumption of Corollary 1 the
MAP that maximizes the density of success and minimizes
the density of delay is given by

pm = min{1, 1/λC}, (8)

and the corresponding optimal density of success is given by

ds(pm) =

{
1/(eλC), if λC > 1
λ exp{−λC}, if λC ≤ 1,

(9)

and the corresponding optimal delay density is given by

dt(pm) =

{
λ2eC, if λC > 1
λ exp{λC}, if λC ≤ 1.

(10)

IV. RATE CONTROL: THE NON-COOPERATIVE CASE

In this section we assume that each node of the Poisson
MANET is a selfish player. We use node and player inter-
changeably. The decision variable of each player is its MAP p.
Choosing the transmission probability is a form of rate control.

Let U(p′, p) be the utility for a typical node that uses the
MAP p′ when all other players use MAP p. The objective
of each player is to maximize its own utility. We shall
consider the non-cooperative case, which we model as a game
(with infinite number of players) and study the existence
of symmetric equilibria and their properties. Let U(p∗, p∗)
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denote the value of the utility function at the symmetric Nash
equilibrum p∗.

Definition 1: p∗ ∈ [0 1] is said to be a symmetric Nash
equilibrium if for any node the following holds

U(p∗, p∗) = max
p∈[0 1]

U(p, p∗).

With some abuse of notation we use the notation U(p) to
denote the expected system utility when the same p is used
by all players. We consider utilities which attain optimal values
for some p and denote it, again with some abuse of notation,
as pm. It will be clear from the context if pm is an optimizer
of the spatial performance metric or the team utility.

In the rest of this section we look for the appropriate utility
functions that characterize the performance of the individual
player. The next lemma follows from Lemma 3.1 and Corol-
lary 3.2 in [2].

Lemma 1: Consider a Poisson MANET with the assump-
tions in Corollary 1. Let a typical node transmit with MAP
p′, while all other players transmit with MAP p. Then the
goodput of the typical node is

g(p′, p) = p′ exp{−pλC}. (11)

where C = 2πr2T 2/βK(β) is defined earlier.
We note the following:

1) The goodput is monotone increasing in p′. Hence, if the
objective of each mobile is to maximize its goodput,
then the only equilibrium is p = 1 for all mobiles.

2) Under the conditions of the above lemma, the energy
consumption of the typical node is proportional to p′

and does not depend on the MAP p of the other nodes.
The ratio between the goodput and the expected energy
consumption of the typical node does not depend on
p′. We conclude that any p is an equilibrium when the
criterion of each node is that of minimizing the ratio
between goodput and energy.

Energy is an important resource in MANETS. Let W (p′)
denote the energy consumed by the typical node when it
transmits with MAP p′. In practice, in many applications, the
utility related to goodput is not a linear function of the MAP,
see for example [3], [5]. Keeping this and the remarks made
above in view, we shall be interested in a utility of the form

U(p, p′) = f(p, p′)− ρW (p′) (12)

for each player, where f gives the performance of interest and
ρ is a given constant.

The energy dissipated in each node is directly proportional
to its MAP, i.e., we take W (p′) equal to the expected power
consumed in each node, which is given as Pp′. For simplicity
we assume that each node transmits at unit power. The value of
ρ characterizes the per unit energy cost that each node incurs
in transmission. We refer to it as price factor.

Assume that the function f is a concave function in p′ and
continuous in p; then the arguments in [7][Thm 1] can be
used to show the existence of symmetric Nash equilibria. We

state this result in the following lemma. The proof is given in
Appendix H.

Lemma 2: Assume that the utility function U(p′, p) is con-
cave in p′ and continuous in p. Then an symmetric Nash
equilibrium exists.

In the next two sections we consider two utility functions
defined in term of goodput and delay as the performance
measure with the energy costs. We evaluate the MAP at
equilibrium and the corresponding system performance. This
system performance is then optimized by searching for the
best price factor. The best achievable system performance, at
equilibrium is then compared with that evaluated when nodes
act as a team.

V. UTILITY WITH GOODPUT

Assume that each node of the MANET is interested in
maximizing its goodput taking into account the energy cost
it incurs. Then by taking f(p′, p) = g(p′, p) in equation (12)
we define the utility as

U(p′, p) = g(p′, p)− ρp′ = p′ {exp{−pλC} − ρ} . (13)

The objective of a typical node is to choose a MAP that
maximizes its utility, i.e.,

p′ ∈ argmax0≤p′≤1 U(p′, p).

This utility function is a linear function in p′ and convex in
p. Then an from Lemma (2) a SNE exists. We proceed to
calculate the SNE of this game.

When ρ ≥ 1 the slope of the utility of a typical node is non
positive irrespective of the MAP of the other nodes. Then the
optimal strategy for each node is to choose p = 0, which is
a dominant strategy and hence an equilibrium. When ρ < 1
consider the following two cases.
Assume ρ ≥ exp{−λC}: In this case the slope of the typical
node is always positive. Then the optimal strategy for the
typical node is to choose p = 1 irrespective of the MAP chosen
by the other nodes. Thus p = 1 is a dominant strategy and
hence also is a symmetric equilibrium.
Assume ρ < exp{−λC}: If each node other than the typical
node chooses a MAP such that

exp{−pλC} = ρ, (14)

then the utility of the typical node in (13) is set to zero and
is not affected by its strategy, i.e., the typical node becomes
indifferent to its own strategy. Further, if any of the nodes
deviates from the MAP that satisfies Equation (14), it will
not gain anything given that all other nodes set their MAP
value as in (14). Hence the MAP satisfying (14) constitutes
a symmetric Nash equilibrium. We summarize the above
observations in the following proposition.

Proposition 3: For any given C, λ, and ρ > 0

• if ρ ≥ 1 then p∗ = 0 is the SNE;
• if exp{−λC} ≥ ρ then p∗ = 1 is the SNE;
• if exp{−λC} < ρ < 1 then

p∗ =
− log ρ

λC
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is a SNE.
The goodput of each node at equilibrium is given by

g(p∗, p∗) =


0, if ρ ≥ 1
exp{−λC}, if ρ ≤ exp{−λC}
−ρ log ρ

λC , if exp{−λC} < ρ < 1.
(15)

With the expression for goodput at equilibrium, we can look
for the value of ρ that maximizes it. One can also think that
the value of ρ is set by a central agent who is interested
in optimizing the network performance at equilibrium. We
assume that the objective of the central agent is to maximize
the density of success at equilibrium. Then the optimization
problem of the central agent is given by

maximize
ρ

−λρ log ρ
λC

subject to exp{−λC} < ρ < 1.
(16)

The objective function in (16) is a concave function of ρ > 0
attaining its maximum at ρ = 1/e. If λC > 1 then 1/e lies
within the constraint set and the operator can set ρ∗ = 1/e.
Suppose λC ≤ 1, then the objective function is decreasing in
the interval exp{−λC} < ρ < 1 and the maximum is attained
at ρ∗ = exp{−λC}. Then the maximum density of success at
equilibrium is

ds(p
∗, p∗) =

{
1/(eC), if λC > 1
λ exp{−λC}, if λC ≤ 1.

(17)

Comparing this optimal density of successful transmission
at equilibrium with the optimal global density of successful
transmission given in (9) we have the following result.

Proposition 4: The global optimal density of successful
transmissions can be attained at equilibrium by setting the
pricing factor ρ as follows:

ρ∗ =

{
1/e, if λC > 1
exp{−λC}, if λC ≤ 1.

(18)

Also, note that with the pricing factor ρ∗ in (18), the MAP
of each node at equilibrium is the same as that achieving the
global optimum as given in (8). Thus by pricing appropriately,
one can use the selfish behavior of the players to reach an
equilibrium at which the global optimal performance of the
MANET is attained.

VI. UTILITY WITH DELAY

In this section we define the utility of each player in terms
of the delay associated in delivering the packet successfully
at its receiver and the transmission cost. Let a typical node
incurs a cost of ρ units per unit energy dissipated. By taking
f(p′, p) = −t(p′, p) in equation (12) we get the utility of the
typical node as

U(p′, p) = − 1

p′ exp{−pλC}
− p′ρ. (19)

where p′ is the MAP of typical node, and p is the MAP used
by all other nodes. Recall that C = 2πr2T 2/βK(β).

The objective of each node is to choose a MAP that
maximize its utility function (19). Or equivalently it can be
given by the following minimization problem:

minimize
p′

exp{pλC}
p′

+ p′ρ subject to 0 ≤ p′ ≤ 1.

For a given value of p the utility function in (19) is a concave
function in p′ and continuous in p. Then by Lemma (2), SNE
exists. We proceed to calculate the SNE by direct computation.

Differentiating the utility function with respect to p′, equat-
ing to zero and simplifying we get

p′ =
exp{pλC}

√
ρ

, (20)

where C = C/2. This equation gives the best response of the
typical node when every other nodes transmits with probability
p. If there exists a p ∈ [0 1] such that p′ = p, then p is the
SNE of the game. Hence we look for the conditions when the
following condition holds

p =
exp{pλC}

√
ρ

. (21)

Lemma 3: Equation in (21) has a solution (not necessarily
a probability) if and only if λCe ≤ √

ρ.
Proof: Rearranging the terms in equation (21) we write

−pλC exp{−pλC} =
−λC
√
ρ

The solution to the above equation is given as

p =
−1

λC
W

(
−λC√

ρ

)
, (22)

where W (·) denotes the Lambert function [10]. On the real
line R, the Lambert function exists only for values larger than
−1/e, [10] and takes values on the entire real line. Hence
the relation in (22) holds for some value of p if and only if
−λC/√ρ ≥ −1/e.

This lemma gives the condition for the existence of fixed
points to the equation (21) for some p which do not necessarily
lie in the interval [0 1]. We next look at the conditions under
which the solution results in a probability. We recall the
following properties of Lambert functions:

• The Lambert function is two-valued in the interval
[−1/e, 0]. The two branches of the Lambert function
denoted as W0(·) and W−1(·) meet at −1/e and the value
of the Lambert function at this point is −1.

• In the interval [−1/e, 0] W0(·) is a continuous and in-
creasing function taking value in the interval [−1, −∞].

• In the interval [−1/e, 0] W−1(·) is a continuous and
decreasing function taking value in the interval [−1, ∞].

Based on the above properties we derive the range of ρ for
which an equilibrium probability exists. For some value of ρ
their exist two equilibrium points as shown in the following
lemma. For notational simplicity we write ρt = (eλC)2.
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Lemma 4: Assume λC ≥ 1, then an equilibrium exists for
all ρ satisfying ρ ≥ ρt. Further, there exists a ρ−1 ≥ ρt such
that for all ρ satisfying ρ−1 ≥ ρ ≥ ρt two equilibrium points
are possible. One point lying on the W0 and other on the W−1

branch.
Proof: See Appendix A.

Note that for the value of ρ ∈ [ρt, ρ−1], the equilibrium MAP
computed on the W−1 is larger than that computed on the W0

branch. If nodes reach the equilibrium that is computed on
the W−1 branch, then they will be transmitting aggressively
at equilibrium. We will see later that this leads to inefficiency
(see remark (1)).

Lemma 5: Assume that λC < 1, then there exists ρ0 ≥ ρt
such that for all ρ ≥ ρ0 an equilibrium point exists and is
unique. This equilibrium point lies on the W0 branch.

Proof: See Appendix B.
Lemma 4 and 5 completely characterizes all the possible
equilibriums. Figures 1 and 2 illustrate the Lambert functions
and its properties used in the proof of Lemma 4 and 5. In
Figure 1 the y axis marked with double arrow denotes the
region in which two equilibrium points occur.

A. Stability of SNE
Figure 3 shows the best response of the typical node and

that of all nodes against the typical node. This example
demonstrate existence of two SNE. The smaller SNE among
the two results from the principal branch of the Lambert
function in Equation (22), and the larger one from the W−1

branch. When two equilibrium points exists we denote the
SNE resulting from the W0 branch of the Lambert function as
p∗0 and that resulting from the W−1 branch as p∗−1. When we
do not need to make this distinction or it is unique we write
the symmetric Nash equilibria as p∗. From Figure 3 we see
that at the equilibrium point p∗0 a slight increase in the MAP
p results in a decrease in p′. This is a stabilizing behavior and
we conclude that p∗0 is stable. In contrast, at equilibrium point
p∗−1 a slight increase in p is seen to cause an increase in the
value of p′. Thus the second equilibrium is unstable.

B. optimal pricing
Assume that p∗ is an equilibrium point for a given value of ρ

that satisfies the conditions in Lemma 4 or 5 for a given value

of λ and C. From Equation (5) the mean delay experienced by
the packets of a typical node at equilibrium can be computed
as

t(p∗, p∗) =
1

p∗ exp{−p∗λC}

=
1

p∗ exp{−p∗λC} exp{−p∗λC}
(23)

=

√
ρ

exp
{
W
(
−λC/√ρ

)} (24)

=

√
ρW

(
−λC/√ρ

)
W
(
−λC/√ρ

)
exp

{
W
(
−λC/√ρ

)} (25)

=

√
ρW

(
−λC/√ρ

)
(−λC/√ρ)

= −
ρW

(
−λC/√ρ

)
λC

(26)

In above chain of equalities the relation C = 2C is used
in Equation (23). Equation (24) follows from equation (21).
Equation (26) follows by applying the definition of the Lam-
bert function to the denominator term in Equation (25) and
rearranging. From (26) we see that when the SNE is not unique
delay experienced by the typical is larger when the SNE results
form the W−1 branch of the Lambert function.

With the expression for the delay of a typical node at
equilibrium, one can look for the value of the price factor that
minimizes the delay experienced by each node at equilibrium.
We assume that the objective of the central agent who sets the
value of ρ is to minimize the average delay per unit area, i.e.,
spatial delay density, at equilibrium. Then the optimization
problem of the central agent is:

minimize
ρ

−
ρW

(
−λC/√ρ

)
C

subject to
√
ρ ≥ λCe

and −W
(
−λC/√ρ

)
≤ λC.

(27)

The first constraint in this optimization problem (27) results
from Lemma 3 and the second constraint is required to ensure
that the resulting value of p in (21) lies in the interval [0 1].

Let h(ρ) := −ρW
(
−λC/√ρ

)
denote the objective func-

tion in the above optimization problem without the multiplica-
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tive factor. h(ρ) is defined for
√
ρ ≥ eλC. In the following

lemma we state some of its properties.
Lemma 6: On the principal branch W0, h(ρ) is a quasi

convex function in ρ and the global minimum is attained at
ρ∗ = 4e(λC)2. On the W−1 branch h(ρ) is a monotonically
increasing function taking value (eλC)2 at ρ = (eλC)2

Proof: See Appendix C.
Consider the optimization problem in (27) on the W0 branch
of the Lambert function. The value of ρ∗ at which h(ρ)
achieves minimum satisfies the first condition in (27) as
ρ∗ = 4e(λC)2 ≥ e2(λC)2. The value of p in equation
(21) at ρ = ρ∗ is 1/(2λC). This implies that whenever
2λC = λC > 1, the resulting value of p lies inside (0 1), thus
satisfying the second condition of the optimization problem.
Hence under the assumption λC > 1 the global minimizer of
h(ρ) lies in the constraint set of (27) and the value of the
objective function at this point is

−ρ
∗W (−λC/

√
ρ∗)

λC
= − (4e(λC)2)(−1/2)

λC
= eλC. (28)

When λC ≤ 1, any value of ρ such that ρ < ρ∗ violates the
second condition, as −W (−λC/√ρ) > 1/2. From Lemma 6
the minimum value of h(ρ) is achieved at a ρ that satisfies
−W (−λC/√ρ) = λC. This implies that under the condition
λC ≤ 1 the value of symmetric equilibrium is p = 1 and the
delay experienced by each node is given by exp{−λC}. We
summarize these observations in the following proposition.

Proposition 5: The value of the price factor ρ∗ that mini-
mizes the delay at equilibrium is as follows:

ρ∗ =

{
(2λC

√
e)2 if λC > 1

−2W (−λC/
√
ρ∗) = λC, if λC ≤ 1

(29)

and the corresponding delay at equilibrium is

dt(p
∗, p∗) =

{
λ2eC if λC > 1
λ exp{λC}, if λC ≤ 1.

(30)

Comparing Equations (30) and (10) we can conclude the
following result:

Proposition 6: The spatial delay density in the game prob-
lem at equilibrium equals the global optimal spatial delay
density, i.e., dt(pm) = dt(p

∗, p∗), if the price factor is chosen
as in (29).

Again, by appropriately pricing the nodes the selfish be-
havior can be used to attain the global optimal performance
in the game problem. If the SNE is not unique at the optimal
price factor ρ∗, then one needs to ensure that the nodes reach
equilibrium that is computed on the principal branch of the
Lambert function to realize the global optimal performance at
equilibrium. Indeed, if λC > 1 and −W−1(−1/2

√
e) ≤ λC

or equivalently ρ−1 ≥ 4e(λC)2, at the optimal price ρ∗ an
equilibrium point exists on the W−1 branch of the Lambert
function. Thus it is an interesting question to ask how to make
the nodes reach a favorable equilibrium at the optimal price
factor. However we do not pursue this question in this paper.

Remark 1: If λC > 1 and optimization is restricted to the
W−1 branch in (27), then by Lemma 6, the objective function

is minimized by choosing ρ satisfying
√
ρ = eλC, which

results in the equilibrium probability 1/(λC). The spatial
density of delay at this equilibrium point is given by

−
ρW

(
−λC/√ρ

)
λC

=
(eλC)2

λC
= (e/2)eλC.

Comparing this value with (10), we see that spatial density of
delay increased by a factor of e/2 by the selfish behavior of
the nodes.

VII. PRICE OF ANARCHY

In this section we study the degradation in the network
performance due to a selfish behavior of the nodes. Price of
Anarchy (PoA) compares the social utility at the worst equi-
librium with the optimal social utility [21]. For our Poisson
bipolar MANET with infinitely many players, we define the
price of anarchy as the ratio of the optimal spatial average
performance that can be achieved, to the spatial average
performance at the worst SNE. Recall that we denoted the
system utility by U(p) when we considered the team problem,
with each node using the same MAP p. For the game problem
we denoted the utility of a typical node by U(p′, p). In the
game problem the spatial average performance at equilibrium
is evaluated by multiplying the utility of the typical and the
intensity of the Poisson point process . Then PoA is given by

PoA =
maxp∈[0 1] U(p)

minp∗∈S λU(p∗, p∗)
, (31)

where S ⊂ [0 1] denotes the set of symmetric Nash equilibria.
We study PoA as a function of ρ for a given value of λ and

C. The utilities studied in Section V and VI are considered
below.

A. Goodput

In this subsection we consider the utility defined in Section
V. Let us begin by considering the team utility. When all the
nodes use the MAP p, then the from equation (13) the team
utility is given by

U(p) = λp exp{−pλC} − λpρ. (32)

If ρ > 1 the maximum value of the utility is zero and the
maximum is attained at pm = 0. Let pm := pm(ρ) denote the
MAP that maximizes the team utility in (32). The following
lemma gives its value.

Lemma 7: The MAP value that maximizes the the team
utility (32) is given by

pm =
1−W (ρe)

λC

for all ρ ≥ 0 if λC ≥ 1, and if λC < 1 it is the maximizer
for ρ such that W (ρe) ≥ 1− λC. Further the maximum team
utility is given by

U(pm) =
ρ(1−W (ρe))2

CW (ρe)
.

Proof: See Appendix I.
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By using definition of the Lambert function one can verify
that U(pm) is a decreasing function in ρ. Indeed, differentiat-
ing U(pm) with respect to ρ we have

∂U(pm)

∂ρ
=

(1−W (ρe))2

CW (ρe)

− ρe
(1−W (ρe))

CW (ρe)

(1 +W (ρe))W ′(ρe)

CW (ρe)
(33)

=
(1−W (ρe))2

CW (ρe)
− (1−W (ρe))

CW (ρe)
. (34)

In equation (55) W ′ denotes the derivative of Lambert func-
tion. Equation (56) follows by applying formula for the deriva-
tive of Lambert function. The last equation is negative valued
for all ρ ∈ [0, 1]. Thus the optimal utility is a decreasing
function in ρ.

Let us look at the utility of the typical node at equilibrium.
From Proposition 3 we have

U(p∗, p∗) =

{
exp{−λC} − ρ, if ρ ≤ exp{−λC}
0, if ρ ≥ exp{−λC}

(35)
The utility at equilibrium is also a decreasing function in ρ
for all ρ ≤ exp{−λC}. With the expression for utility at
equilibrium and global optimum we have the following result
for PoA

Proposition 7: The value of PoA is as follows

PoA(ρ) =

{
ρ(1−W (ρe))2

λCW (ρe){exp{−λC}−ρ} , if ρ < exp{−λC}
∞, if ρ ≥ exp{−λC}

(36)
PoA as a function of ρ is shown in figure 4. From this figure we
see that as ρ increases the value of PoA grows unboundedly.
Thus the PoA is optimal when the pricing factor is set to zero.
If λC ≥ 1 then the PoA is infinite by definition at ρ = 1/e.
However we noted in the Section V that optimal performance
of the spatial density of success is achieved at equilibrium
with the same price factor. If λC < 1 then the PoA is infinite
at ρ = exp{−λC}. But again we noted in the Section V that
at this price factor optimal performance of the spatial density
of success is achieved at equilibrium.

In figure 5 the equilibrium MAP and global optimal MAP
are shown. For all values of ρ equilibrium MAP is larger

than global optimal MAP. Hence the nodes transmit more
aggressively at equilibrium. But we note from the figure 5
that the gap between the global optimal MAP and equilibrium
MAP reduces with pricing.

B. Delay

Consider the utility function in Equation (19). The team
utility for this game when each node transmits with MAP p
is

U(p) =
−λ

p exp{−pλC}
− λρp. (37)

It is easy to verify that the above utility function is concave
in p. Assume that λC > 1. Then the unique MAP, denoted as
pm := pm(ρ) that maximizes the social utility satisfies

exp{pmλC}(1− pmλC) = ρp2. (38)

We obtain this by differentiating Equation (37) and setting to
zero. Note that any pm that satisfies Equation (38) also satisfies
pmλC ≤ 1, hence pm ∈ [0 1]. Also, it can be easily verified
that pm is decreasing in ρ.

Utility at equilibrium can be obtained by using the equilib-
rium MAP in (22) and Equation (26), which is given by

U(p∗, p∗) = (−2λρ/λC)W

(
−λC
√
ρ

)
. (39)

When λC > 1, from Lemma 4, two symmetric Nash equilibria
are possible for the price factor ρ ≤ ρ−1. Hence the above
utility function can take two values, one corresponding to each
equilibrium. Recall that we denoted by p∗0 the SNE computed
on the principal branch, and by p∗−1 that computed on the other
branch of the Lambert function. Recall that p∗0 ≤ p∗−1. The
following proposition gives a bound for the price of anarchy

Proposition 8: For Poisson bipolar MANETS with utility
in (19),

pm(ρ−1)λ(2− pm(ρ−1)λC)

2(1− pm(ρ−1)λC)
≤ PoA(ρ) (40)

≤ pm(ρt)λC(2− pm(ρt)λC)

2(1− pm(ρt)λC)
(41)

for ρ ∈ [ρt ρ−1], where
√
ρ0 = eλC. And

pm
p∗0

≤ PoA(ρ) ≤ 1 for ρ ≥ ρ−1. (42)
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Proof: See Appendix D.
The price of anarchy as a function of ρ and the bounds

obtained in Proposition 8 are shown in Figure 6. The jump
in the figure at ρ = ρ−1 is due to two possible symmetric
equilibria for ρ ≤ ρ−1 and unique symmetric equilibrium for
ρ > ρ−1. In the interval [ρt, ρ−1] PoA is decreasing in ρ.
This results from the bad Nash equilibrium that occurs on the
W−1 branch of the Lambert function which increases in ρ. If
the central agent can’t set a price factor higher than ρ−1 then
from the PoA point of view it is desirable to set the lowest
possible price factor, i.e., ρ = ρt. For a price factor larger than
ρ−1 there is unique SNE, which is smaller than the equilibrium
that occurs on the W−1 branch and decreases1 with ρ. Thus
setting high a price factor leads to improved PoA.

If ρ−1 < 4e(λC)2, from Proposition 6 we can see that
by setting ρ = 4e(λC)2 one can obtain better performance at
equilibrium and also good price of anarchy. If ρ−1 > 4e(λC)2

then by setting ρ = 4e(λC)2 one obtains global optimal
performance at equilibrium provided the nodes settle at an
equilibrium that lies on the principal branch of the Lambert
function, otherwise this price factor leads to a poor price of
anarchy.

VIII. CONCLUSIONS

Geometric considerations play a very central role in wireless
communications, since the attenuation of wireless channels
strongly depend on the distance between transmitter and
receiver. Models that take into account the exact location of
mobiles are often too complex to analyze or to optimize.
Our objective in this paper is to model competition between
mobiles as a game in which the locations of players is given
by a Poisson point process.

The Poisson assumption is valid when
• the number of mobiles in disjoint sets are independent;
• the number of mobiles in any given set follows a Poisson

distribution. This class of point processes maximizes
entropy. It is often used for modeling the location of users
in e.g. mobile ad hoc networks.

More structured point processes can also be contemplated,
for instance exhibiting attraction (hot spots) or repulsion (more
elaborate medium access control than Aloha like e.g. CSMA).
We leave the analysis of medium access games under such
point processes for future research.

The competition we considered in the paper was between
individual mobiles each taking its own selfish decisions. We
saw that the equilibrium of the game results in a more
aggressive access (larger access probabilistically). We studied
further pricing, and identified pricing parameters that induce
an equilibrium achieving the social optimal performance. On
the other hand we showed that the utility at equilibrium can
be zero).

We plan in the future to study other games within this
framework: ones with finitely many operators each taking
decisions for all its subscribers. In addition we shall study
jamming games.

1Principle branch of Lambert function is decreasing function of ρ
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APPENDIX A
PROOF OF LEMMA 4

First consider the W0 branch of the Lambert function. As ρ
takes value in the interval [(λCe)2 ∞], W0

(
−λC√

ρ

)
increases

continuously from −1 to 0. Thus (21) has a solution in the
interval [0 1] if λC ≥ 1. This implies that equilibrium point
exists on the W0 branch for all ρ, satisfying

√
ρ ≥ λCe.
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The W−1

(
−λC√

ρ

)
branch decreases continuously from −1 to

−∞ as ρ takes value in the interval [(λCe)2 ∞]. This implies
that there exists a

√
ρ−1

≥ λCe such that W−1

(
−λC√
ρ−1

)
) =

−λC, and for all ρ such that
√
ρ−1

≥ √
ρ ≥ Ce satisfies

−W−1

(
−λC√

ρ

)
≤ λC, resulting in a p ∈ [0 1] that is a solution

of (21). Hence there exists an equilibrium point on the W−1

branch for all ρ satisfying
√
ρ−1

≥ √
ρ. This concludes the

proof.

APPENDIX B
PROOF OF LEMMA 5

As in Lemma 4 we can argue that on the W0 branch, there
exists ρ0 ≥ λCe such that W0

(
− λC√

ρ
0

)
= −λC and for all

ρ such that ρ ≥ ρ−1 ≥ λCe satisfies −W0

(
−λC√

ρ

)
≤ λC as

−W0 is a decreasing function ρ.

APPENDIX C
PROOF OF LEMMA 6

Differentiating h(ρ) with respect to ρ

d

dρ
h(ρ)

= −W
(
−λC/√ρ

)
−W ′ (−λC/√ρ) (λC/2√ρ) (43)

= −W
(
−λC/√ρ

)(
1− 1

2(1 +W
(
−λC/√ρ

)
)

)
.(44)

In Equation (43) W ′(·) denotes the derivative of the Lambert
function which is given as [10][eqn. 3.2]

W ′(x) =
W (x)

x(1 +W (x))
for x ̸= 0, x ̸= −1/e. (45)

Equation (44) is obtained by substituting the derivative in (45),
evaluated at x = −λC/√ρ, in Equation (43). Recall that on
the principal branch of the Lambert function W (−λC/√ρ)
is a negative valued increasing function in ρ. Then the term
within parenthesis in (44) is a increasing function of ρ passing
through the origin at ρ∗ that satisfies W (−λC/

√
ρ∗) = −1/2.

Thus h(ρ) is decreasing for ρ ≤ ρ∗ and increasing for ρ ≥ ρ∗.
From [11][sec. 3.4.2] we conclude that h(ρ) is a quasi convex
function in ρ.
Further by the definition of the Lambert function

−λC/
√
ρ∗ = W (−λC/

√
ρ∗) exp{W (−λC/

√
ρ∗)}

= −1

2
exp{−1/2}. (46)

Rearranging Equation (46), we get ρ∗ = 4e(λC)2. The other
part of the Lemma follows by noting that −W (−λC/√ρ) is
an increasing function in ρ on the W−1 branch.

APPENDIX D
PROOF OF PROPOSITION 8

From Equation (39) and (37) we have

PoA(ρ) =
exp{pmλC}/pm + ρpm

(−2ρ/λC)W
(
−λC√

ρ

) (47)

=
pm/(1− pmλC) + pm

(−2/λC)W
(
−λC√

ρ

) (48)

=
pm(2− pmλC)(

−2/λC
)
W
(
−λC√

ρ

)
(1− pmλC)

(49)

≥ pm(
−1/λC

)
W
(
−λC√

ρ

) . (50)

We arrive at equality (48) by dividing both numerator and
denominator in (47) by ρ, and applying the relation in (38).
Equality (49) is obtained by simple rearrangement of terms in
the previous step.
To derive the bounds in (40), we consider the equilibrium
computed on the W−1 branch of the Lambert function as it
leads to the worst case equilibrium. This equilibrium is an
increasing function in ρ in the interval ρ0 ≤ ρ ≤ ρ−1 as
discussed in the proof of Lemma (4). Also, recall that the
value of pm is decreasing in ρ. Thus the numerator in (48) is
decreasing in ρ. Which implies that the ratio in (49) is also
decreasing in ρ. The upper bound in (40) now follows by
noting that −W (ρ0) = 1. To obtain the lower bound we use
the relation −W (−λC/√ρ−1) = λC in (50).

For values of ρ larger than ρ−1 the SNE is unique, resulting
from the principal branch of the Lambert function. The upper
bound in (42) follows directly by the definition of PoA, and
the lower bound follows from the Inequality (50). Note that
the lower bound is a function of ρ.

APPENDIX E

APPENDIX F
PROOF OF PROPOSITION

APPENDIX G
PROOF OF LEMMA

APPENDIX H
PROOF OF LEMMA 2

Consider a point to set map δ : [0, 1] → [0, 1] defined by

δ(p) =

{
p′|U(p′, p) = max

q∈[0, 1]
U(q, p)

}
.

This defines the set of best responses of the typical node
when all the other nodes use the MAP p. It follows from
the continuity of U(p′, p) in p, and concavity in U(p′, p) for a
fixed p that Γ is an upper continuous mapping that maps each
point of the set [0, 1] into a subset of [0, 1]. By the Kakutani
fixed point theorem, there exists a point p∗ ∈ [0, 1] such that

U(p∗, p∗) = max
p′∈[0, 1]

U(p′, p∗).

Then p∗ is the symmetric Nash equilibrium by Definition 1.
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APPENDIX I
PROOF OF LEMMA 7

Assume ρ ≤ 1, then pm > 0 and satisfies the equation

exp{−pmλC}(1− pmλC) = ρ.

By rearranging, pm can be expressed

pm =
1−W (ρe)

λC
.

Recall that W (·) is a monotonically increasing function taking
values W (0) = 0 and W (e) = 1. If λC ≥ 1 the pm lies in the
interval [0, 1] for all ρ ∈ [0, 1]. If λC < 1, then pm lies in
the interval [0, 1] for all ρ such that W (ρe) ≥ 1− Cλ. Thus
whenever λC < 1 we assume that ρ satisfies W (ρe) ≥ 1−Cλ.
Then we can compute the optimal value of the utility function
as

pm exp{pmλC}

=
1−W (ρe)

λC
exp{−1 +W (ρe)} (51)

=
1

eλC
{exp{W (ρe)} − ρe} (52)

=
1

eλC

{
ρe

W (ρe)
− ρe

}
(53)

=
ρ

λC

{
1

W (ρe)
− 1

}
where Equation (51) is obtained by substituting the value
of MAP maximizes the team utility. Equation ()52) and
(53) follows by application of the definition of the Lambert
function. The maximum utility for the team case can be now
computed as a function of ρ

U(pm) =
ρ(1−W (ρe))2

CW (ρe)
. (54)

Differentiating this equation with respect to ρ, and simplifying
we get

∂U(pm)

∂ρ
=

(1−W (ρe))2

CW (ρe)

− ρe
(1−W (ρe))

CW (ρe)

(1 +W (ρe))W ′(ρe)

CW (ρe)
(55)

=
(1−W (ρe))2

CW (ρe)
− (1−W (ρe))

CW (ρe)
. (56)

In equation (55) W ′ denotes the derivative of Lambert func-
tion. Equation (56) follows by applying the definition of
Lambert function in (45). The last equation is negative values
for all ρ ∈ [0, 1] we thus conclude the optimal utility is a
decreasing function in ρ.


