An Implementation Model for Connection-Oriented Internet
Protocols

C. D. Cranor
chuck@maria.wustl.edu

(314) 935-4203

G. M. Parulkar
guru@flora.wustl.edu
(314) 935-4621

Computer and Communications Research Center
Department of Computer Science
Washington University
St. Louis, MO 63130

Abstract

Recently a number of research groups have proposed
connection-oriented access protocols that can provide
a variable grade of service with performance guaran-
tees on top of diverse metworks. These connection-
oriented internet protocols (COIPs) have performance
trade-offs. A COIP-Kernel which can be used as a
toolkit to implement any of the proposed COIPs has
been designed. COIP-K features module interchange
and incremental software support. The paper presents
the COIP-K implementation and its performance char-
acteristics.

1 Introduction

Recently, several research groups have proposed
connection-oriented access protocols for the network
and internet layers. These protocols share four impor-
tant characteristics. First, the path that data pack-
ets take from source to destination is established in
advance. Second, the resources required for a connec-
tion are reserved in advance. Third, a connection’s
resource reservation is enforced throughout the life of
that connection. Finally, once a connection’s data
transfer is completed, the connection is broken and
the allocated resources are freed.

These connection-oriented access protocols are per-
ceived to have benefits for applications requiring a
variable grade of service with performance guarantees.
This has prompted several research groups, includ-
ing our group at Washington University, to propose

1This work is supported in part by Bellcore, BNR, DEC,
Italtel SIT, NEC, NTT, Synoptics, and NSF

connection-oriented internet protocols (COIPSs) such as
MCHIP [6], ST [3, 8], and FLOW [9)].

1.1 COIP-K Motivation

The proposed COIPs have several similarities and
differences. The members of the coip working group
of the Internet Engineering Task Force decided that
it is important to pursue several protocols and com-
pare and contrast the alternate approaches for imple-
menting them. However, independent implementation
of these protocols was considered unwise for the fol-
lowing reasons. First, as the proposed COIP protocols
have many common functions, independent implemen-
tations would lead to much duplicate work. For exam-
ple, all the protocols have a connection state machine
and a resource allocation and enforcement function.
Second, implementation of a protocol in the Unix ker-
nel poses a number of challenges: coding or logic errors
can result in system crashes, kernel debugging support
is limited, kernel dynamic memory allocation mecha-
nisms are complex, the protocol’s code must co-exist
with the rest of the kernel, and the existing kernel
interface is not well documented.

In order to develop a more productive research envi-
ronment, avoid duplication of work, and foster collab-
oration, we proposed the co1p-kernel (corp-K). CoIp-
K forms the core of a COIP protocol and includes the
minimum functionality necessary for a wide range of
multicast connection-oriented protocols. It also in-
cludes appropriate provisions to interface with other
functional modules. CoOIP-K, when combined with a
set of functional modules, will create an instance of
a COIP such as MCHIP or ST. The basic concept of
COIP-K is shown in Figure 1.

unix kernel
MCHIP ST TEST

| | |

COIP-K
i

UNIX NETWORKING

Figure 1: corp-K structure

This approach to protocol development yields im-
portant benefits to research efforts. Many of the func-
tions that a CcoOIP must provide can be supported
by alternative mechanisms. These mechanisms can
be implemented in experimental modules and inte-
grated with COIP-K to produce different instantiations
of corps. These instantiations represent mechanisms
that can be compared under controlled experimental
conditions. As a result, it will be possible to describe
the conditions under which each of the alternate mech-
anisms behaves best, and thus define a corp that is
optimal for a given target environment.

Additionally, by providing a set of default func-
tional modules, COIP-K can provide a variable level
of support to a protocol programmer. For example,
a novice COIP-K user can use mostly default COIP-K
functional modules to get a simple test protocol run-
ning quickly. As the novice COIP-K user gets more
advanced, he or she can swap out more and more de-
fault modules in favor of his or her own modules to
make a more sophisticated protocol.

Corp-K includes support to set up a connection,
functions to forward data packets based on connection
identifiers, and functions to terminate the connection.
Thus, cOIP-K can run the basic state machine neces-
sary for a connection-oriented protocol, and its imple-
mentation in the Unix kernel can provide the standard
4.3 BsD interface to higher-level protocols. However,
it is important to note that COIP-K leaves a number of
options open and delegates important decision making
to other functional modules. For example, COIP-K can
talk to the resource manager for resource availability
and allocation, but the actual resource allocation al-
gorithm is part of the resource allocation module. By
allowing the protocol-specific functions of a COIP pro-
tocol to be in modules, COIP-K can be used to easily
implement a wide range of coips. It should be noted
that coIpP-K is a tool, not a protocol. COIP-K is not

intended to replace TCP/IP or become a permanent
part of the kernel. Instead, it is a tool which can be
used to help ease the implementation and exploration
of COIP protocols.

This paper describes the COIP-K implementation
and demonstrates COIP-K’s feasibility and viability.

1.2 Corpr-K Implementation Requirements

The scope of this research includes the following
major implementation requirements.

e CoIP-K must be implemented in the Unix kernel
using the standard 4.3 BSD interface.

e Corp-K should allow implementation of various
COIP protocols by module interchange.

e CorIp-K should refrain, as much as possible, from
modifying the user-level socket interface.

e Corp-K should have efficient per-packet process-
ing for high performance.

e Since most COIP protocols support multipoint
connections, COIP-K must support them too.

2 Background

Networking in the BSD Unix kernel is divided into
three software layers: the socket layer, the protocol
layer, and the network interface layer.

The socket layer is the top layer from the user’s
point of view. This layer provides a generic, uniform,
protocol-independent interface to networking services
for the applications programmer. At the programming
level, the socket layer appears to consist of a standard
set of C functions which handle all network interac-
tion. These functions are really system calls which
cause the system to enter kernel mode and call down to
the lower networking layers. The middle layer, called
the protocol layer, consists of a number of protocol
suites or protocol domains. The protocol layer handles
all protocol-specific processing of network data and in-
cludes implementations of various protocols such as
TCP, 1P, and XNS. COIP-K resides in the protocol
layer. The third and lowest layer is the network in-
terface layer. The software in this layer consists of
network device drivers which provide an interface to
the computer’s networking hardware. The details of
the inner workings of the networking system can be
found in other publications [2, 5].

3 COIP-K Implementation

This section describes the implementation of CO1P-
K within the framework of the Unix networking model.

3.1 Application Programmer Interface

The coip-K application programmer interface uses
the standard socket interface to facilitate porting of
old applications and development of new applications.
The only change to the standard socket layer interface
necessary in our implementation of COIP-K was the ad-
dition of a few new well-known constants for the coip-
K domain. COIP-K uses the client-server model of the
standard socket layer for interprocess communication.

3.1.1 Data Structures

The applications programmer of a COIP-K based pro-
tocol needs to be familiar with a few new data struc-
tures. One such structure is the protocol-specific
structure which is used in setting performance require-
ments (e.g. peak bandwidth, average bandwidth, etc.)
for a connection. This structure is not discussed here
because it is considered protocol specific. The other
new structures common to all COIP-K based protocols
are the structures used to build a list of addresses and
port numbers for a host.

All addressing information an application uses is
stored in a sockaddr _cin structure. A sockaddr cin
is defined to have an address family and a list of
cinmad structures. A cinmad structure contains an 1P
address, a port number, and a zero field (used inter-
nally as an offset field). Note that COIP-K assumes
that 1P addressing will be used (thus the in_addr
structure in the cinmad structure). This allows COIP-
K to ignore issues such as address resolution (ARP) by
allowing the normal 1P code to handle them.

struct cinmad *cnd;
struct sockaddr _cin *c;

c = (struct sockaddr_cin *)
mal | oc(si zeof (*c) + ((n - 1) * sizeof(*cnd)));

cnd = &c->ci n_addr;
c->sa_famly = AF_CA P;

cnd[0] . mad. s_addr = renotel P_O;
cmd[0] . cin_port = renoteport_0O;
cmd[0] . cof f = O;

crmd[1] . mad. s_addr = renotel P_1;

/* etc. to cnd[n-1] */

Figure 2: corp-K multipoint socket address structure

For a multipoint connection, the setup of the
sockaddr_cin is more complex since the size of
the socket address depends on the number of hosts
in the multipoint connection. The format of the
sockaddr_cin structure does not change, but there
can be cinmad structures appended to it. Given a
variable number of hosts in a multipoint connection, it
is best to dynamically allocate space for the addresses
using malloc (). Figure 2 shows an example of this.
Note that the multiple cinmad structures are treated
as an array to simplify the programming involved in

setting up multipoint connections?.

3.1.2 Client-Server System Calls

The system call sequence used by CcOIP-K clients and
servers is shown in Figure 3. The call sequences
are similar to those of TCP/IP clients and servers.
However, before a socket can be connected to a re-
mote host, the performance requirements for the con-
nection must be specified. Since there is no stan-
dard socket system call to do this, it is done with a
setsockopt () system call (setsockopt is the “catch
all” socket system call). Specification of performance
requirements is considered to be a protocol-specific is-
sue, and each COIP-K based protocol is expected to
define its own structure to specify such requirements.
Once the application has set up this structure it can
call setsockopt ().

CLIENT SERVER
s = socket (PF_CO P, SOCK_RAW 0)) s = socket (PF_CO P, SOCK_RAW 0))

s = setsockopt(s, level, CIN SETPREQ s = setsockopt(s, |evel, C N_SETPREQ
&preq, sizeof(preq))) &preq, sizeof(preq)))

err = connect (s, addr, addrlen) err = bind(s, addr, addrlen)
err = listen(s, 5)
s_new = accept (s, addr, addrlen)
err = read(s, buf, buflen)
err = wite(s, buf, buflen)

close(s)

Figure 3: Sample COIP-K point-to-point client and
server

3.2 Corp-K in the Protocol Layer

Corpr-K has been designed to work within the BSD
Unix networking model. CoOIP-K resides in the proto-
col layer of the SUNOS/BSD kernel and has its own com-

2Unfortunately some system calls limit the size of an ad-
dress to the size of an mbuf. Hopefully such restrictions will be
removed in the next release of the operating system.

Socket

T

Internet Xerox NS (XNS) COIP-K

le0 enet lel enet

module
set

MCHIP protocol
protosw structure

COIP-K

COIP-K
modules

module
set

COIP test protocol
protosw structure

DOMAIN

BBN ST protocol
protosw structure

module _—"

set

Figure 4: The BSD Unix networking model and COIP-K

munications domain, as is shown in Figure 4. COIP-K
has its own domain because it defines its own family
of protocols that do no fall under any of the other
domains. In the protocol layer, COIP-K was designed
to support multiple COIP protocols concurrently, to
efficiently handle per-packet processing, and to sup-
port multipoint connections. Figure 4 shows that each
COIP-K based protocol has its own protosw structure.
This allows an applications programmer to interface
directly to COIP-K protocols in the same way as other
available protocols. COIP-K can be run without mak-
ing changes to the system call interface of the socket
layer. The only socket layer changes are the addition
of the definitions of a few well-known constants (to
identify CcOIP-K) in a system header file and an addi-
tional header file to define the COIP-K addressing data
structures. The network interface layer must also be
changed to understand the COIP-K ethernet type.

The coIP-K system can be divided into two main
parts as shown in Figure 1 and Figure 4. The first
part is the core coiP-K code which is common to all
COIP-K protocols. The second part is a set of modules
which are plugged in using a module set on top of the
core code to form an implementation of a COIP proto-
col. A module set may include protocol-specific mod-
ules as well as default modules. A COIP protocol built
with COIP-K can support connection-oriented® com-
munications with resource allocation, packet forward-
ing/gatewaying, and multipoint connections. The
COIP-K code assumes that 1P addresses will be used.
Also, by default, cOIP-K uses IP routing. This can be
overridden if the need arises.

3Note that the “connection” is not a reliable connection and
can provide both connection-oriented and datagram access, thus
it is sometimes called a “congram” [7].

3.2.1 Data Structures - The COIP-K PCB

The most important data structure of COIP-K is the
COIP-K protocol control block (PcB). The COIP-K
PCBs are stored in a circular linked list which can
be traversed by starting with the address of cin_q (a
dummy pPCB) and following the p_next pointer. Note
that each end-point of a connection has its own PCB
structure associated with it.

In corp-k, a per-protocol control block is an mbuf
which is used to store protocol-specific state informa-
tion. Because the information in this mbuf is protocol
specific, its structure is not defined by coip-k. The
pointer to the per-protocol control block resides in the
CcorP-K PCB. The per-protocol control block must be
allocated and released at the same time as the main
PCB. Thus, a protocol-specific module will be called
every time a COIP-K PCB is created or freed.

The coIP-K state variable indicates the state of
the corresponding connection (e.g. CLOSED, OPEN,
OPENING, etc.) to corp-K. Protocols which require
additional state information can use the per-protocol
control block to store that information. The ID num-
bers in the COIP-K PCB are the connection identifiers
(c1ps) and the logical channel numbers (LCNs). The
CID consists of a unique eight-byte number which dis-
tinguishes the connection from all other connections
on the network. The first four bytes are the 1P address
of the host which originated the connection. This in-
formation is called the osrc (originating source). The
second four bytes are a unique ID number created by
the originator. The CID applies to every host and gate-
way in the connection. The LCNs on the other hand
are strictly hop-to-hop ID numbers. An LCN is two
bytes long and indicates a data flow in one direction.
Thus, a full duplex connection requires two LCNs, one
for inbound data and one for outbound data.

3.2.2 Multipoint Addressing and Routing in
the PCB

The format of addressing and routing information
stored in the coiP-K PCB depends on whether the
connection is a point-to-point or multipoint connec-
tion. For point-to-point connections, all addressing
and routing information is stored in the main COIP-
K PCB. For a multipoint connection, addressing and
routing information is stored in separate mbufs as
shown in Figure 5. This system was chosen because
it interfaces easily with the mbuf system. Currently,
the addressing and routing mbufs limit the size of the
data to 1024 bytes each, but this restriction can be
removed if larger data sizes are needed in the future.

address-mbuf

remote IP addresses
mbuf
pointer to route to take
coip-k pch
addresses rOUte-mbUf
routes —___ | LCN's, refs, route state
per-proto pcb gw address, ifnet pointer
ppcb-mbuf
protocol-specific info

Figure 5: Multipoint PCB structure

3.2.3 Major Functions

This section presents an overview of the main func-
tions of coIP-K. Figure 6 shows how a COIP-K protocol
fits in with the other layers.

Note that the actual COIP-K implementation con-
sists of a large number of functions which (for the sake
of clarity) are not shown in Figure 6. The functions
labeled “extract” and “mkpkt” are actually required
protocol-specific COIP-K modules and are described in
Section 3.3.1.

User Request Function: The user request function
cin usrreq is the socket layer’s interface to coip-
K. This function performs many tasks such as
socket/PCB creation, the processing of socket op-
tions, reads and writes, connection establishment
for the client side, local-address binding, and set-
ting up a PCB to accept inbound connections.

The user request function is called from the socket
layer. Among its arguments are type of request
being made and the socket associated with the
request. The user request function first looks up
the PCB of the socket. If the socket has just been
created, then it will have no PCB and the user re-
quest function will create a new PCB for it. The
user request function then switches on the request
argument and processes it. Finally, it returns con-
trol to the socket layer.

Interrupt Function: The cinintr function, the
network interface layer’s interface to COIP-K, is
called by the network interface layer when a coIp-
K packet is received. This function performs tasks
such as packet forwarding, data input (from the

socket (create
() read

write
__ socket layer
protocol layer
CIN_USRREQ
cinintr cmo_output
extract mkpkt
connect
__ protocol layer
network interface

layer

NETWORK INTERFACE

ethernet bus

Figure 6: COIP-K protocol switch

network), and the server side of connection es-
tablishment. This function is the most important
function for per-packet processing because it con-
trols packet forwarding.

The interrupt function is scheduled to be called
by the network interface layer. It is a loop in
which packets are removed from the input queue
and processed until the input queue is empty. A
packet is processed by first determining its coIP-
K protocol and packet type. Then, the LCN is
extracted and used to look up the PCB. Finally,
the packet is processed as a data, open, resource,
or control packet. Note that the forwarding of a
data packet requires minimal processing.

Output Function: The packet output function,

cmo_output (), takes four arguments. The first
argument is the PCB pointer, which is used to
get routing information and data from the PCB.
The second is the packet type, which determines
what type of packet cmo_output () asks the corp-
K modules to make. The last two arguments are
an indication of what interface the packet came
in on and what the LCN was. If both are 0, then
the packet originated from the host, otherwise it
was forwarded. The cmo_output function handles

forwarding by sending data to every point on the
connection except the point the data came in on.

Connect Function: The connect function takes a
list of addresses and a PCB, and using the
protocol-specific routing module and the LCN
mapping module it produces a PCB with all the
routing and addressing information set up.

Coipr-K, by default, provides only a very basic con-
nection management scheme. It assumes that all end-
points of a connection are known at connect time, and
that they can not be added or deleted after a connec-
tion is established. Also, coip-k’s default concept of
connection establishment is not absolutely reliable or
efficient. It depends on a simple two-way handshake
and timers to detect errors. To provide more elabo-
rate connection management, more complex protocol-
specific functional modules must be provided.

Toolbox Modules

ATACH DETACH
CONTROL INPUT PCB SETUP
CTP Modules
DISCONNECT SET PERFORMANCE
MAKE PACKET PACKET TYPE DATA INPUT PERFORMANCE INPUT
EXTRACT REJECT INIT SLOW/FAST TIMERS
PCB LOOKUP LOCALIZED CONNECT
USER REQUEST INTERRUPT
OUTPUT INIT

TIMER CONTROLS LCN MAPPER

COIP-K Core Code

Figure 7: corp-K plug-in modules

3.3 COIP-K Modules

There are two types of COIP-K modules: required
and optional. Required modules are ones that are pro-
tocol specific and must be provided by the protocol im-
plementer. Optional modules are modules that may
or may not be provided by the protocol implementer.
If they are not provided, COIP-K provides a reason-
able default module from its module toolbox. Figure
7 shows how protocol modules plug into CcoIpP-K for a
COIP test protocol (CTP).

By providing co1P-K toolbox modules and allowing
them to be interchanged easily with other modules,
CoIP-K provides a useful feature: incremental proto-
col development support. When protocol developers

start using COIP-K they can use many toolbox modules
and have COIP-K do most of the work. As the develop-
ers become more experienced with COIP-K and kernel
programming they can swap out toolbox modules and
replace them with modules of their own. Eventually
they may swap out most of COIP-K and replace it with
their own code. COIP-K provides as much (or as little)
support as the protocol developer needs. The required
and optional modules that make up a COIP-K protocol
are called a COIP-K module set.

3.3.1 Required Modules

Extract module: coip-k does not know a packet’s
format because it is a protocol-specific detail.
Therefore, when COIP-K removes vital bits of in-
formation from a packet, it uses the extract mod-
ule. This interface is similar to the information-
hiding techniques used in object oriented pro-
gramming.

Make packet module: As with the extract module,
corpP-K does not know a packet’s format. Thus,
the make packet module is required in order to
form a packet from data.

Packet type module: The packet type module de-
termines if a packet is associated with a mod-
ule set. If the packet is recognized by a set of
modules, then the packet type module will re-
turn the packet’s type. If the packet is not rec-
ognized, then the packet type module returns an
error code. This module is first called in the coip
interrupt function to determine which module set
to use when deciding a packet’s fate.

PcB lookup module: When a packet is received,
the corpP-K protocol is determined (by using the
packet type module). Then the PCB lookup mod-
ule is used to determine which PCB the packet is
associated with.

3.3.2 Optional Modules (Toolbox Modules)

Corp-K has many optional modules [2]. They include
modules to create and delete protocol-specific infor-
mation in the pcb, timer modules, module hooks for
specifying performance requirements and handling re-
source, modules for special handling of data and/or
control packets, a packet output module, a pcb setup
module, and a module called at system bootup time
to set up protocol specific data structures.

3.4 COIP-K Module Interchange

The implementation of a COIP protocol with co1p-
K consists of two parts: the protocol-specific modules
and the common COIP-K code and default modules.
The most important feature of COIP-K is the efficient
and easy module (protocol function) interchange. This
interchange allows multiple COIPs to reside in the ker-
nel and share protocol modules. At the same time, the
module interchange feature also allows each protocol
to use its own specific modules if necessary. This leads
to variable level of support for COIPs from COIP-K as
well as easy evaluation of trade-offs associated with
different CcoIPs.

The module interchange functionality is achieved as
follows. All modules are implemented as functions and
form a common pool of modules. Each cO1P protocol
includes a module set composed of modules from the
module pool. The module set determines the behavior
of the co1p protocol. The module set is implemented
as a structure with a list of pointers to appropriate
modules in the module pool as shown in Figure 8.
Important observations on the module selection and
building process include:

e Toolbox modules, required mod-
ules, and protocol-specific optional modules are
all part of the common pool of modules.

e FEach coIp has a module set consisting of a list
of pointers to a subset of modules in the module
pool. A module can be shared among any number
of corps (i.e., module sets). Module sharing saves
space and keeps the kernel size relatively small.

e To create a new instantiation of a coiIp, all that
has to be done is to create a COIP-K module set
by making a copy of the module set structure and
setting the pointers appropriately to select the
desired subset of modules from the module pool.

e To override a default module, a COIP implementer
may add a new module to the module pool and
change the appropriate pointer so that it points
to the new module.

e A programmer using COIP-K can choose which
corp-K module set to use at socket creation time.
Recall that the socket() system call has three
arguments: the protocol domain, the socket type,
and the protocol. The third argument in the
socket call is used to distinguish between co1P-
K module sets. If the third argument is 0, the
default corp-kK module set is chosen.

module sets modules

/
(*mkpkt)(); '

(output)();

(*datain)(); =

(*extract)();

[*etc ... *

(*mkpkt)();

(output)();

(*datain)();

(*extract)(); - ~

[*etc ... *

Figure 8: Plugging modules into COIP-K

By providing such an easy-to-use interface at the
system call level, coip-k has made the use of coip
protocols relatively easy. The use of COIP-K should
minimize the number of kernel rebuilds and reboots
required for COIP testing. In fact, if done carefully,
CcorP-K modules can be swapped on a running sys-
tem by changing pointers in kernel memory without
rebooting the system.

4 COIP-K Feasibility and Viability

This section presents the feasibility and viability of
COIP-K, and how it has been designed to meet the four
main objectives outlined in Section 1.2.

4.1 COIP-K Test Protocol

An example COIP protocol, the corp-k Test Proto-
col (cTP), has been specified and successfully imple-
mented using cOIP-K. This exercise served two pur-
poses. First it has helped demonstrate COIP-K’s use-
fulness in creating implementations of a COIP proto-
col. Second, it has helped thoroughly debug and test
corp-K. It is important to note that the CcTP repre-

sents a subset of Washington University’s MCHIP pro-
tocol. Omne main difference between C¢TP and MCHIP
is that McHIP allows resource reservations to provide
performance guarantees. Although COIP-K has been
designed to support resource allocation and enforce-
ment modules, they were not implemented in CTP.
Resource allocation and enforcement are protocol spe-
cific, and thus should be part of corP modules and not
part of corp-K itself. The CTP protocol has been in-
tentionally kept simple because the emphasis of this
research is on COIP-K. CTP is expected to serve as a
template for implementation of other COIP protocols
using COIP-K.

Details of the CTP protocol are presented in another
paper[2]. The CTP specification includes connection
set up, data transfer, connection termination proce-
dures, and suitable packet formats.

4.2 Module Set Demonstration

In order to demonstrate the power of COIP-K in fa-
cilitating module interchange, a new COIP protocol,
CTP2, has been created. CtTpP2 and cTP differ from
each other in the way each supports multipoint com-
munication.

There are two fundamental ways to do multipoint
connections: many-to-many and one-to-many. CTP,
like the MCHIP protocol, implements multipoint con-
nections in the many-to-many fashion. This means
that any data written by an endpoint on a ¢TP mul-
tipoint connection will be received by all the other
endpoints on the connection. Thus, the multipoint
connection in this case is similar to a broadcast chan-
nel.

On the other hand, in a one-to-many multipoint
connection, the connection is considered a tree, with
the endpoint which established the connection at the
root. When the root of the tree writes on a one-to-
many multipoint connection, all the other endpoints
get the message. However, when a non-root endpoint
writes on the connection, only the root receives the
message (although the message may pass through sev-
eral gateways on the way to the root). The one-to-
many multipoint connection is illustrated in Figure 9.
The ST protocol supports the one-to-many paradigm
of multipoint communication. CTP2 is the same as
CTP for point-to-point connections, but it is one-to-
many for multipoint connection.

The main differences between ¢TP and CTP2 were
in packet forwarding and the time that data is passed
from the protocol to the socket layer. The packet for-
warding scheme of ¢TP2 is shown in Figure 9. The
root endpoint should never forward a received packet,

client (root)

—_ _

endpoint endpoint

Figure 9: One-to-many multipoint connection

and a non-root endpoint should only forward a packet
up the connection tree. Data should be passed up
to the root endpoint at all times in ¢TP2. On the
other hand, the non-root nodes should only receive
data from the root node. CTP2 was developed by first
copying the cTP module set.

To handle the packet forwarding requirements of
cTP2, the output module had to be modified. The
cTP module set used the COIP-K toolbox module
cmo_output as its output module. For the cTP2 mod-
ule set a copy was made of the cmo_output mod-
ule. This copy was then renamed to ct2_output and
modified to forward packets as per the requirements
of ¢TP2. Then the output module pointer in the
coip_proto module set for cTP2 data structure was
set to point to the ct2_output function.

When the CTP protocol receives a data packet, it
passes the data to the socket layer as per the coOIpP-K
default. However, for cTP2 this is not acceptable. So,
a data input module was added to the cTP2 module
set.

By making these two changes to the cTP module
set, it was possible to quickly create cTP2. A simple
multipoint demonstration program was recompiled to
use CTP2. CTP2 was tested and it worked as expected.

To implement ¢TP2 from scratch would take a long
time without corp-kK. To implement CTP2 given an
implementation of CTP would not take as long as do-
ing it from scratch, but it still would take a fair amount
of time. However, with the modular nature of COIP-K,
designing and implementing CTP2 to operate in par-

allel with ¢TP took about an hour.
4.3 COIP-K Performance

A study of cTP’s performance has been undertaken
to verify that corp-K works properly and to quantify
the performance of COIP-K. In terms of delay and
throughput, coIP-K is similar to UDP and better than
TCP. COIP-K also was found to have a minimal cost
due to its use of indirection in function call. More
details on the performance can be found elsewhere [2].

4.4 COIP-K Testing and Demonstrations

The coip-K test applications include: a go-back-n
file transfer program, a ported version of telnet, a
multipoint chat program, and a multipoint script pro-
gram (for session logging). CoIP-K demonstrations
serve three objectives. First, they test and verify sev-
eral capabilities (point-to-point, multipoint, gateway-
ing, etc.) of COIP-K. Second, they show that applica-
tions using the standard socket interface can be ported
to work on COIP-K with minimal effort. Finally, these
applications show that CcOIP-K can be used to create
useful multipoint applications. The same test pro-
grams can exercise different parts of the COIP-K code
depending on what hosts are members of the connec-
tion. The three main testing configurations are: loop-
back, over a local network, and through a gateway. All
applications have been tested in these configurations.

5 Conclusions

In order to develop a more productive research envi-
ronment, avoid duplication of work, and foster collab-
oration, we proposed the corp-kernel (corp-K). Coip-
K forms the core of a COIP protocol and includes the
minimum functionality necessary for a wide range of
multicast connection-oriented protocols. It also in-
cludes appropriate provisions to interface other func-
tional modules. CoIP-K, when combined with a set of
functional modules, will create an instance of a coIp
such as MCHIP or ST.

Corpr-K was tested and shown to be both feasible
and viable. The five main implementation require-
ments set for COIP-K were met.

References

[1] Corporation for National Research Initiatives, “Con-
nection IP (cip) Report,” Proceedings of the Twen-

tieth Internet Engineering Task Force, pp. 109-114,
March 1991.

Cranor, C., An Implementation Model for
Connection-Oriented Internet Protocols, M.S. thesis,
Department of Computer Science, Sever Institute of
Technology, Washington University, St. Louis, Mis-
souri, May 1992.

Forgie, J., “ST - A Proposed Internet Stream Proto-
col,” IEN119, MIT Lincoln Laboratory, 7 September
1979.

Gross, P., “Connection IP (cip) Report,” Proceedings
of the Internet Engineering Task Force, Ann Arbor,
Michigan, October 1988.

Leffler, Samuel J., McKusick, Marshall K., Karels,
Michael J., and Quarterman, John S., The Design
and Implementation of the 4.8 BSD Uniz Operating
System, Addison-Wesley Publishing Company, Inc.,
Redding, Massachusetts, 1989.

Mazraani, Tony Y., and Parulkar, G., “Specification
of a Multipoint Congram-Oriented High Performance
Internet Protocol,” INFOCOM’90, IEEE Computer
Society, Washington D.C., June 1990.

Parulkar, Gurudatta M., “The Next Generation of
Internetworking,” ACM SIGCOMM Computer Com-
muncations Review, vol 20, no 1, pp. 18-43, Jan. 1990.

Topolcic, C., “Experimental Internet Stream Proto-
col: Version 2 (ST-1I),” RFC-1190, October 1990.

Zhang, Lixia, A New Architecture for Packet Switch-
ing Network Protocols, Ph.D. thesis, Department of
Electrical Engineering and Computer Science, MIT,
July 1989.

