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Abstract

In this paper, we present a method for automati-
cally creating a 3D model of a scene from a set of
range images obtained from unknown viewpoints. FEx-
isting 3D modeling approaches require manual inter-
action or rely on mechanical methods to estimate the
viewpoints. Given a set of range images (views), we
use a surface matching system to erhaustively register
all pairs of views. The results are verified for con-
sistency, but some incorrect matches may be locally
undetectable and correct matches may be missed. We
then construct a consistent model from these poten-
tially faulty matches using a global consistency cri-
terion to eliminate incorrect, but locally consistent,
matches. The procedure is demonstrated through an
application called hand-held modeling, in which a 3D
model is automatically created by scanning an object
held in a person’s hand.

1 Introduction

Recent advances in three dimensional (3D) sens-
ing have led to relatively low cost range imaging de-
vices that accurately measure the 3D structure of a
scene from a single viewpoint. Generally, from any
given viewpoint, some surfaces in a scene will be un-
observable, so data from multiple viewpoints must be
combined in order to form a complete model. Cur-
rent modeling methods require significant manual as-
sistance or rely on mechanical methods to estimate the
viewpoints, limiting their applicability in many mod-
eling applications. In this paper, we present a general
method to fully automate the 3D modeling process
without resorting to these restrictive requirements.

The 3D modeling process involves two main phases:
registration, in which the 3D data sets (views) are
aligned in a common coordinate system; and integra-
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tion, in which the registered views are combined into
a single entity. In this work, we concentrate on the
registration phase because this is where the central
automation issues lie.

The registration phase can be considered in terms
of three interrelated problems: 1) determining which
views contain overlapping scene regions (overlaps); 2)
determining the transform between each pair of over-
lapping views (relative poses); and 3) determining the
position of all views in a global coordinate system (ab-
solute poses), which is the ultimate goal of the reg-
istration phase. Most existing modeling approaches
begin with the assumption that approximate relative
poses are known. From this, the overlapping views
can be determined by applying a suitable definition of
overlap to the registered pairs. Johnson [9][10] took
the opposite approach, which is more difficult. He
assumed that the overlapping views were given, and
found relative poses using pair-wise registration with
no initial relative pose estimate (unconstrained pair-
wise registration).

Once the overlaps and relative poses are known,
the absolute poses can be computed by simultaneously
registering all overlapping views (multi-view registra-
tion). Multi-view registration can be posed as an op-
timization problem over the continuous space of ab-
solute pose parameters [13]. The objective function
seeks to minimize the distance between corresponding
points on overlapping surfaces, thereby distributing
the errors in the relative pose estimates over the en-
tire model. The overlaps and relative poses provide a
good starting point for multi-view registration, which
converges to a local minimum.

For automatic modeling, both the overlaps and the
relative poses are unknown, which makes the registra-
tion problem considerably harder due to the mutual
dependency between the overlaps and relative poses.
We view automatic modeling as the next logical step



beyond multi-view registration.
Formally, we define the automatic 3D modeling
problem as follows:

Given an unordered set of range images of
a scene and no additional information, auto-
matically and robustly construct an accurate
3D model of the scene.

In particular, it is not necessary to know the lo-
cation of the viewpoints from which the range im-
ages were obtained. We denote the N input views
V ={Vi,..., Vn}, where each Vj is initially expressed
as a range image R;, but later as a surface S;.

The modeling procedure consists of two main
phases: surface matching and model construction. In
the surface matching phase, the input range images
are converted to surface meshes, and a surface match-
ing system [10] performs unconstrained pair-wise reg-
istration on all view pairs. The results are verified for
consistency, but some incorrect matches may be lo-
cally undetectable and correct matches may be missed.
In the model construction phase, a globally consistent
model is built incrementally from this set of poten-
tially incorrect matches. By using a global measure of
consistency, locally consistent, but incorrect, matches
can be detected and safely avoided. Once we have a
globally consistent model, we perform multi-view reg-
istration to find the optimal absolute poses [13], and
finally, the registered views are combined using a mesh
integration algorithm [5].

Automatic modeling can be posed as a mixed dis-
crete and continuous optimization problem. The dis-
crete optimization is a combinatorial search over the
set of models that can be constructed from pair-wise
matches, the goal being to distinguish between correct
and incorrect matches. The continuous optimization
is the same as in the multi-view registration problem.
In our current implementation, these two processes
are separate, but we are working towards integrating
them more closely.

In the remainder of this paper, we begin by summa-
rizing the related work (Section 2). Then we describe
three measures of local surface consistency (Section 3)
that are used throughout the modeling process. Sec-
tion 4 presents the details of our modeling procedure,
and section 5 illustrates the procedure through an ap-
plication we call hand-held modeling. Finally, we dis-
cuss the algorithm’s limitations and our future work
in section 6.

2 Related work

Existing methods for constructing 3D models rely
on mechanical estimation of poses, manual assistance,

or both. One mechanical approach is to mount the
scanner on a robot equipped with an absolute position-
ing sensor. For example, Miller used an autonomous
helicopter with a differential global positioning system
(DGPS) to construct terrain models [12]. For smaller
objects, absolute poses can be obtained by mounting
the sensor on a robot arm [21] or by keeping the sensor
fixed and moving the object on a calibrated platform
[20]. Relative poses can be estimated by mounting
the sensor on a robot equipped only with a relative
positioning system such as wheel encoders or inertial
sensors [7][11][18].

A common manual registration method is to specify
corresponding feature points in pairs of range images,
from which relative poses can be estimated [13]. In
some systems, corresponding feature points are auto-
matically detected and then manually verified for cor-
rectness [7]. Alternately, the 3D data can be aligned
directly through an interactive method [15]. In more
advanced approaches, a person indicates only which
views to register, and performs unconstrained pair-
wise registration [9][17]. With this approach, the user
still must manually verify the registration results.

3 Local surface consistency

Throughout the modeling process, it is often neces-
sary to compare two surfaces to estimate whether or
not (or the degree to which) they could represent the
same physical surface. We have implemented three
local surface consistency measures: overlap distance
(M1), a general measure that applies to any pair of
surfaces; and two measures based on visibility consis-
tency (M2 and M3), which are tailored to surfaces
derived from range images. The measures are defined
such that smaller values represent more consistent sur-
faces, and the input surfaces are assumed to be repre-
sented in a common coordinate system (i.e., one view
is already transformed by the relative pose). For each
measure (M1, M2, M3), we define a corresponding
classifier (CM1, CM2, CM3), which is a thresholded
version of the corresponding measure. We use these
measures in three ways: 1) to rank the results of sur-
face matching; 2) to classify any two surfaces as con-
sistent or inconsistent; and 3) as a basis for a global
consistency classifier for verifying entire models.

3.1 Overlap distance

One way to judge the consistency of two surfaces is
to directly measure the distance between the surfaces
in overlapping regions. We begin with the following
definition of overlap:

A point, p, on surface S; overlaps surface S; if
1) the point, q, on S; closest to p is an interior (non-
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Figure 1: Visibility consistency from the perspective
of C;: an example of correct registration (left), free
space violation (center), and occupied space violation
(right).

boundary) point of S;; 2) the angle between the surface
normals at p and q is less than a threshold, tp; and 3)
the FEuclidean distance, D, between p and q is less than
a threshold, tp.

Given two surfaces represented as meshes, we can
estimate the average overlap distance of surface 5;
with respect to S;:

wrA
Ob(S:,5;) = % (1)

where wy is the average of the minimum distance be-
tween the corners of face f on S; and the surface Sj,
A(f) is the surface area of f, and Fy is the set of faces
on S; with all three corners overlapping S; according
to the overlap definition above.

We also compute the proportion of .S; that overlaps

S j:
Op (83, 5;) = ire 2V (2)
19 -
T Y res AS)

Similarly, Op and Op can be computed for S; with
respect to .S;. Since larger overlapping proportions
give a more stable estimate of overlap distance, we
define our first local consistency measure M1 to be the
weighted average of the two non-symmetric distances:

Ob(S:, 8;) = QpidOpiig + OryiOp.jii
P Op,i,j +Opj,i

(M1)

where Op; ; is shorthand for Op(S;, S;) and similarly
with OD,z‘,j, OPJJ', and ODJ'J'.

3.2 Visibility consistency

For surfaces derived from range images, we can de-
velop more powerful measures by looking at the con-
sistency of the two surfaces from the perspective of
one of the sensors. For example, consider the surfaces
in figure 1 viewed from the sensor position C;. For
a correct registration, the two surfaces have similar

Figure 2: Three match results (top row), with the
first view ¢ shown in green/light grey and the second
view j shown in red/dark grey, and their correspond-
ing depth differences as seen from the perspective of
the first viewpoint D; ; (middle row) and the second
viewpoint D;; (bottom row). In the depth differ-
ence images, overlapping pixels are classified accord-
ing to eq. 4 as same surface points (green/light grey),
FSV’s (red/medium grey), or “don’t care” points
(blue/black). For a correct match (left column), most
overlapping pixels are same surface points. For an in-
correct match (center column), many points will be
classified as FSV’s from at least one viewpoint (e.g.,
center bottom). Some incorrect matches (right col-
umn) are locally undetectable because the surfaces are
consistent from both perspectives.

range wherever they overlap. For an incorrect registra-
tion, two types of visibility inconsistencies can arise. A
free space violation (FSV) occurs when a region of S
blocks the visibility of S; from C;, while an occupied
space violation (OSV) occurs when a region of S; is
not observed by C;, even though it ought to be. Free
space violations are so named because the blocking
surface violates the assumption that the space between
the sensor and the sensed surface is empty. Similarly,
OSV surfaces violate the assumption that range sen-
sor detects occupied space. Here, we focus on FSV’s,
but OSV’s are discussed further in Section 6. The
concept of visibility consistency has been used previ-
ously in other 3D vision contexts, including hypothesis
verification [2], surface registration [6], range shadow
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Figure 3: The distribution of depth difference measurements D over a large set of correct matches (left) and
incorrect matches (center) from a test object. The predicted distributions, mixtures of two Gaussians learned

from a separate training set, are overlaid (thin black line).

The ROC curves (right) compare the classification

accuracy of the three consistency measures (see text for details).

detection [14], and multi-view integration [16][19].

We can detect FSV’s with respect to C; by project-
ing a ray from the center of projection of C; through
a point p on S;. If the ray passes through S; at a
point ¢ which is significantly closer to C; than p, then
g is an inconsistent point. We must test whether ¢
is significantly closer because even for correctly reg-
istered surfaces, p and ¢ will not have precisely the
same range. We can efficiently implement FSV detec-
tion using two z-buffers.

To compute FSV’s for surfaces S; and S; with re-
spect to sensor C;, both surfaces are projected into
separate z-buffers (Z; and Z;) using the coordinate
system and parameters of C; (e.g., focal length, view-
ing frustum). The depth difference

D; (k) = Z;(k) — Zi(k) (3)

is then computed for each pixel x(k) where both z-
buffers are defined (Figure 2).

We have developed two measures based on the FSV
concept. The first approach applies a threshold, tgg,
to the depth difference to classify the overlapping pix-
els into one of three categories: points on the same
surface (Xgg), points that are FSV’s (Xpgy), and
“don’t care” points where S; is behind S; (Xpc):

Xss(i,7)  if|Di (k)] < tss
(k) € ¢ Xrpsv(i,j) ifDij(k) > tss (4)
Xpc(i,j)  ifDij(k) < —tss

We then compute the fraction of points that are
FSV’s, ignoring “don’t care” points (class Xp¢):
|XFSV(i ])| (5)

[ Xrsv (i 9)| + [ Xss (i, 7)]|

This computation is independently applied to de-
tect FSV’s from the perspective of C; and combined

F(5i,55) =

to form our second consistency measure M2:

F(S“S]) = ma‘X(F(S“S])7F(S]7Sl)) (M2)

Our third local consistency measure is a statistical
measure based on the likelihood ratio test. Given the
two possible hypotheses, HT (correct match) and H~
(incorrect match), and the set of depth difference mea-

surements D = {D; ;(1),...,D; ;(K)}, we estimate

Pr(H*|D)
Pr(H-|D)

Assuming samples of D are independent and taking
the logarithm, we have

Pr(D|H*)Pr
Pr(D|H-)Pr

()
)

L(S;,S;) =

In(L(S;, S;)) ZlnPr 2 (k) H™)

—ZlnPr i (k) H™) 4+ C (7)

where C =In Pr(H') — InPr(H™).

The required probabilities can be estimated from
labeled training data. We use a set of matches ob-
tained from exhaustive pair-wise surface matching of
the views of a test object. First, we compute separate
histograms of the depth differences for the set of cor-
rect matches (Figure 3, left) and the set of incorrect
matches (Figure 3, center). We then model P(D|H™)
as a mixture of two Gaussians, one for outliers and
one for inliers, fitted to the corresponding histogram.
The process is repeated for the incorrect matches to
estimate Pr(H~|D). Mixtures of two Gaussians are
necessary because correct matches will contain some
outliers primarily due to small registration errors, and



incorrect matches will contain inliers in the region that
was matched during surface matching.

Conservatively combining L(S;,S;) and L(S;,S;)
gives our third consistency measure M 3:

L(Si, Sj) = max(In(L(S;, S)), In(L(S;, S;))  (M3)

3.3 Comparison of consistency measures

We compare the three consistency measures by
evaluating their performance on the task of classifying
matches from a test object. By varying the thresh-
old for each classifier (CM1, CM2, CM3) and com-
puting the false positive and false negative rates, we
can observe how each measure trades off between the
two types of errors. The resulting ROC curves (Fig-
ure 3, right) indicate that the two visibility consis-
tency measures are superior to the overlap distance
measure. This is because they can detect inconsisten-
cies throughout the sensor’s entire viewing frustum.

4 Automatic modeling

We divide the modeling process into two main
phases: surface matching and model construction.

4.1 Surface matching phase

In the matching phase, we attempt to register all
pairs of views. For small numbers of views (= 20),
this exhaustive registration strategy is reasonable. For
larger scenes, the combinatorics make this approach
infeasible, and view pairs must be selectively regis-
tered (see Section 6).

In preparation for surface matching, the views are
preprocessed as follows. The input range images are
converted to triangular surface meshes by projecting
into 3D coordinates and connecting adjacent range im-
age pixels. Mesh faces within range shadows (which
occur at occluding boundaries in the range image) are
removed by thresholding the angle between the view-
ing direction and the surface normal. For computa-
tional efficiency, the meshes are simplified using Gar-
land’s quadric algorithm [8].

The surface matching algorithm performs uncon-
strained pair-wise registration of two surfaces based
on their shape. We treat this process as a black box,
which inputs two meshes and outputs a list of rela-
tive pose estimates. Details can be found in [9]. If
the two views overlap, the algorithm often finds the
correct relative pose, but it may fail for a number
of data-dependent reasons (e.g., not enough overlap
or insufficient complexity of the surfaces). Even if
the views don’t contain overlapping scene regions, the
algorithm may nevertheless find a plausible, but in-

correct, match. Furthermore, symmetries in the data
may result in multiple matches between a single pair.

Next, the alignment of each match is improved by
applying a pair-wise registration refinement algorithm.
We have implemented two algorithms for this — one
based on the iterative closest point (ICP) algorithm
but extended to handle partially overlapping surfaces
[1][22], and a second method that minimizes distances
between points and tangent planes in a manner similar

to that described by Chen and Medioni [3].

Finally, we perform a local consistency test by ap-
plying the classifier CM3 to the matches. The clas-
sifier threshold is chosen conservatively based on the
ROC curve (Figure 3, right) with the intention of elim-
inating obviously incorrect matches without removing
any correct ones.

4.2 Model construction phase

4.2.1 The model graph

The construction and topology of 3D models can be
described in terms of an undirected graph G = (N, E),
which we call a model graph (Figure 4). A model
graph contains a node n; for each input view V.
An edge e;; in G associates V; and V; and is an-
notated with the relative pose T;; as well as addi-
tional information such as the local consistency mea-
sures. A connected model graph specifies a complete
model, since every view can be transformed into a com-
mon world coordinate system by compounding rela-
tive poses. If, instead, G contains several connected
components, each component is a partial model. A
spanning tree of G is the minimum specification of
a complete model. Additional edges will create cy-
cles in GG, which can lead to pose inconsistencies be-
cause compounding transforms along different paths
between two views may give different results. A model
is pose consistent if the relative pose of two views is
independent of the path in G used for the calculation.

Figure 4: Example model graphs. A complete model
(left) and two partial models (right)




4.2.2 Global surface consistency

We are interested in in constructing models that are
not only pose consistent but are also globally surface
consistent. Global surface consistency is the straight-
forward extension of local surface consistency to an
entire model. A pose consistent model is globally sur-
face consistent if every pair of views is locally surface
consistent according to the classifier CM?2:

1 ifY ) eve F'(Si, T 5)

<tss (8)
0 otherwise

Cu(G) =

where Vo the set of connected (not necessarily adja-
cent) view pairs in G, and T; ; is the relative pose
computed by compounding transforms along a con-
necting path between n; and n; in G. We use C M2 for
computing global consistency instead of the more ac-
curate C' M 3 because the same surface threshold, tgg,
can be adjusted to accommodate the accumulation of
error from compounding transforms, whereas the dis-
tributions used in C' M3 do not apply to non-adjacent
views.

4.2.3 Model construction algorithm

Using the candidate matches from the surface match-
ing phase, we construct an initial model graph Ggys.
The subgraphs of this graph are the set of all possible
model hypotheses for the given matches, each of which
may be a complete model or a set of partial models.
The model construction algorithm begins with an

empty model graph, G, containing the nodes of Ggps
but no edges, and constructs a consistent model, G, by
sequentially adding edges from Ggps. The algorithm
operates like Kruskal’s algorithm [4] for finding the
minimum spanning tree of a graph except that at each
iteration, an additional check is performed to verify
that the model is globally surface consistent:

1: G Gy

2: for all edges ¢e; ; € Gsa, sorted in increasing or-

der using M3 do
3:  if n; and n; are not connected in G then

4: G —~GuU €4,5

5: if G’ is globally surface consistent (Cps(G"))
then

6: GG

Initially, G represents N partial models. Whenever
a new edge is successfully added to G, two partial
models are joined. Eventually, the algorithm either
finds a spanning tree of Gy, resulting in a complete
model, or the list of candidate matches is exhausted,
resulting in a set of partial models. Step 3 restricts G

Figure 5: The hand-held modeling application — a 3D
model is automatically constructed from scans of an
object held in the user’s hand.

to be a forest, ensuring pose consistency at each iter-
ation, while step 5 ensures the model’s global surface
consistency by checking the local surface consistency
of all connected pairs.

Since our model construction algorithm outputs a
tree (or a forest), accumulation of errors may lead to
visible gaps between overlapping surfaces. Therefore,
we apply measure M1 to all view pairs to find all over-
lapping regions and perform multi-view registration
[13]. Finally, the surfaces are merged to form a com-
pleted model using a mesh integration algorithm [5].

5 Hand-held modeling example

We demonstrate automatic modeling with an appli-
cation called hand-held modeling, which would not be
possible without automatic modeling. For this appli-
cation, an object is held in the user’s hand while range
images are obtained from various directions (Figure 5).
This is an exceedingly easy method for collecting data,
requiring no specialized hardware or training and only
about five minutes to scan an average object. Alter-
nately, the model can be placed on a table during each
scan, or a portable scanner can be moved around while
the scene remains stationary. Once scanning is com-
plete, the range images are passed to our automatic
modeling software, which then produces a 3D model
of the object with no manual intervention.

In our experiments, we use a Minolta Vivid 700
laser scanner. A black background and glove allow
simple, automatic segmentation of the background by
thresholding the intensity image. We scanned 17 range
images of a sitting angel (Figure 6). Pair-wise registra-
tion resulted in a set of 111 matches (35 correct and
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Figure 6: Two views of the output of the model con-
struction algorithm (a-b), and the model after multi-
view registration (c)

76 incorrect), which was reduced to 44 matches (34
correct and 10 incorrect) by the local consistency test
CM3. Using these matches, the model construction
algorithm produced the model shown in figure 6a-b,
which is qualitatively correct. Some error in registra-
tion is visible (inset), but multi-view registration elim-
inates these gaps (Figure 6¢c. Figure 7 shows several
other automatically created models.

6 Discussion and future work

We have identified several aspects of our automatic
modeling method to be further developed. Figure 7d
shows an example of a model that contains a single in-
correct match. Although obviously wrong, the model
is actually consistent according to our global consis-
tency test (eq. 8). This situation could be avoided
with an enhanced test that considered OSV’s as well
as FSV’s. Detecting OSV’s requires a more sophisti-
cated sensor model than FSV’s because surfaces may
go undetected for a number of reasons (e.g., the sur-
face is out of sensor range or the normal is too oblique
to viewing direction).

We can improve the model construction step by
integrating the discrete and continuous optimization
processes and by using stochastic methods to promote
robustness. A trace of the model construction algo-

€Y ' (b)

Figure 7: Examples of other correct models (a-c) and
an instance where the construction algorithm made a
single error (d).

rithm for the example in figure 7d revealed that the
incorrect match was added in the last iteration. A
correct match was actually considered earlier in the
process but was rejected because the accumulation of
relative pose errors made the resulting model incon-
sistent. This situation can be prevented by perform-
ing multi-view registration on the partial models at
each iteration of model construction. Still, an incor-
rect match may be locally more consistent than the
best remaining correct match, and our algorithm will
choose the incorrect match. This problem can be ad-
dressed in two ways. One is to incorporate backtrack-
ing into the sequential algorithm, effectively turning
it into a depth first search of the space of all spanning
trees. However, it may be necessary to search nearly
the entire space of spanning trees if the search chooses
an incorrect edge early in the process. A second solu-
tion is to turn to a stochastic algorithm.

We have investigated using a RANSAC algorithm,
in which spanning trees are randomly sampled from
Gy and then evaluated using the model consistency
test. Unfortunately, an enumeration of spanning trees
reveals that even for a graph containing mostly correct
matches, the chances of randomly selecting a correct
spanning tree are extremely small. For the model in
figure 7b, the odds are 1 in 64,000 and would require
200,000 independent trials for a 95% chance of success.
Our next step is to experiment with other stochastic



methods such as simulated annealing. The current
algorithm could be used to generate a starting solution
for such methods.

Finally, we must address the issue of view selec-
tion. To scale automatic modeling to a large number
of views, we need to be selective about which view
pairs we attempt to register. One approach is to use
information inherent in each view to sort the views
based on the likelihood of a successful match or to
partition into groups that are likely to match with
each other.

7 Conclusion

We have presented a method for automatically con-
structing a 3D model from a set of range images. The
procedure uses a combination of discrete and continu-
ous optimization methods to construct a globally con-
sistent model from a set of pair-wise registration re-
sults. Throughout the modeling process, we use sev-
eral local consistency measures, including two tests
based on visibility consistency and one based on over-
lap distance. We demonstrated the practicality of our
modeling procedure by automatically constructing 3D
models for a number of objects.
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