
HAL Id: lirmm-00363724
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00363724v1

Submitted on 24 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Modular Memory BIST for Optimized Memory
Repair

Philipp Öhler, Alberto Bosio, Giorgio Di Natale, Sybille Hellebrand

To cite this version:
Philipp Öhler, Alberto Bosio, Giorgio Di Natale, Sybille Hellebrand. A Modular Memory BIST
for Optimized Memory Repair. IEEE Computer Society. IOLTS: International On-Line Testing
Symposium, Jul 2008, Rhodes, Greece. 14th International On-Line Testing and Robust System Design
Symposium, pp.171-172, 2008, �10.1109/IOLTS.2008.30�. �lirmm-00363724�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00363724v1
https://hal.archives-ouvertes.fr

A Modular Memory BIST for Optimized Memory Repair

Philipp Öhler1, Alberto Bosio2, Giorgio Di Natale2, and Sybille Hellebrand1

1University of Paderborn, Germany
2LIRMM, University of Montpellier, France

{oehler, sybille.hellebrand}@upb.de, {alberto.bosio, giorgio.dinatale}@lirmm.fr

Abstract

An efficient on-chip infrastructure for memory test

and repair is crucial to enhance yield and availability
of SoCs. Most of the existing built-in self-repair solu-
tions reuse IP-Cores for BIST without modifications.
However, this prevents an optimized test and repair
interaction. In this paper, the concept of modular
BIST for memories is introduced, which supports a
more efficient interleaving of test and repair and can
be achieved with only small modifications in the BIST
control.

1. Introduction

Today system-on-chips (SoC) embed several hun-
dreds of different memory cores occupying more than
90% of the SoC chip area. The yield of the entire
system is therefore dominated by the memory yield.
Memory test and repair capabilities are provided to
check the functionality of the memory cores and to
increase yield. In the presence of manufacturing de-
fects, redundant elements can replace the failing parts
of the memory array [1].

Various built-in self-repair (BISR) schemes have
been developed [2, 3, 4]. In most of these schemes
test and repair coexist. Meanwhile, implementing a
memory BIST is possible by using intellectual prop-
erty (IP) cores or by relying on automated generation
flows of CAD tools. Memory repair requires the ex-
act failure information in the cell array, and most
repair schemes are flexible in the sense that any
march-like test can be used for failure retrieval. Thus
the memory BIST cores can be integrated into a test
and repair infrastructure without any modification.

The integrated test and repair approach presented
in [4] supports an optimal built-in self-repair for
memories with redundant rows and columns (“2D
redundancy”). The scheme interleaves test and repair
analysis to avoid large failure bitmaps. Moreover, it

Part of this research has been performed within the framework of
the DFG grant DIADEM (HE 1686/2-1).

follows a depth first strategy for traversing the binary
tree for spare allocation. This supports a hardware
implementation scaling well with the number of
spares. However, backtracking in the search tree re-
quires a restart of the complete test. A more detailed
analysis shows that repeating the complete the test
may lead to an unnecessarily high increase in test
time. To overcome this problem, the concept of a
modular march test is introduced in this paper.

2. The Modular Test Strategy

The interleaved test and repair scheme in [4]
makes repair decisions as soon as faults are detected
during test. The nodes in the search tree for the best
repair configuration correspond to detected faults
while the edges represent repair decisions (row or
column). Backtracking is necessary when a chosen
path cannot provide a solution or to prove that an
already found solution is optimal. In Figure 1 an ex-
ample is given.

Figure 1: Partial search tree during repair

analysis

The information attached to node x shows that a
fault at address a(x) has been detected, and the edge
(x, y) indicates a row repair. If backtracking to node x
occurs, then the test is restarted to determine the re-
maining faults for the alternative repair decision
using a column. This avoids the need for large failure
bitmaps, but a complete restart after each backtrack
implies a high time penalty.

If a march test with march elements M0, ..., Mn is
used, then the information during which march ele-
ment a fault has been detected can help to reduce the
overall test and repair time. In Figure 1, the fault at
node x has been detected during march element Mi,

14th IEEE International On-Line Testing Symposium 2008

978-0-7695-3264-6/08 $25.00 © 2008 IEEE

DOI 10.1109/IOLTS.2008.30

171

14th IEEE International On-Line Testing Symposium 2008

978-0-7695-3264-6/08 $25.00 © 2008 IEEE

DOI 10.1109/IOLTS.2008.30

171

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 24, 2009 at 06:03 from IEEE Xplore. Restrictions apply.

and this suggests to restart the test after the detection
of the fault at address a(x).

To exploit this idea properly, it must be taken into
account that fault detection in march tests usually re-
quires initialization and sensitization in earlier march
elements [5]. As the initialization and sensitization
conditions may have been overwritten during the pre-
vious search, the respective march elements have to
be repeated, too. If initialization starts with march
element Mk, k < i, then it is even sufficient to work
with a “lightweight” version Mk* of Mk, which only
contains the memory operations for initialization.
Mk* can easily be compiled from the fault detection
profiles of the algorithms and the considered fault
models. The hardware implementation requires only
small modifications of the test and repair control.

3. Experiments and Results

The same experimental set-up as in [4] has been
used to analyze two different fault sets: set(a), which
contains stuck-at faults, and set(b), which consists of
stuck-at faults, transition faults, and coupling faults.
Accordingly, two different march tests have been
applied: the March X algorithm for set(a) and the
March C- algorithm for set(b) [5]. The results are
shown in Table 1.

Column one lists the number of randomly injected
faults. The next two columns detail the results for
March X and March C-. For each algorithm the aver-
age number of backtracks in the search tree (test re-
starts) is given in the first sub-column. The overall
number of memory operations exercised during test
and repair is shown in the second sub-column for the
original proposal in [4]. The third sub-column shows
the number of memory operations needed for the
modular test strategy proposed in Section 2. Finally,
sub-column four shows the ratio between both strate-

gies. Please note that the entries in sub-columns 1 to
3 are average numbers from 1000 experiments as
described above.

The results are interesting in two ways. Firstly, for
a small number of defects when only a few restarts
are needed, the modular strategy provides only a
small improvement. For a larger number of defects,
when the search gets more complex, the number of
exercised memory operations is reduced to approxi-
mately 70 % of the original solution in [4]. Secondly,
when the test algorithm gets more complex, then the
achievement is even better in most cases.

4. Conclusions

In this paper, modular memory testing has been
introduced as a strategy for an improved test and re-
pair interaction. Combined with the integrated test
and repair approach described in [4], this strategy
helps to considerably reduce the time penalty caused
by backtracks in the search tree for spare allocation.

5. References
[1] Y. Zorian, “Embedded memory test and repair:
infrastructure IP for SOC yield,” Proc. IEEE Int. Test Conf.
(ITC’02), 2002, pp. 340–349.
[2] C.-T. Huang, et al., “Built-in redundancy analysis for
memory yield improvement,” IEEE Trans. on Reliability,
Vol. 52, pp. 386–399, Dec. 2003.
[3] T. Kawagoe, et al., “A built-in self-repair analyzer
(CRESTA) for embedded DRAMs,” Proc. IEEE Int. Test
Conf. (ITC’00), 2000, pp. 567–574.
[4] P. Öhler, et al., “An Integrated Built-in Test and Repair
Approach for Memories with 2D Redundancy,” Proc. 12th
European Test Symp. (ETS’07), 2007, pp. 91-96.
[5] A. J. van de Goor, “Testing Semiconductor Memories:
Theory and Practice,” ComTex Publishing, 1998.

Table 1: Experimental Results for Optimal Memory Repair

March X - set(a) March C- set(b)

Defects
Test

restarts
#OP

original
#OP

modular
Modular/
Original

Test
restarts

OP
original

OP
modular

Modular/
Original

1 1.185 6.650 6.442 0.969 1.185 10.446 10.446 1.000
2 3.601 16.370 13.842 0.846 3.601 21.458 21.320 0.994
3 9.627 40.740 30.358 0.745 9.627 44.238 40.114 0.907
4 16.364 67.518 49.636 0.735 16.364 87.788 76.260 0.869
5 18.065 74.340 48.068 0.647 18.065 134.012 84.920 0.634
6 32.307 126.796 84.114 0.663 32.307 210.000 142.136 0.677
7 49.278 187.816 129.500 0.690 49.278 287.560 200.927 0.699
8 62.830 235.708 157.808 0.670 62.830 372.054 264.211 0.710
9 76.926 273.414 195.170 0.714 76.926 485.338 341.234 0.703
10 75.073 292.866 176.178 0.602 75.073 630.338 344.206 0.546
11 68.164 242.246 178.316 0.736 68.164 478.016 345.096 0.722
12 57.454 212.256 159.666 0.752 57.454 390.848 304.760 0.780

172172

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 24, 2009 at 06:03 from IEEE Xplore. Restrictions apply.

