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Abstract 

 
An efficient on-chip infrastructure for memory test 

and repair is crucial to enhance yield and availability 
of SoCs. Most of the existing built-in self-repair solu-
tions reuse IP-Cores for BIST without modifications. 
However, this prevents an optimized test and repair 
interaction. In this paper, the concept of modular 
BIST for memories is introduced, which supports a 
more efficient interleaving of test and repair and can 
be achieved with only small modifications in the BIST 
control. 
 
1. Introduction 

Today system-on-chips (SoC) embed several hun-
dreds of different memory cores occupying more than 
90% of the SoC chip area. The yield of the entire 
system is therefore dominated by the memory yield. 
Memory test and repair capabilities are provided to 
check the functionality of the memory cores and to 
increase yield. In the presence of manufacturing de-
fects, redundant elements can replace the failing parts 
of the memory array [1]. 

Various built-in self-repair (BISR) schemes have 
been developed [2, 3, 4]. In most of these schemes 
test and repair coexist. Meanwhile, implementing a 
memory BIST is possible by using intellectual prop-
erty (IP) cores or by relying on automated generation 
flows of CAD tools. Memory repair requires the ex-
act failure information in the cell array, and most 
repair schemes are flexible in the sense that any 
march-like test can be used for failure retrieval. Thus 
the memory BIST cores can be integrated into a test 
and repair infrastructure without any modification. 

The integrated test and repair approach presented 
in [4] supports an optimal built-in self-repair for 
memories with redundant rows and columns (“2D 
redundancy”). The scheme interleaves test and repair 
analysis to avoid large failure bitmaps. Moreover, it 
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follows a depth first strategy for traversing the binary 
tree for spare allocation. This supports a hardware 
implementation scaling well with the number of 
spares. However, backtracking in the search tree re-
quires a restart of the complete test. A more detailed 
analysis shows that repeating the complete the test 
may lead to an unnecessarily high increase in test 
time. To overcome this problem, the concept of a 
modular march test is introduced in this paper. 
 
2. The Modular Test Strategy 

The interleaved test and repair scheme in [4] 
makes repair decisions as soon as faults are detected 
during test. The nodes in the search tree for the best 
repair configuration correspond to detected faults 
while the edges represent repair decisions (row or 
column). Backtracking is necessary when a chosen 
path cannot provide a solution or to prove that an 
already found solution is optimal. In Figure 1 an ex-
ample is given.  

 
Figure 1: Partial search tree during repair 

analysis 

The information attached to node x shows that a 
fault at address a(x) has been detected, and the edge 
(x, y) indicates a row repair. If backtracking to node x 
occurs, then the test is restarted to determine the re-
maining faults for the alternative repair decision 
using a column. This avoids the need for large failure 
bitmaps, but a complete restart after each backtrack 
implies a high time penalty.  

If a march test with march elements M0, ..., Mn is 
used, then the information during which march ele-
ment a fault has been detected can help to reduce the 
overall test and repair time. In Figure 1, the fault at 
node x has been detected during march element Mi, 
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and this suggests to restart the test after the detection 
of the fault at address a(x).  

To exploit this idea properly, it must be taken into 
account that fault detection in march tests usually re-
quires initialization and sensitization in earlier march 
elements [5]. As the initialization and sensitization 
conditions may have been overwritten during the pre-
vious search, the respective march elements have to 
be repeated, too. If initialization starts with march 
element Mk, k < i, then it is even sufficient to work 
with a “lightweight” version Mk* of Mk, which only 
contains the memory operations for initialization. 
Mk* can easily be compiled from the fault detection 
profiles of the algorithms and the considered fault 
models. The hardware implementation requires only 
small modifications of the test and repair control. 

 
3. Experiments and Results 

The same experimental set-up as in [4] has been 
used to analyze two different fault sets: set(a), which 
contains stuck-at faults, and set(b), which consists of 
stuck-at faults, transition faults, and coupling faults. 
Accordingly, two different march tests have been 
applied: the March X algorithm for set(a) and the 
March C- algorithm for set(b) [5]. The results are 
shown in Table 1. 

Column one lists the number of randomly injected 
faults. The next two columns detail the results for 
March X and March C-. For each algorithm the aver-
age number of backtracks in the search tree (test re-
starts) is given in the first sub-column. The overall 
number of memory operations exercised during test 
and repair is shown in the second sub-column for the 
original proposal in [4]. The third sub-column shows 
the number of memory operations needed for the 
modular test strategy proposed in Section 2. Finally, 
sub-column four shows the ratio between both strate- 

gies. Please note that the entries in sub-columns 1 to 
3 are average numbers from 1000 experiments as 
described above. 

The results are interesting in two ways. Firstly, for 
a small number of defects when only a few restarts 
are needed, the modular strategy provides only a 
small improvement. For a larger number of defects, 
when the search gets more complex, the number of 
exercised memory operations is reduced to approxi-
mately 70 % of the original solution in [4]. Secondly, 
when the test algorithm gets more complex, then the 
achievement is even better in most cases.  

 
4. Conclusions 

In this paper, modular memory testing has been 
introduced as a strategy for an improved test and re-
pair interaction. Combined with the integrated test 
and repair approach described in [4], this strategy 
helps to considerably reduce the time penalty caused 
by backtracks in the search tree for spare allocation.  
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Table 1: Experimental Results for Optimal Memory Repair 

March X - set(a) March C- set(b) 

Defects 
Test 

restarts 
#OP 

original 
#OP 

modular 
Modular/ 
Original 

Test 
restarts 

# OP
original 

# OP 
modular 

Modular/ 
Original 

1 1.185 6.650 6.442 0.969 1.185 10.446 10.446 1.000 
2 3.601 16.370 13.842 0.846 3.601 21.458 21.320 0.994 
3 9.627 40.740 30.358 0.745 9.627 44.238 40.114 0.907 
4 16.364 67.518 49.636 0.735 16.364 87.788 76.260 0.869 
5 18.065 74.340 48.068 0.647 18.065 134.012 84.920 0.634 
6 32.307 126.796 84.114 0.663 32.307 210.000 142.136 0.677 
7 49.278 187.816 129.500 0.690 49.278 287.560 200.927 0.699 
8 62.830 235.708 157.808 0.670 62.830 372.054 264.211 0.710 
9 76.926 273.414 195.170 0.714 76.926 485.338 341.234 0.703 
10 75.073 292.866 176.178 0.602 75.073 630.338 344.206 0.546 
11 68.164 242.246 178.316 0.736 68.164 478.016 345.096 0.722 
12 57.454 212.256 159.666 0.752 57.454 390.848 304.760 0.780 
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