
Unsupervised Change Detection in Satellite Images
Using Convolutional Neural Networks

Kevin Louis de Jong
Department of Computer Science

University of Pretoria
Pretoria, South Africa
kevinkatdj@gmail.com

Anna Sergeevna Bosman
Department of Computer Science

University of Pretoria
Pretoria, South Africa

annar@cs.up.ac.za

Abstract—This paper proposes an efficient unsupervised
method for detecting relevant changes between two temporally
different images of the same scene. A convolutional neural
network (CNN) for semantic segmentation is implemented to
extract compressed image features, as well as to classify the
detected changes into the correct semantic classes. A difference
image is created using the feature map information generated by
the CNN, without explicitly training on target difference images.
Thus, the proposed change detection method is unsupervised, and
can be performed using any CNN model pre-trained for semantic
segmentation.

Index Terms—convolutional neural network, semantic segmen-
tation, difference image, change detection

I. INTRODUCTION

Change detection has benefits in both the civil and the
military fields, as knowledge of natural resources and man-
made structures is important in decision making. The focus of
this study is on the particular problem of detecting change in
temporally different satellite images of the same scene.

Current change detection methods typically follow one of
two approaches, utilising either post-classification analysis [1],
or difference image analysis [2]. These methods are often
resource-heavy and time intensive due to the high resolution
nature of satellite images. Post-classification comparison [1]
would first classify the contents of two temporally different
images of the same scene, then compare them to identify
the differences. Inaccurate results may arise due to errors
in classification in either of the two images, thus a high
degree of accuracy is required of the classification. The second
approach, and the one that is followed in this study, is that of
comparative analysis which constructs a difference image (DI).
The DI is constructed to highlight the differences between
two temporally different images of the same scene. Further
DI analysis is then performed to determine the nature of the
changes. The final change detection results depend on the
quality of the produced DI. Since the atmosphere can have
negative effects on the reflectance values of images taken
by satellites, techniques such as radiometric correction [2]
are usually applied in the DI creation. Techniques used to
construct a DI include spectral differencing [3], rationing [4],
and texture rationing [4].

In order to construct an effective DI, a convolutional neural
network (CNN) [5] is used in this study. Deep neural networks

(DNNs) have been used successfully in the past to aid in the
process of finding and highlighting differences, while avoiding
some of the weaknesses of the classic methods [6]. This study
proposes a novel way to detect and classify change using
CNNs trained for semantic segmentation. The novelty of the
proposed approach lies in the simplification of the learning
process over related solutions through the unsupervised ma-
nipulation of feature maps at various levels of a trained CNN
to create the DI.

The main objective of this study is to determine the efficacy
of using the feature maps generated by a trained CNN of two,
similar, but temporally different images to create an effective
DI. Additionally, the proposed method aims to:
• Accurately classify the nature of a change automatically.
• Build a model that is resistant to the presence of noise

in an image.
• Build a visual representation of the detected changes

using semantic segmentation.
The rest of the paper is structured as follows: Section II

discusses relevant CNN architectures for image segmentation.
Section III describes the problem of change detection in
satellite images, the associated challenges, and existing change
detection approaches. Section IV presents the proposed change
detection method. Model hyperparameters and methodology
are presented in Section V. Empirical results are discussed in
Section VI, followed by conclusions and potential topics for
future research in Section VII.

II. CONVOLUTIONAL NEURAL NETWORKS

CNNs have been used effectively in a wide range of
applications associated with computer vision [5]. The name
is derived from the operation that sets CNNs apart from other
neural networks (NNs): the convolution operation. During
training, CNN learns a set of weight matrices, or kernels, that
convolve over an image to extract image features. Given an
n × n input and a k × k kernel, the convolution operation
slides the kernel over the input, and calculates the Hadamard
product for each overlap between the kernel and the input.
Convolving a single kernel with an input image produces
a feature map, i.e. an m × m matrix of activations, where
m = (n − k + 2p)/s + 1, where p is an optional padding
parameter, and s is the stride, or step size used to slide the

ar
X

iv
:1

81
2.

05
81

5v
2

 [
cs

.N
E

]
 2

1
M

ar
 2

01
9

kernel. A feature map captures the presence of a specific
feature across the image by exposing the correlations between
neighbouring pixels. Convolutional layers are collections of
feature maps, which result from applying multiple kernels
to the original image, or previous convolutional layers. Early
convolutional layers extract simple features, such as lines and
edges, whereas later layers extract more complex features
such as shapes, patterns, and concepts. Thus, feature maps
capture a compressed hierarchical representation of the objects
present in the input image. Further compression is achieved
by applying a max pooling operation between convolutional
layers, which reduces the dimensionality of feature maps,
favouring stronger activation signals. The ability to construct
compressed hierarchical image representations makes CNNs
appealing for the purpose of change detection, and semantic
segmentation, discussed in the next section.

A. Convolutional Neural Networks for Semantic Segmentation

Semantic segmentation assigns an object class to each
individual pixel in an image. Semantic segmentation is relevant
to this study, since it can be used to identify the nature of a
detected change. While multiple methods for image segmenta-
tion exist, the focus of this study is on CNN architectures that
can be trained to perform image segmentation. In most modern
CNN architectures for image segmentation, down-sampling for
the purpose of feature extraction is performed, followed by
up-sampling using deconvolutional layers, to construct per-
pixel classification labels [7]. A deconvolution operation is
essentially the transpose of a convolution operation, and works
by swapping the forward and backward passes of a convo-
lution [7]. A typical CNN for image segmentation consists
of a convolutional network, called the encoder, joined to a
symmetrical deconvolutional network, called the decoder [7].
The encoder serves to compress the spatial dimension of the
input image into sets of useful features, while the decoder
expands and extracts these features to build a segmented
representation of the input image. In the present study, the
U-net architecture [8], discussed in the next section, is used
for semantic segmentation.

B. U-net

The encoder in the U-net architecture applies convolutions
followed by max pooling to encode the input image into
feature representations at different levels. U-net uses decon-
volutional layers to up-sample the output of the encoder. In
order to recover object detail better during up-sampling, U-net
copies and concatenates high resolution features from layers in
the encoder path to features in the corresponding layer of the
decoder path. This operation also serves to recover information
on the position of pixels before the image was compressed by
the convolution and the max pooling operations. The decoder
performs up-sampling and concatenation, followed by regular
convolution operations. Figure 1 depicts the U-net architecture
used in this study. The compressed hierarchical representation
of the image captured by the U-net feature maps can be

Fig. 1. U-net architecture used in this study.

subsequently used for unsupervised change detection between
two temporally different images.

III. CHANGE DETECTION

Change detection is the process of identifying the relevant
changes by observing the subject at different times. One
of the major applications of remotely-sensed data obtained
from Earth-orbiting satellites is change detection, because of
repetitive coverage at short intervals, and consistent image
quality [9]. Benefits of change detection in the agricultural
field include monitoring for deforestation, disaster assessment,
monitoring of shifting cultivation and crop stress detection,
among others. In the civil field, change detection can aid in
city planning, while in the military field it can be employed in
gathering intelligence on new military installations, movement
of military forces, and damage assessment.

A. Challenges of Change Detection

Apart from the temporal changes that current methods aim
to detect in satellite images, there are changes that result
from variation in data acquisition parameters. These changes
can manifest in multiple ways, and complicate the process
of finding the relevant changes. The first class of unwanted
change appears in the form of atmospheric features, such as
clouds, dust, and fog. Angles of illumination from the sun can
influence the presence and direction of shadows in a scene,
and may also lead to overexposure of light. Reflectivity of

surfaces such as soil before and after rain, different seasons,
and vegetation growth can also result in change. Thus, a
change detection method has to be able to distinguish between
the irrelevant changes and the changes of interest. Careful data
selection can be employed to exclude unwanted changes. Some
of the irrelevant changes can also be corrected during image
pre-processing using algorithms such as the 6S model-based
algorithm [10], developed by NASA, although these methods
are often computationally expensive and time intensive.

Another source of variance may arise from the translation
and rotation of two images, or from a difference in the angle
at which the images were captured. This can have a significant
effect on the accuracy of a DI unless accounted for. Orthorec-
tification methods [11] can be used to compensate for the
sensor orientation, and consist of geometric transformations
to a mutual coordinate system.

The change detection task can be simplified by performing
semantic segmentation of the input images, and ignoring the
irrelevant classes. Additionally, semantic segmentation can be
used to identify the object class of the detected changes.
However, this presents another costly operation if standard
digital image processing techniques are used, or becomes
labour-intensive if segmentation is done manually. If pre-
liminary segmentation is not done, the object classes of the
detected changes have to be determined either by an automated
classifier, or by visual inspection.

B. Neural Networks for Change Detection

A number of different techniques have been utilised in
recent years to solve the problem of change detection, such
as Markov random fields [12] and principal component analy-
sis [13]. NNs, however, have seldom been considered. One of
the first NN-based change detection systems [14] makes use
of four fully connected layers to classify changes between two
temporally different images. The network accepts input of one
pixel at a time from the two images, and proceeds to classify
the change between the two pixels into k2 different change
combinations, where k is the number of possible classes. A
change map is built by classifying each pixel in the images
in this manner. The use of fully connected layers means that
this solution is computationally expensive, and the fact that
only one pixel is classified at a time implies that features
represented by multiple pixels can not be compared. The
study by Ghosh et al. [15] uses a modified version of the
Hopfield NN in conjunction with traditional DI techniques to
help consider the spatio-contextual information of each pixel.
The NN structure is related to the input dimension of the
image, where each pixel is represented by a neuron. Each
neuron is connected to its neighbouring neurons in order to
model the spatial context of the pixels. This approach yields
fewer connections than in a fully connected architecture, and
considers the spatial correlation of neighbouring pixels.

More recent studies have employed DNNs for change detec-
tion [6], [16]. DNNs have the ability to extract a compressed
hierarchical feature representation of an image, which enables
a meaningful semantic comparison of temporally different

images. In addition, specific DNN architectures such as CNNs
have a significant computational performance advantage over
fully connected NNs.

The study by Chu et al. [6] uses a deep belief network
(DBN) to increase the changed areas and decrease the un-
changed areas in a DI. Their framework consists of two DBNs,
where each DBN learns features from one of two temporally
different images. The input to the two networks is a group of
corresponding pixels of the two images. If the pixels represent
a part of a changed area, then the distance between the two
outputs is minimised, otherwise the distance is maximised.
The final result for change detection makes use of PCA k-
means clustering analysis of the exaggerated DI. Thus, Chu
et al. [6] use a DNN together with other methods to aid
change detection, as opposed to using a DNN for both change
detection and change classification.

Gong et al. [16] make use of unsupervised feature learning
performed by a CNN to learn the representation of the rela-
tionship between two images. The CNN is then fine-tuned with
supervised learning to learn the concepts of the changed and
the unchanged pixels. During supervised learning, a change
detection map, created by other means, is used to represent
differences and similarities between two images on a per-
pixel level. Once the network is fully trained, it is able to
produce a change map directly from two given images without
having to generate a DI. While this approach achieves good
results, it requires the creation of accurate change maps by
other means for each image pair prior to the learning process.
This makes the training of the network an expensive and time
consuming process. Change detection is also formulated as
a binary classification problem, as it only classifies pixels as
changed or not changed, and does not classify the nature of
the change, as the present study sets out to do.

CNNs have been used to augment other methods of change
detection, and to learn the non-linear mapping between the
changed and the unchanged image pairs. The main contri-
bution of this study is the unsupervised use of the feature
maps, generated at different levels of a pre-trained CNN, in
the construction of a DI. The CNN is responsible for detecting
and classifying change, but does not need to explicitly learn the
relationship between image pairs. This simplifies the training
process, as no prior difference maps are required, but rather
the semantically segmented ground truth representations of the
training data. Because the DI is created from the feature maps,
it can be up-scaled using the decoder network into a visual,
semantic representation of the detected changes. The proposed
model is presented in the next section.

IV. PROPOSED CHANGE DETECTION MODEL

The proposed model is based on the U-net [8] architecture
as discussed in Section II-B. The proposed model has two
phases: the training phase and the inference phase.

A. Training Phase

In the training phase, the model behaves exactly like a
U-net, and the given architecture is trained in a supervised

fashion to perform semantic image segmentation. If a pre-
trained U-net model is available, the training phase can be
ommitted.

B. Inference Phase

In the inference phase, the model is modified to accept two
images for the purpose of change detection. The feature maps
at the five levels of the U-net model shown in Figure 1 are
generated and saved for the first image. When the second
image is accepted as input, a DI is created at each of the five
levels using the feature maps of the first and the second image.
The method for DI generation is summarised in Algorithm 1.
The DI is created by first iterating over each corresponding
element of the two feature maps, and calculating the absolute
difference between the corresponding element pairs. When
the absolute difference falls between zero and a threshold
value, the value of the corresponding DI element is set to
zero. Otherwise, the value of the corresponding DI element
is set to the feature map activation generated by the second
image. The assumption made by the model is that the second
image follows the first one temporally, i.e. the second image
captures the most recent state of the observed environment,
and may potentially contain changes. Thus, five DIs of the
same dimensionality as the corresponding feature maps are
generated. The five DIs are then used by the decoder in the
copy and concatenate operation instead of the feature maps
generated by the second image. The output of the model is thus
a semantically segmented, visual rendering of the collective
DIs. The DI generation process for a single convolutional
block is schematically summarised in Figure 2.

Several factors may influence the optimal threshold values,
such as a difference in exposure values between the two
images, or the activation functions used by the model. The
threshold values may also differ at individual levels of the
model. Empirical testing was done to determine effective
threshold values, although a standardised procedure to obtain
the threshold values may be explored in future work. The
empirically obtained threshold values used at each level of
the proposed model are:
• Level 1: 0.4

f ← m×m feature map of image 1
f ′ ← m×m feature map of image 2
DI ← m×m matrix of zeros
θ ← threshold value
for each i ∈ {1, . . . ,m} do

for each j ∈ {1, . . . ,m} do
if |fij − f ′ij | ≤ θ then

DIij = 0
else

DIij = f ′ij
end

end
end
Algorithm 1: Difference Image Generation Algorithm

Fig. 2. Inference phase: two images are processed concurrently for the
purpose of generating the corresponding DI.

• Level 2: 0.6
• Level 3: 0.8
• Level 4: 1.0
• Level 5: 1.2

The optimisation of the threshold parameters will not be
examined in this paper, and is proposed as a subject for future
research.

V. METHODOLOGY

This section discusses the methodology used to conduct
the study. Section V-A lists the CNN model hyperparame-
ters, and Section V-B lists the training algorithm parameters.
Section V-C discusses the dataset used in the experiments.
Section V-D describes the qualitative measures employed to
evaluate the performance of the model.

A. Model Hyperparameters

Figure 1 shows the U-net architecture used in this study.
Hidden layers made use of the leaky ReLU [17] activation
function with the negative slope of 0.2, and the softmax
function was used in the output layer. The input and the
output dimensionality was 320× 320× 3, in accordance with
the chosen dataset, discussed in Section V-C. All convolution
operations in the model had a kernel size of 3 × 3, a stride
of 1, and a padding of 1. All deconvolution operations used
a kernel size of 3 × 3, a stride of 2, and a padding of 0.
Each convolution and deconvolution operation was followed
by batch normalisation [18].

The encoder of the U-net architecture consisted of five
levels. At the first four levels, two convolution operations were

applied, followed by a max pooling operation with a kernel
size of 3×3, a stride of 2, and a padding of 0. At the fifth layer
(bridge), two convolution operations were applied, but no max
pooling operation was applied. The decoder had four levels,
each consisting of one deconvolution operation, followed by
two convolution operations. The final level of the decoder had
a third convolution operation in order to generate the correct
number of channels for the output.

The number of kernels at the first level of the encoder was
64. This number doubled at each subsequent level, reaching a
total of 1024 at the bridge. The number of kernels was halved
at each level of the decoder resulting in 64 at the last level,
before the final convolution operation was applied. The final
convolution operation reduced the number of channels to 3.

B. Training Algorithm Parameters

For the purpose of this study, the adaptive moment estima-
tion (Adam) [19] variation of the gradient descent algorithm
was used to train the model. Adam was chosen since it required
the least amount of parameter tuning. The model was trained
to perform semantic image segmentation with a mini-batch
size of 4, using log loss as the loss function. The model was
trained for 20 epochs with a learning rate of 0.0002.

Note that the training method is irrelevant to the proposed
change detection method. The parameters listed above were
chosen based on their empirically adequate performance. The
authors had limited computing resources, and opted for a
computationally inexpensive solution. Optimising the training
algorithm parameters further may improve the performance of
the proposed change detection method, and is left for future
research.

C. Dataset

The dataset used for all experiments conducted is the
Vaihingen dataset [20], provided by the International Society
for Photogrammetry and Remote Sensing (ISPRS). The dataset
is made up of 33 satellite image segments of varying size,
each consisting of a true orthophoto (TOP) extracted from a
larger TOP mosaic. Of these segments, 16 are provided with
the ground truth semantically segmented images. All images
in the dataset are that of an urban area, with a high density of
man-made objects such as buildings and roads. An example of
an input image together with the corresponding ground truth
image is shown in Figure 3.

All 16 TOP images and their ground truth labels were cut
into smaller squares of 320×320 pixels. All image pixel values
for each colour channel were normalised to have a mean of
0.5 and a standard deviation of 0.5. The training set included
15 TOP images and the corresponding ground truth labels,
while 1 TOP image together with the ground truth was set
aside for testing purposes.

All images in the dataset were segmented per-pixel into
three semantic classes; buildings, immutable surfaces such
as roads and parking lots, and background that included all
other objects that do not belong to the first two classes,
such as vegetation. Since three classes were used, the output

Fig. 3. Example Image and Ground Truth from the Vaihingen Dataset [20]

of the model was set to be a tensor with three channels,
corresponding to the RGB values for a single pixel. The colour
of each output pixel thus represented the confidence of the
model in classifying the pixel as belonging to a specific class.
In order to determine the class that the model finds most likely
for a pixel, the argmax function, which returns the class with
the highest confidence value, was applied to the output tensor.

D. Measures of Accuracy

There are two prediction levels to the proposed change
detection method: firstly, each pixel has to be classified as
changed or unchanged; secondly, the changed pixels have to
be classified as belonging to a particular semantic class. Thus,
two measures of the percentage of correct classification (PCC)
were used in this study: PCC1 and PCC2. PCC1 measures
the accuracy of change detection:

PCC1 =
TP + TN

TP + FP + TN + FN
(1)

where TP refers to true positives, and is the number of
pixels that have been correctly classified as changed; TN
refers to true negatives, and is the number of pixels that have
been correctly classified as unchanged; FP and FN refer to
false positives and false negatives, respectively. This accuracy
measure does not take into account whether the pixels that
have been classified as changed, have also been classified into
the correct semantic class, i.e. buildings, immutable terrain,
or background. An additional measure is thus incorporated to
measure the accuracy of semantic classification of the changed
pixels:

PCC2 =
CC

CC + IC
(2)

where CC refers to correctly classified pixels, and is the
number of pixels that have been classified as belonging to
the correct semantic class; IC refers to incorrectly classified
pixels, and is the number of pixels that have been classified
as belonging to an incorrect semantic class.

VI. EMPIRICAL RESULTS

The success of the proposed change detection method
heavily relies on the ability of the trained model to perform se-
mantic segmentation. The semantic segmentation results of the

model are discussed in Section VI-A. Section VI-B presents
the change detection results obtained with the proposed model.

A. Semantic Segmentation Results

Figure 4 shows an example of an input batch of size 4,
together with the corresponding output produced by the trained
model. Since the pixel values have been normalised, there
was a shift in colours in the input images, as can be seen
in Figure 4. Figure 4 also shows the corresponding output,
where the colour of each pixel is a representation of the
model’s confidence in that pixel belonging to a particular
class. By visual inspection, it is apparent that the model
was effective in recognising the boundaries between different
classes, as well as dealing with shadows. The following colour
to class mapping is used: blue corresponds to buildings; green
corresponds to immutable terrain (roads, driveways, parking
lots); red corresponds to background (vegetation, cars, other).
Colours not listed above, such as yellow, correspond to the
areas where the model was less confident of the correct
semantic class, and predicted multiple classes with different
probabilities.
PCC2, defined in Equation (1), was used to evaluate the

accuracy of the semantic segmentation results. The accuracy
of each class was determined individually, and is presented
in Table I along with the total accuracy. The reported PCC2
values are averages over 10 independent runs.

Table I shows that the best results were achieved at epoch
15, with an average total accuracy of 89.2%. The accuracy
of the model began to decline slightly after 15 epochs, which
suggests that overfitting was taking place. The dataset used
was relatively small, which made it easier for the model
to overfit. Of the three classes, background had the lowest
accuracy on average. The training set contained less pixels
belonging to this class than to the other two classes, which
is likely to have impaired the classification accuracy. Another
reason may be that the background class, which accounts for
all vegetation, had less discernible features for the model to
learn.

(a) Input images

(b) Output images

Fig. 4. Example input images and the corresponding output images produced
by the trained model with a batch size of 4.

TABLE I
PCC2 SEMANTIC SEGMENTATION RESULTS

Epoch Building Surfaces Background Total Std. Dev.
1 67.3 % 62.8 % 58.2 % 62.7 % 3.1 %
5 81.7 % 72.3 % 75.0 % 76.3 % 2.3 %
10 87.5 % 85.7 % 78.4 % 83.9 % 1.7 %
15 92.2 % 88.1 % 86.4 % 89.2 % 1.9 %
16 91.4 % 85.8 % 85.1 % 87.4 % 1.6 %

B. Change Detection Results

Due to the best average generalisation performance ob-
served at epoch 15, the model parameters after 15 training
epochs were used for the purpose of change detection. Since
no temporally different images of the same area were included
in the dataset, changes were simulated by editing the pic-
tures manually. Different percentages of the total pixels were
changed for 20 random images from the test set. Simulated
changes were performed under three different settings: 5%
change, 10% change, and 15% change. Figure 5 shows an
example of the input image pair with simulated change,
together with the output of the proposed model.

The model was able to detect the location of the change
and classify it to the correct semantic class for the majority of
test pairs. Figure 5 shows that the model did not simply detect
the changed pixels, but correctly detected the appearance of
a building, disregarding the superficial (irrelevant) change in
the surrounding foliage. In many cases, including the example
in Figure 5, there were small clusters of pixels being detected
as changed around the general area of the actual change. The
presence of these clusters depended heavily on the specific
threshold values used in the creation of the DIs at each level.
It was discovered that a small threshold value of around 0.4
for the first DI, increasing linearly to around 1.2 for the fifth
and final DI, served to minimise the occurrence of these
clusters. Table II presents the change detection results for
different percentages of total pixels changed. The accuracy
of the detected change (PCC1) as well as the accuracy of
the semantic classification of the change (PCC2) is provided.
Threshold values were kept constant.

Table II shows that the PCC1 and PCC2 values declined
as the percentage of total pixels changed increased. This
behaviour is attributed to greater differences between the
two images inducing greater differences in the feature maps

Fig. 5. Left: Original image, Middle: Simulated image, Right: Change
detection output. The middle image was used as the initial state, the first
image was used as the changed state to simulate the appearance of a man-
made object.

TABLE II
CHANGE DETECTION FOR VARIED DEGREES OF CHANGE AND NOISE

Pixels Changed PCC1 PCC2
5% 91.2 % 93.0 %
10% 88.7 % 91.2 %
15% 87.5 % 90.7 %

Gausian variance PCC1 PCC2
10 91.0 % 92.0 %
20 86.2 % 89.2 %
40 81.5 % 85.4 %

generated at each level of the model. A greater difference in
the feature maps translates to a higher chance for the threshold
value to include unwanted changes, and to exclude significant
changes. In Figure 6, the top middle image represents a
10% change, while the bottom middle image represents a 5%
change. The output for the 10% change was less accurate in
classifying change, which is indicated by the jagged edges and
the presence of small clusters of pixels that lie outside of the
changed area.

To test the robustness of the proposed model, Gaussian noise
of varying degrees was added to the test data. The changed
areas constituted 5% of total pixels in all cases. The noise
was sampled from a Gaussian distribution with a mean of
zero. Three variance settings were tested: 10, 20, and 40.
Noise was applied to every pixel of the image containing
changes in each image pair. Figure 7 shows an example of
the output for the three simulated levels of noise. The average
PCC1 and PCC2 results are also summarised in Table II,
and indicate the robustness of the model for low and moderate
levels of noise. For the variance of 10, the overall accuracy
went down by a slight margin, but increased in some individual
cases. Moderate noise caused a more substantial decrease
in change classification accuracy, as small clusters of pixels
started to appear in different regions. For large amounts of
noise, a degradation in the boundaries of the detected areas
was observed, as shown in the bottom right image in Figure 7.
Larger clusters of pixels, classified as changed, also started to
appear in the regions further removed from the actual changed
area. The resistance to noise at low to moderate noise levels
is likely due to the ability of the CNN architecture to ignore a
degree of noise when constructing a compressed hierarchical
representation of the original image. Large amounts of noise,
however, have a higher likelihood of distorting the extracted
features. The change detection performance may also improve
if the model is trained on a larger, more representative dataset.

It is worth noting that the model performed the worst when
changes were situated on the edge of an image. Figure 8
illustrates that the change detected on the edge of the image
has a jagged outline, and the semantic classification lacks
precision. This is likely a result of the kernel convolving over
fewer data points when at the edge of a feature map. The
performance of the model can potentially be improved by
cutting the high-dimensional satellite images into overlapping
subsets, and combining change detection signals generated by
the overlapping areas.

Fig. 6. Top row: 10% change, Bottom row: 5% change

Fig. 7. Top: Simulated initial state, Bottom: Simulated change. Bottom, Left:
variance of 10, Middle: variance of 20, Right: variance of 40

VII. CONCLUSIONS AND FUTURE WORK

This paper proposed an efficient unsupervised method for
change detection using the feature map information extracted
from related image pairs using a CNN trained for semantic im-
age segmentation. The empirical study confirmed that creating
a DI using the proposed method results in the ability to detect
change with an accuracy of up to 91.2% for small changes.
When low to moderate levels of noise were added to the input
images, the model was still able to accurately identify changed
areas. The model accuracy suffered only when large amounts
of noise were added. Even with a large amount of noise, the
change detection accuracy was above 80%.

Using feature map information for change detection offers
a number of benefits. First of all, the proposed method is
unsupervised, thus there is no need for creating costly training
datasets tailored for change detection. Secondly, using a pre-

Fig. 8. Left: Original image, Middle: Simulated image, Right: Change
detection output. The middle image was used as the initial state, the first
image was used as the changed state to simulate the appearance of a man-
made object.

trained CNN model offers a computationally efficient solution
compared to classic change detection techniques. The ability
of the CNN architecture to extract essential features from the
satellite images makes the proposed approach robust to noise
and insignificant changes. Using the feature maps to produce
a DI allows the decoder network to up-sample the DI to the
dimensions of the original image, and present the detected
changes visually. Detected changes may also be classified into
semantic classes, which provides information on the nature
of the change. The proposed model was able to classify
changed pixels into the corresponding semantic classes with
an accuracy of over 90%. The accuracy of change detection
depends largely on the semantic segmentation effectiveness of
the underlying model, thus a better image segmentation CNN
may yield better change detection results. The performance of
the proposed model is also dependent on the threshold values
used in the creation of the DIs.

A future study can be done to establish an automated
method of choosing the optimal threshold values at each
level of the model for a given context domain. Larger U-net
architectures, as well as other CNN architectures for semantic
segmentation, can be tested for their ability to perform un-
supervised change detection. The dataset used in this study
was very limited, thus testing on larger, more varied datasets
will be an important topic for future research. Testing the
model on real, as opposed to simulated change, is a necessary
step to confirm that the results of this pilot study hold in
more realistic environments. While the noise resistance of
the model was tested, additional experimentation should be
done to test the model’s resistance to angle, translation, and
rotation differences between two images. The ability of the
model to effectively deal with atmospheric changes, and to
create accurate DIs when little to no orthorectification and
radiometric correction is applied, should also be investigated.
Strategies can be explored to decrease the loss of accuracy of
the model at the edges of the image and the feature maps, such
as experimenting with additional filter passes using different
kernel, stride, and padding sizes.

REFERENCES

[1] R. J. Radke, S. Andra, O. Al-Kofahi, and B. Roysam, “Image change
detection algorithms: A systematic survey,” IEEE Transactions on Image
Processing, vol. 14, no. 3, pp. 294–307, 2005.

[2] X. Chen, L. Vierling, and D. Deering, “A simple and effective radio-
metric correction method to improve landscape change detection across
sensors and across time,” Remote Sensing of Environment, vol. 98, no. 1,
pp. 63–79, 2005.

[3] T. L. Sohl, “Change analysis in the United Arab Emirates: an investiga-
tion of techniques,” Photogrammetric engineering and remote sensing,
vol. 65, no. 4, pp. 475–484, 1999.

[4] S. Yang, Y. Li, G. Feng, and L. Zhang, “A method aimed at automatic
landslide extraction based on background values of satellite imagery,”
International Journal of Remote Sensing, vol. 35, no. 6, pp. 2247–2266,
2014.

[5] Y. LeCun, K. Kavukcuoglu, C. Farabet et al., “Convolutional networks
and applications in vision,” in Proceedings of the IEEE International
Symposium on Circuits and Systems, 2010, pp. 253–256.

[6] Y. Chu, G. Cao, and H. Hayat, “Change detection of remote sensing
image based on deep neural networks,” in Proceedings of the Interna-
tional Conference on Artificial Intelligence and Industrial Engineering,
2016, pp. 262–267.

[7] H. Noh, S. Hong, and B. Han, “Learning deconvolution network
for semantic segmentation,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1520–1528.

[8] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Proceedings of the International
Conference on Medical Image Computing and Computer-Assisted Inter-
vention, 2015, pp. 234–241.

[9] A. Singh, “Digital change detection techniques using remotely-sensed
data,” International Journal of Remote Sensing, vol. 10, no. 6, pp. 989–
1003, 1989.

[10] E. F. T. D. Vermote, D. Tanré, J. L. Deuzé, M. Herman, J. J. Morcrette,
and S. Y. Kotchenova, “Second simulation of a satellite signal in the
solar spectrum-vector (6SV),” in 6S User Guide Version 3, 2006, pp.
1–55.

[11] D. Hoja, M. Schneider, R. Muller, M. Lehner, and P. Reinartz, “Com-
parison of orthorectification methods suitable for rapid mapping using
direct georeferencing and RPC for optical satellite data,” in The Inter-
national Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, vol. 37, January 2008, pp. 1617–1624.

[12] M. Gong, L. Su, M. Jia, and W. V. Chen, “Fuzzy clustering with a
modified MRF energy function for change detection in synthetic aperture
radar images,” IEEE Transactions on Fuzzy Systems, vol. 22, pp. 98–
109, 2014.

[13] O. Yousif and Y. Ban, “Improving urban change detection from
multitemporal SAR images using PCA-NLM,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 51, pp. 2032–2041, 2013.

[14] X. Long Dal and S. Khorram, “Remotely sensed change detection based
on artificial neural networks,” Photogrammetric Engineering and Remote
Sensing, vol. 65, pp. 1187–1194, 1999.

[15] S. Ghosh, L. Bruzzone, S. Patra, F. Bovolo, and A. Ghosh, “A context-
sensitive technique for unsupervised change detection based on hopfield-
type neural networks,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 45, pp. 778–789, 2007.

[16] M. Gong, J. Zhao, J. Liu, Q. Miao, and L. Jiao, “Change detection in
synthetic aperture radar images based on deep neural networks,” IEEE
transactions on neural networks and learning systems, vol. 27, no. 1,
pp. 125–138, 2015.

[17] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep
network learning by exponential linear units (ELUs),” in Proceedings of
the International Conference on Learning Representations, 2016, pp.
1–14.

[18] G. Lin, C. Shen, A. Van Den Hengel, and I. Reid, “Efficient piecewise
training of deep structured models for semantic segmentation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 3194–3203.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proceedings of the International Conference on Learning Represen-
tations, 2015, pp. 1–15.

[20] International Society for Photogrammetry and Remote Sensing
(ISPRS). (2018) 2D Semantic Labeling - Vaihingen data.
[Online]. Available: http://www2.isprs.org/commissions/comm3/wg4/
2d-sem-label-vaihingen.html

http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html

	I Introduction
	II Convolutional Neural Networks
	II-A Convolutional Neural Networks for Semantic Segmentation
	II-B U-net

	III Change Detection
	III-A Challenges of Change Detection
	III-B Neural Networks for Change Detection

	IV Proposed Change Detection Model
	IV-A Training Phase
	IV-B Inference Phase

	V Methodology
	V-A Model Hyperparameters
	V-B Training Algorithm Parameters
	V-C Dataset
	V-D Measures of Accuracy

	VI Empirical Results
	VI-A Semantic Segmentation Results
	VI-B Change Detection Results

	VII Conclusions and Future Work
	References

