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Abstract 
Training algorithms suitable to work under imprecise 
conditions are proposed. They require only the alge- 
braic sign of the error function or its gradient to be 
correct, and depending on the way they update the 
weights, they are analyzed as composite nonhear Suc- 
cessive OverRRlaxation (SOR) methods or composite 
nonlinear Jacobi methods, applied to the gradient of 
the error function. The local convergence behavior of 
the proposed algorithms is also studied. The proposed 
approach seems practically useful when training is af- 
fected by technology imperfections, limited precision in 
operations and data, hardware component variations 
and environmental changes that cause unpredictable 
deviations of parameter values from the designed con- 
figuration. Therefore, it may be difficult or impossible 
to obtain very precise values for the error function and 
the gradient of the error during training. 

Introduction 
Softwarebaed feedforward neural networks (FNNs) 
while exploiting the advantage of training by examples, 
are directly affected by numerical imprecision; a com- 
mon problem encountered in numerical simulations. 

The most popular supervised training method, named 
backpropagation algorithm (BP) [12] updates the 
weights using the steepest descent method [a], thus it 
suffers from a slow convergence rate and often yields 
suboptimal solutions. Alternatively, training methods 
originating from the field of numerical analysis such 
as gradient descent [6, 7, 11, 191, nonlinear conjugate 
gradients [14] and second derivative based methods [3] 
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have been proposed. These training algorithms require 
precise error function and gradient values. However, 
in many cases it is difEcult or impossible to obtain 
very precise values for the error function and the gra- 
dient [23]. 

The precision of the arithmetic operations required in 
the numerical simulations of neural networks affects the 
accuracy of the result. All of these operations can be 
severely impacted by imprecision, especially for prob- 
lems that are ill-conditioned even when a high precision 
is used [5]. Moreover, using min i i a t ion  methods for 
training FNNs derivative calculations as well as one- 
dimensional subminimization (in the case of nonlinear 
conjugate gradient methods) and approximations of the 
inverse Hessian (in the case of quasi-Newton and vari- 
able metric methods) are required. A detailed analysis 
on the sources of imprecision involved in this kind of 
computations is presented in [3, 41. A crucial factor of 
imprecision is the evaluation of the sigmoid activation 
function [23]. This function is calculated using a poly- 
nomial approximation which implies that numerical ac- 
curacy constraints are introduced in the calculation of 
the error value. In the special w e  of FNN applica- 
tions with a very large number of patterns, the errors 
involved due to the imprecision in the computation of 
the batch error measure gradient may be comparable 
to the gradient itself. 

In general, the rounding off error is one serious source 
of imprecision in the error function value E and its gra- 
dient. When this type of error is generated during the 
calculation of the sum of the weighted inputs of each 
neuron, it is not crucial due to the characteristics of 
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the sigmoid neuron model. However, when the error 
occurs during the calculation of the backpropagating 
error term I121 is very crucial and can lead to noncon- 
vergence and saturation [ll]. Despite the fact that the 
error associated with a neuron can be significant, the 
backpropagating error term may become negligible and 
rounded to zero if the derivative of the activation func- 
tion is very small. In this case weight adaptation is not 
possible although there is a large value of error. 

A similar to saturation phenomenon occurs when sec- 
ond derivative based training methods are used. In this 
case, problematic situation occurs when the Hessian is 
not positive definite, as well as when it is ill-conditioned 
or singular (see [3] for simulations on these kind of prob- 
lems). Moreover, in various small and large scale FNN 
applications the error surface has flat regions. This 
results in the evaluation of imprecise gradient values 
which afEects all training methods that use fist deriva- 
tives in case we are far from the minimum. 

Imprecision is also encountered when the partial deriva- 
tive of error function E with respect to the ith weight 
is approximated using for example forward-differences: 

&E(w) 21 [ E(w +pert - e,) - E(w)] /pmt ,  (1) 

where pert is a small quantity and e, denotes the ith 
column of the identity matrix. This approach has been 
used by several researchers as an alternative to the gen- 
eration of derivatives using the backpropagation chain 
rule [12], because only forward operations of the FNN 
can give the weight updates. As reported in [4], trun- 
cation error as a consequence of the neglected terms 
in the Taylor series, condition or cancellation error due 
to imprecise values of E, and rounding off errors are 
introduced in this case. 

The above mentioned problematic situations, as well as 
those encountered in neural network training for em- 
bedded control applications and in the implementation 
of neural networks with hardware to carry out the train- 
ing on-chip, can be handled, at least in part, by devel- 
oping training algorithms that can take into consider- 
ation that the error function and gradient values are 
known only imprecisely. The training algorithms intre 
duced in this contribution proceed solely with the min- 
imal information of the gradient of the error function, 
which is the algebraic sign and allow using a different 
adaptive learning rate for each weight. Depending on 
the way they update the weights, they are analyzed as 
composite nonlinear Successive OverRelaxation (SOR) 
methods or composite nonlinear Jacobi methods (com- 
posite SOR and Jacobi methods are used for the nu- 
merical solution of a system of nonlinear equations), 

applied to the gradient of the error function. The 10- 
cal convergence behavior of the proposed algorithms 
is also studied. To guarantee the convergence of the 
algorithms, when the initial weights are away from a 
minimizer, stabilization techniques are suggested. 

The Composite Nonlinear Jacobi and 
SOR Methods 

It is well known that all the local minima w' of the er- 
ror function E ,  when the activation functions used are 
continuously differentiable, satisfy the necessary condi- 
tions: 

Eq. (2) represents a set of n nonlinear equations which 
must be solved to obtain w'. Therefore, one approach 
to the minimization of the error function E is to seek 
the solutions of the set of Eq. (2) by including a prO- 
vision to ensure that the solution found does indeed 
correspond to a local minimum. This is equivalent to 
solving the following system of equations: 

V E ( w * )  = 8" = (O,O,. . . ,O). (2) 

(3) 

The nonlinear Jacobi scheme and its 
convergence 

The class of nonlinear Jacobi methods is widely used 
for the numerical solution of System (3). These meth- 
ods are considered as parallel ones since they apply a 
parallel update of the variables [SI. Starting from an 
arbitrary initial weight vector W O  E D, one can submin- 
imize at the kth epoch the function: 

along the ith direction and obtain the corresponding 
subminimizer di. Obviously for the subminimizer d, 

&E(w,~ ,  . . . , W ~ - ~ , C ; ,  ~ : + : + 1 , .  . . , w:) = 0. (5) 
This is a one-dimensional subminimization because all 
other components of the weight vector, except the ith, 
are kept constant. Then the ith weight is updated ac- 
cording to the equation: 

for some relaxation factor Tk.  The error function in (4) 
is subminimized in parallel for all i. 

Depending on the applied one-dimensional minimiza- 
tion method various composite nonlinear Jacobi train- 
ing algorithms can be obtained. It is worth noticing 
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that the number of the iterations of the subminimiza- 
tion method is related to the requested accuracy in ob- 
taining the subminimizer approximations. Thus, sig- 
nificant computational ef€ort is needed in order to find 
very accurate approximations of the subminimizer in 
each weight direction at each epoch. Moreover, this 
computational effort is increased for FNNs with sev- 
eral hundred weights. On the other hand, it is not 
certain that this large computational effort speeds up 
the minimization process for nonconvex functions when 
far from a minimizer w*. Thus, we propose to obtain 
2i)i by minimizing the function (4) with one iteration of 
a minimization method. Note that this practice is also 
suggested for the iterative solution of nonlinear equa- 
tions [8]. 

The convergence analysis is developed under appropri- 
ate assumptions and provides useful insight into the 
new class. The objective is to show that there is a 
neighborhood of a minimizer of the error function for 
which convergence to the minimizer can be guaranteed. 

Theorem 1: Let E :  D c R" + R be twice continu- 
ously differentiable in an open neighborhood SO c D 
of a point w* E 9 for which VE(w*) = 8" and the 
Hessian, H(w*) is positive definite with the property 
A". Then there exists an open ball S = S(W*, r )  in SO 
(where S(w*, T )  denotes the open ball centered at w* 
with radius r), such that any sequence {wk}g0 gener- 
ated by the nonlinear Jacobi process converges to w* 
which minimizes E. 

Proof: Clearly, the necessary and sufficient conditions 
for the point w* to be a local minimizer of the function 
E are satisfied by the hypothesis VE(w*) = 8" and the 
assumption of positive definitiveness of the Hessian at 
w*. Finding such a point is equivalent to solving iter- 
atively, in parallel, System (3) by applying the nonlin- 
ear Jacobi process and employing any one-dimensional 
method for the subminimization process. 

Consider the decomposition of H(w*) into its diagonal, 
strictly lower-triangular and strictly upper-triangular 
parts: 

H(w*) = D(w*) - L(w*) - LT(w*). (7) 

Since, H(w*) is symmetric and positive definite, then 
D(w*) is positive definite [18]. Moreover, since H(w*) 
has the property A", the eigenvalues of 

@(w*) = D(w*)-l [L(w*) + LT(w*)] , 
are real and p(@(w*)) < 1 [l] (where p(A) indicates the 
spectral radius of the matrix A); then there exists an 
open ball S = S(w*, r) in SO, such that, for any initial 

weight vector WO E S, there is a sequence {wk}go c S 
which satisfies the nonlinear Jacobi process such that 
limk+a, wk = w* [8]. Thus the Theorem is proved. 

Remark 1: The matrix A has the property A" if A 
can be permuted by PAPT into a form that can be 
partitioned into block-tridiagonal form [l]. For an al- 
gorithm which transforms a symmetric matrix to tridi- 
agonal form see [15, p.3351. 

The nonlinear SOR scheme and its convergence 

Starting from an arbitrary initial weight vector WO E D, 
the nonlinear SOR scheme subminimizes at the kth 
epoch the function: 

E(w:+', . . . , w!?:, ~ i ,  ~ i + ~ ,  k . . . , w:), (8) 

along the ith direction and obtain the corresponding 
subminimizer 6i. Again in this case, the ith weight 
is updated according to Eq. (6). The main difference 
from the corresponding Jacobi's approach is that the 
adaptation of the weight wi at the kth epoch takes into 
consideration all the previously updated weights of the 
same epoch. The corresponding convergence result of 
the nonlinear SOR scheme is as follows: 

Theorem 2: Let E:D c IR" + R be twice continu- 
ously differentiable on an open neighborhood SO C 2) 
of a local minimizer W* E D. Then there exists an open 
ball S = S(w*, r )  in So such that the sequence {wk} 
generated by the nonlinear SOR scheme converges to 
the point w*. 

Proof. Since w* is a local minimizer of E, VE(w*) = 0 
and H(w*) is positive demte.  Clearly, finding such a 
point is equivalent to obtaining the corresponding so- 
lution w* E 2) of System (3) by applying the nonlinear 
SOR. Suppose now that: 

@T (w*) = [D(w*)-TL(W*)]-' [ (I-T)D(W*) +TLT (w*)] 

for T E (0,2) where D and L are defined as in Eq. (7). 
Now, since H(w*) is symmetric and positive definite 
then, D(w*) is nonsingular [18, p.801. Now, by virtue 
of Ostrowski Theorem [18, p.771, P(@~(w*)) < 1 for 
any T E (0,2) and therefore, by the nonlinear SOR the- 
orem [8, p.3261, there exists an open ball S = S(w*, r )  
in So, such that, for any WO E S, there is a unique 
sequence {w"} C S that satisfies the nonlinear SOR 
prescription such that h n k + a ,  W" = w*. Thus the The- 
orem is proved. 

Sign-based Training Algorithms 
Below we synthesize sign-based adaptive learning rate 
algorithms. These algorithms employ a different learn- 
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ing rate for each weight based on onedimensional 
methods. We propose the following training methods 
named m-step Jacob; bisection and m-step SOR bisec- 
tion which update the weights utilizing the iterative 
scheme (6). The first method computes 6i of (6) in the 
interval (ai, bi) (see below Relations (12)-(13)) using 
the sequence defined as follows [20, 211: 

6;+l = + Csgna,E(%;) /2*', p = 0,1, .  . . , (9) 

z; = (wf , . . . , &, q, wf+lf. . . ,tu:), 

where C = sgn&E(z;)hi, 

(10) 
(11) .; = (wl k f . . . , w:-l, ai, . . . f wk), 

6; = a,, hi = bi - ai and where sgn dehes  the well 
known triple valued sign function. The iterations (9) 
converge to 6i E (a,, b,) if for some 4, p = 1,2, .  . . , 
the following holds: 

SgnaaE(wO) sgnd,E(d) = -1. 

To ensure that 6i is a subminimiier along the ith 
weight direction, we choose the endpoints a, and bi in 
such a way that at the left endpoint ai, the ith com- 
ponent of the gradient vector has negative value, or, at 
the right endpoint bi, the ith component of the gradi- 
ent vector has positive value. To fulfill this condition 
the endpoints are chosen by the following relation: 

ai = wf - - { 1 + sgn 8;E(wE)}  hi - sgn & E ( W ~ ) E ,  (12) 
1 
2 

bj = ai + hi, (13) 

where E is a small positive number. The maximum 
number m of the iterations of the sequence (9) which 
are required to obtain an approximate minimizer wz 
at each epoch along the ith direction is related to a 
predefined accuracy 6 E (0,l)  and it is given by: 

where (-1, defines the ceiling function. 

Thus, in the weight update equation (6) the parameter 
tiji is the approximation of the subminimizer obtained 
by (9). 

The second proposed m-step SOR bisection method is 
similar to m-step Jacobi bisection method and it is for- 
mulated by replacing Relations (10) and (11) with the 
following ones: 

z; = (tu:+', . . . , wfz:,@, 
Z; = (~:+l ,  . . . , ~f: : ,a i ,  ~ i k , ~ ,  . . . , w:), 

. . , w:), (15) 
(16) 

To alleviate the calculations of the signs of the gradi- 
ent values in (9) we propose the alternative sequence 
{$p}gl: 

= e + Csgn(E(z;) -E(.$)) /2p+1, (17) 

where zp, zg are computed by means of (10)-(11) 
or (15)-(16), C = sgn(E(ai) - E(wf))hi, hi = b, - a,, 
and Z: = ai + hi/2. 

Suppose that the sequence (17) converges to a 6: then 
the final approximation to 6, is given by: 

(18) 6. 8 - - 6: + 7 k  (6q -5:) , 

for some relaxation factor ^/k .  

Also, the sign of the gradient in Relation (12) can be 
computed as follows (cf. (1)): 

s g n a i ~ ( w k )  = s g n ( ~ ( w k  + Eei) - ~ ( w k ) ) .  

The signs of the error function values or its gradient val- 
ues in the iterative schemes (9), (17) can be achieved 
by solely comparing the relative sizes of the error func- 
tion values. Thus, the corresponding methods based on 
these frameworks are able to cope with imprecisions or 
noisy error function values. 

Obviously the above procedures handle n-dimensional 
problems using reduction to simpler one-dimensional 
equations. For convergence properties of the above 
methods see [22]. It is evident from the sequence (17) 
that the only computable information required by these 
methods is the algebraic signs. So, rounding and quan- 
titative errors, causing, in simulations, imprecise func- 
tion values, cannot affect its convergence as long as 
the signs are preserved. In addition, storage require- 
ments regarding gradient are minimized. Furthermore, 
Sequence (17) is a global convergence method, it al- 
ways converges within the given interval, it is optimal 
[13], i.e., it possess asymptotically the best rate of con- 
vergence and it has a known behavior concerning the 
number of iterations required to obtain a root with a 
predetermined accuracy 6 (cf. Relation (14)). 

Simulation results 
To evaluate the performance of the algorithms we have 
tested the sign-based m-step SOR-modified bisection 
method (Alg-1) against several popular batch train- 
ing methods. We have also tested the sign-based one- 
step SOR-Rprop method (Alg-2). This method com- 
bines the SOR with the update formula of the Rprop 
method [lo], instead of the bisection. Additionally, 
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for the (Alg-1) and (Alg-2) methods an Armijo line 
search [2, 91 has been performed along the direction 
determined by the weights wk and wk+l of two consec- 
utive epochs. 

Parameter y in (18) had fixed value y = 0.5 for all simu- 
lation experiments. In the tables summarizing the sim- 
ulation results, the reported parameters are: PEFE the 
mean number of the error function evaluations; UEFE 
the standard deviation of the error function evalua- 
tions; PASE the mean number of the algebraic signs 
evaluations; UASE the standard deviation of the alge- 
braic sign evaluations; and % the percentage of success. 

The XOR problem 

The four XOR [12] patterns are classified into (0,l) us- 
ing a simple FNN architecture consisting of two linear, 
unity-gain input neurons with biases set to zero, and 
three neurons (two hidden, one output) of sigmoid ac- 
tivation model with biases to be learned. The weights 
for all methods are initialized in [-lo, lo]. The step- 
size for the BP, the momentum BP (MBP) [6], and the 
adaptive BP (ABP) [19] is set to the classical value of 
0.75. The goal is an E < 0.04 within 600 epochs and 
1000 simulations have run. The results are shown in 
Table 1. 

Ipable 1: Results for the XOR problem. 
Method PEFE ~ E F E  PASE CASE % 

24 BP 561 550 - - 
21 MBP 511 525 - - 

- 28 ABP 233 332 - 
AlE-1 117 72 171.075 207 40 

Next, the performance of the Alg-l in the presence of 
measurement noise will be demonstrated. The class%- 
cation of the XOR patterns is corrupted by measure- 
ment noise. The noise is assumed to have a uniform 
random distribution from the interval [-1,+1]. The 
noise contributes to an imprecise value of E and would 
be expected to result in miscalculations of the param- 
eter updates. The results are summarized in Table 2. 
The results for Alg-1 here are worse than the results of 
Table 1. This is due to the fact that many times the 
signs required in Eqs. (9) and (12) are not correct. 

Ipable 2: lhining with imprecise error values. 
Method PEFE UEFE PASE UASE % 
Alg-1 396 234 4151 1321 30 

The effects of weight variations are simulated by in- 
troducing a factor into the weight vector so that the 
actual weights w are related to the ideal weights w’ by 

w = w’(1 + noise) where noise is a uniform random 
distribution from the interval [-1, +1] leading in up to 
100% weight vector variation. The actual weights w are 
used in the weight update calculations. The goal is an 
E < 0.04 within 600 epochs and weights are initialized 
in [-lo, lo]. The results of Alg-1 for the XOR problem 
are shown in Table 3. BP, MBP and ABP have not 
converged with such large weight variations. 

n b l e  3: lhining with weight variations. 
Method PEFE UEFE PASE CASE % 
Alg-1 395 252 3967 1181 44 

Modeling a system 

Next, we report results of the Alg-2, on modeling a 
system through a set of 20 samples, which are uni- 
formly chosen from the systems step response. A 1-10-1 
FNN is chosen in order to use the miniial architecture 
and reduce memory cost. The goal is an average error 
E,, < 0.025 and 1000 different initial weight vectors 
have been tested. 

Learning is significantly time consuming with the mini- 
mal architecture. BP with line search instead of a fixed 
learning rate, needs, on the average, more than 4 x lo6 
error function evaluations. BP with a fixed learning 
rate never found a global minimum due to oscillations; 
when BP is approaching a global minimum a smaller 
learning rate is necessary for the algorithm to continue 
decreasing the error. BPM exhibits the same prob- 
lematic performance. Results for ABP and Alg-2 are 
exhibited in Table 4. 

a b l e  4: Neural model o f  a svstem. 
Method PEFE UEFE PASE UASE % 

61 
Ale-2 1217 980 46995 29715 100 

- ABP 3630102 2979036 - 

Controlling a lathe cutting process 

The cutting tool, driven by a servo-motor is augmented 
with a force sensor which returns a signal contami- 
nated by tool chatter and unwanted noise to the con- 
troller [16, 171 whose object is to maintain a constant 
force on the tool by varying the material feed rate. The 
controller generates a signal to the actuator to effect 
the necessary optimum feed rate in order to assure the 
desired product quality. Feed rate demand is the in- 
put to the device and the cutting force, as measured 
by the force sensor on the workpiece, constitutes the 
device output. A 2-2-1 FNN is used for controlling the 
process. The neural controller is trained using fuzzified 
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values for the control system error and the.error change. 
The controller provides a correction signal which passes 
through an integrator to give the control input to the 
device. In Table 5 we exhibit results regarding the 
training performance of the neuro-controller starting 
form 1000 different initial weight vectors. 

Table 5: Lathe cutting process neuro-controller 
training. 

Method PEFE CEFE PASE OASE 7% 
90 

Alg-2 16 7 60 10 100 
- ABP 120 41 - 

Concluding Remarks 
New training methods suitable to work under imprecise 
conditions are presented. The proposed training algo- 
rithms proceed solely with the minimal information of 
the error function or its gradient, namely the algebraic 
sign. They take minimization steps in each weight di- 
rection. If a method is capable of converging when im- 
precise values are used, then computational effort can 
be saved by avoiding the extra work required to com- 
pute precise function and gradient values. Their con- 
vergence has been proved under appropriate assump- 
tions. 

The main feature of the proposed methods in the for- 
mulation of the learning problem is the reduction to 
simple onedimensional equations for the components 
201,202,. ..,'U],, of the error function E. They require 
only the algebraic signs of the error function and gra- 
dient values to be correct. 

Preliminary results suggest that our methods cope suc- 
cessfully with on-line training. They may also be of 
practical interest for implementation of FNN with hard- 
ware to carry out the training on-chip. In this case, it 
may be difTicult or impossible to obtain very precise Val- 
ues for the error function and the gradient of error. An 
analysis and results for these approaches will appear in 
a future publication. 
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